

ANPC 2019, Kruger National Park, RSA

Helium Decays of Excited States and Clustering in ^{17,18}O

Neven Soić Ruđer Bošković Institute Zagreb, Croatia

Collaborators

L. Prepolec, L. Grassi, D. Jelavić Malenica, T. Mijatović, Đ. Miljanić, N. Skukan,

S. Szilner, V. Tokić, M. Uroić

Ruđer Bošković Institute, Zagreb, Croatia

M. Milin

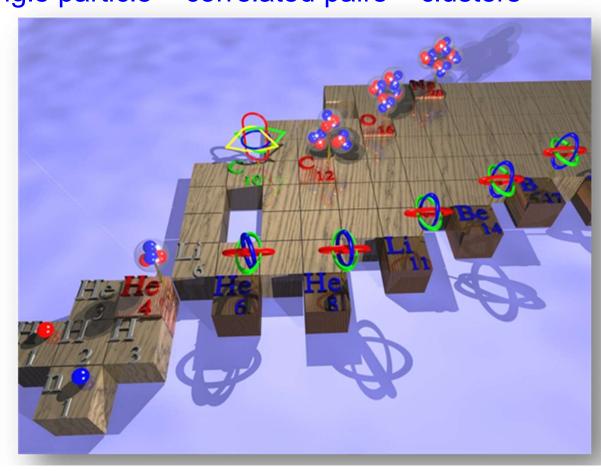
Faculty of Science, University of Zagreb, Croatia

S. Bailey, M. Freer, D. J. Marin-Lambarri, Tz. Kokalova Wheldon, J. Walshe, C. Wheldon *School of Physics and Astronomy, University of Birmingham, UK*

M. Fisichella, A. Di Pietro, P. Figuera, M. Lattuada, V. Scuderi

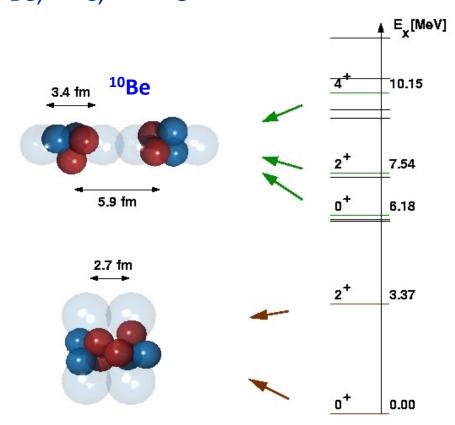
INFN -Laboratori Nazionali del Sud, Catania, Italy

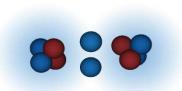
J. Gibelin, N. Orr

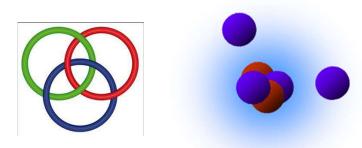

Laboratoire de Physique Corpusculaire ISMRA and Université de Caen IN2P3-CNRS, Caen, France

F. Haas

Université de Strasbourg, IN2P3-CNRS Institute Pluridisciplinaire Hubert Curien, Strasbourg, France


Advantages of light nuclei


- small number of degrees of freedom
- low density of states at moderate excitations
- tests of basic principles of nuclear structure and interaction starting from individual nucleons and interaction between them
- structure & reactions: single particle correlated pairs clusters
- experimentally found p and n drip lines
- richness of unusall nuclear configurations: clusters, Borromean (3 and 4 component systems), skin, halo, molecules


Nuclear molecules

valence neutrons exchanged between the cores 9,10,12Be,14,16C, 18,20,22O

Decay by ⁶He emission: ^{10,12}Be signature of exotic structure - molecular structure

N.Soić et al, Europhys.Lett. (1995)

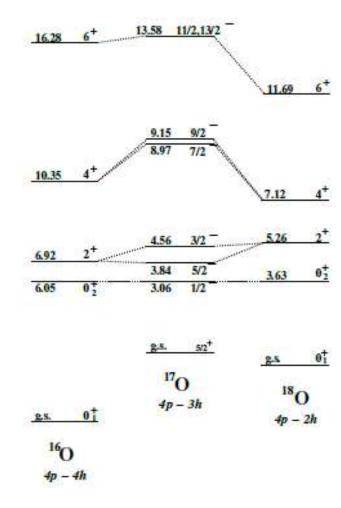
M.Milin *et al*, Europhys.Lett. (1999)

M.Milin et al, Nucl.Phys. (2005) M.Freer et al, Phys.Rev.Lett. (2006)

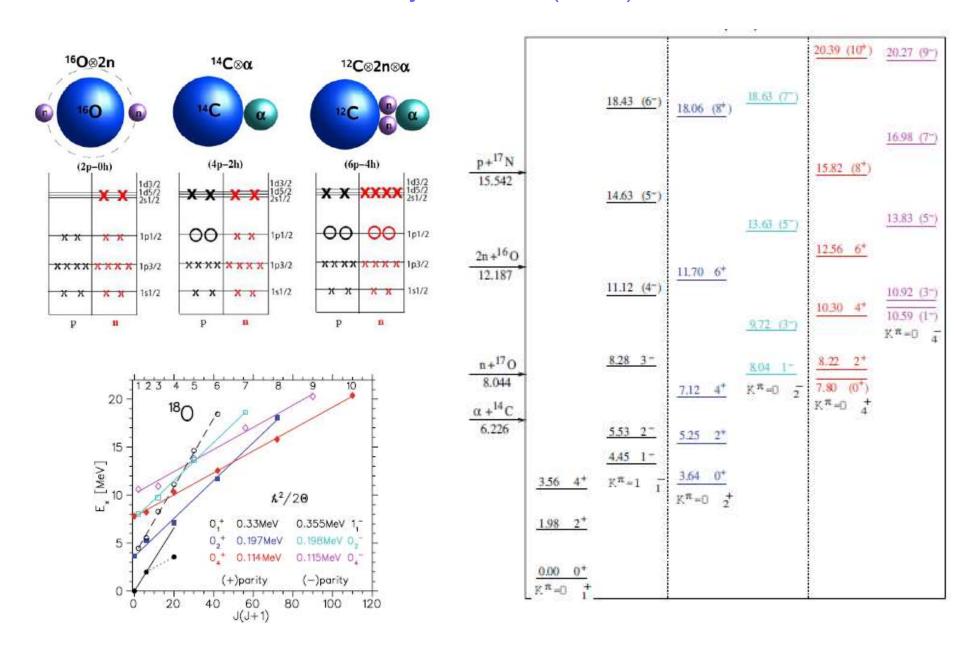
Borromean system neutron halo

Oxygen isotopes

¹⁶O: double magic ground state, 1st excited state 12 C+α cluster structure, possible 4α cluster structure at high excitations

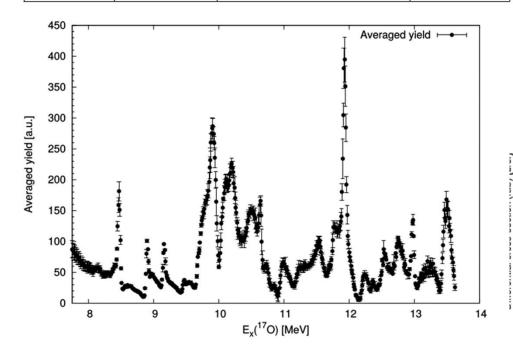

 K^{π} = 0+ rotational band

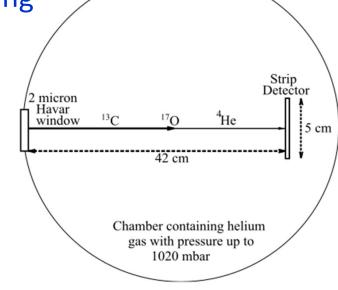
Jπ	E _x MeV
0+	6.05
2+	6.92
4+	10.36
6+	16.28

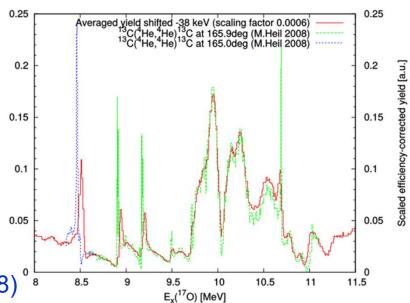

 $K^{\pi} = 0^{-}$ rotational band

Jπ	E _x MeV
1-	9.59
3-	11.60
5 ⁻	14.66
7-	20.86

Plot of the 4p-nh states for the ¹⁶⁻¹⁸O

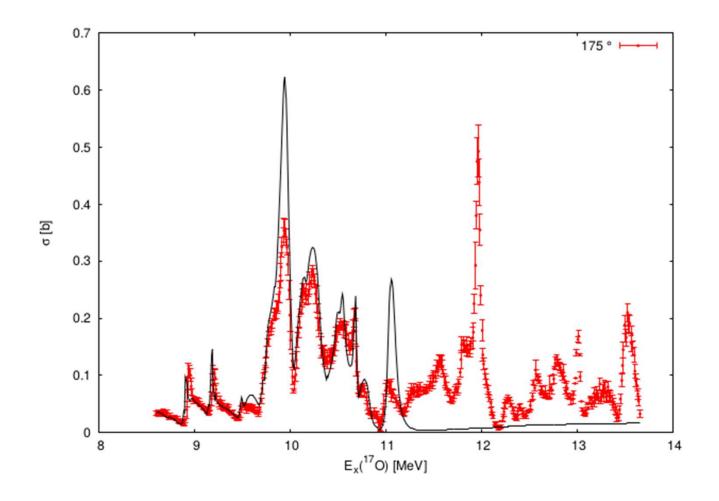

¹⁸O proposed cluster configurationsW. von Oertzen et al, Eur. Phys. J. A 43 (2010) 17

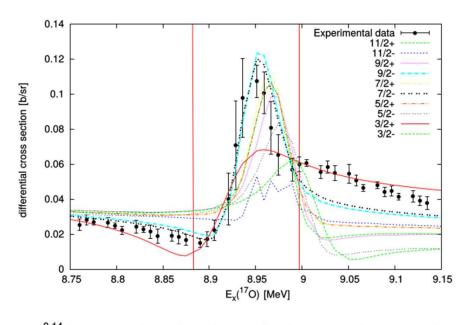



Experiment: Tandem RBI Zagreb Croatia

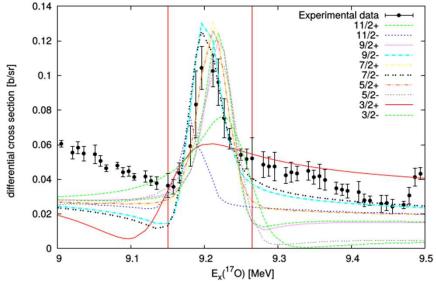
¹³C+⁴He thick gas target resonant scattering

$E_{^{13}\mathrm{C}}$ [MeV]	p _{4He} [mbar]	Inelastic-free $E_x(^{17}O)$ range	Run numbers
20.00	312	7.977 – 11.066	25
25.00	461	9.154 - 12.243	27
30.00	591,589,587	10.331 - 13.420	28-30, 32
33.00	699	11.037 – 14.126	33
35.00	720	11.508 – 14.597	35

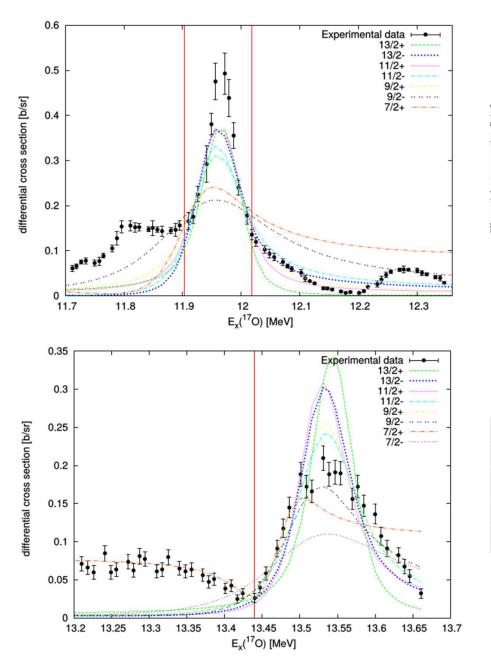


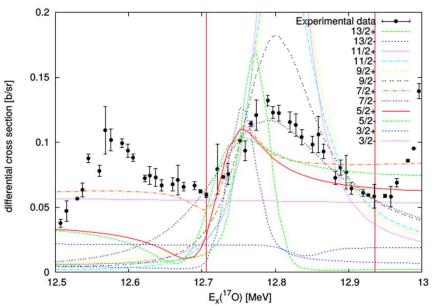

Published data: M Heil et al, PRC 78 (2008) 025803, up to excitation of 11.5 MeV

- R-matrix fits using code AZURE2 with resonance parameters from M. Heil et all (70 resonances at excitations 4.55 15.44 MeV obtained using code SAMMY)
- extensive fits of all available data for the ¹³C+⁴He elastic scattering at the number of angles, elastic and inelastic (1st and 2nd excited state) ¹⁶O+n scattering, ¹³C(⁴He,n) reaction, ¹⁶O(n,⁴He) reaction
- significant discrepancies between fits and experimental results even for Heil data


Our results for the ¹³C+⁴He elastic scattering with R-matrix fit using published resonance parameters

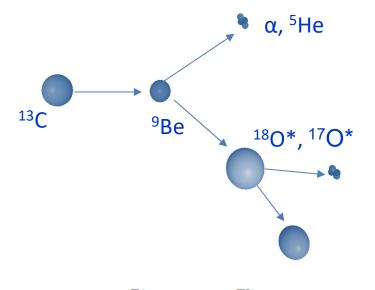
Simplified R-matrix fit: single isolated resonance for single channel and single data set at one angle



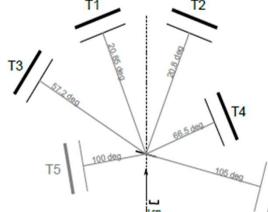

		Peak								
		8.9 Me	V	9.2 Me	V					
	J^{π}	$\gamma [\mathrm{MeV}^{1/2}]$	θ_W^2	$\gamma [\mathrm{MeV}^{1/2}]$	θ_W^2					
Ì	$\frac{9}{2}^{-}$	-0.482501	0.307	0.408232	0.220					
	$\frac{7}{2}^{-}$	-0.632510	0.528	0.538238	0.382					

Heil et al results

J^{π}	$E_x(^{17}\text{O}) \text{ [MeV]}$	Γ_n [keV]	Γ_{α} [keV]
$\frac{9}{2}^{-}$	8.9029	$-2.3 \cdot 10^{-5}$	-0.45
$\frac{7}{2}^{-}$	9.1737	0.038	3.26



Peak									
	12.0 MeV 12.8 MeV 13.6 MeV								
J^{π} $\gamma [\mathrm{MeV}^{1/2}]$ θ_W^2			J^{π}	$\gamma [\mathrm{MeV}^{1/2}]$	θ_W^2	J^{π}	$\gamma [\mathrm{MeV}^{1/2}]$	θ_W^2	
$\frac{11}{2}^{+}$	0.339962	0.153	$\frac{7}{2}^{-}$	0.284347	0.107	$\frac{11}{2}^{-}$	0.431423	0.246	
$\frac{13}{2}^{-}$	0.837051	0.925							

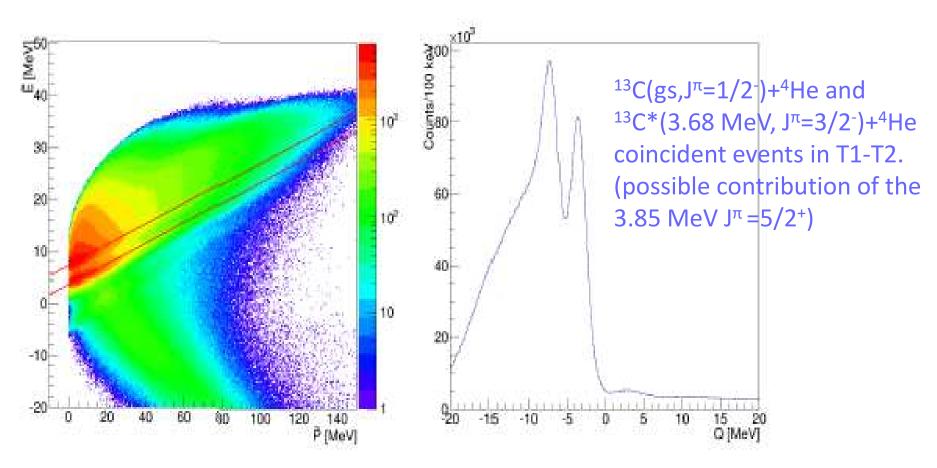

Experiment: Tandem IPN Orsay France

Kinematically complete measurements - detected 2 of 3 reaction products

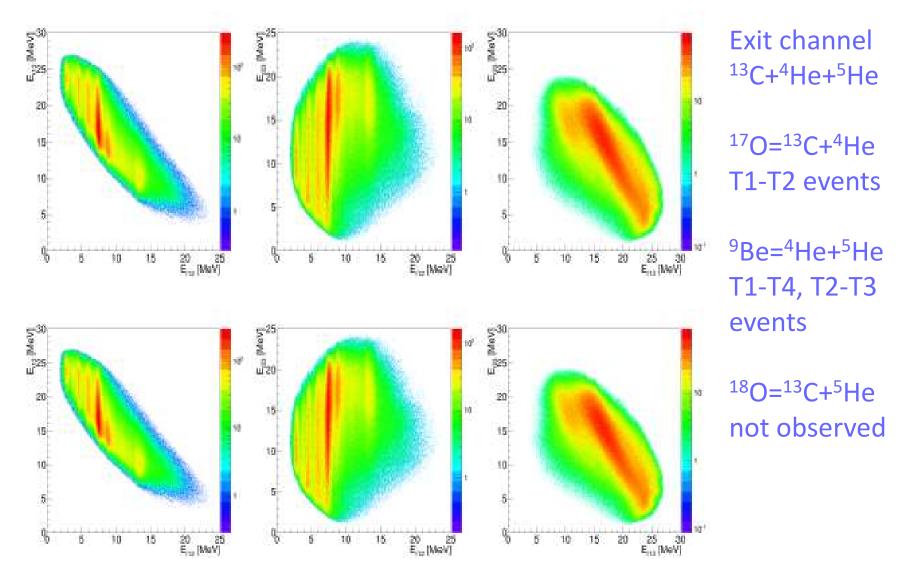
$$^{13}\text{C} + ^{9}\text{Be} \rightarrow ^{5}\text{He} + ^{17}\text{O*}$$

 $^{17}\text{O*} \rightarrow \alpha + ^{13}\text{C}, \ Q = -2.406 \ \text{MeV}$
 $\text{E}_{\text{thr}}(\alpha + ^{13}\text{C}) = 6.361 \ \text{MeV}$

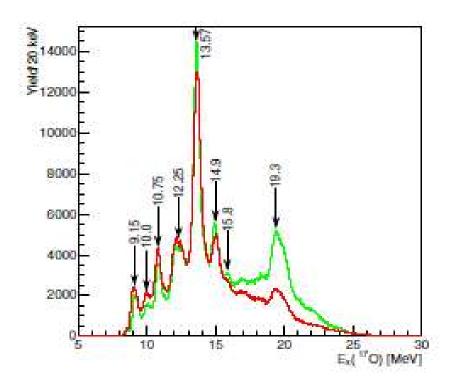
$$^{13}\text{C} + ^{9}\text{Be} \rightarrow \alpha + ^{18}\text{O*}$$
 $^{18}\text{O*} \rightarrow \alpha + ^{14}\text{C}, \ Q = 6.604 \ \text{MeV}$
 $^{18}\text{O*} \rightarrow ^{6}\text{He} + ^{12}\text{C}, \ Q = -5.549 \ \text{MeV}$
 $E_{\text{thr}}(\alpha + ^{14}\text{C}) = 6.228 \ \text{MeV}$
 $E_{\text{thr}}(^{6}\text{He} + ^{12}\text{C}) = 18.380 \ \text{MeV}$

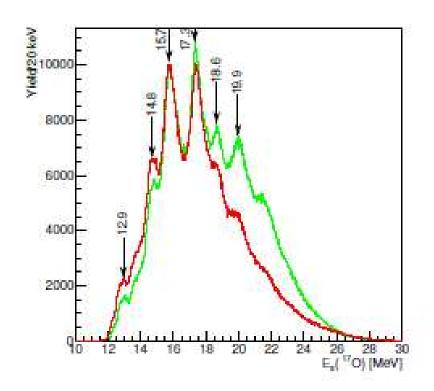


E(13C) beam = 72 MeV, 9Be target thickness 100 μg/cm² 6 telescopes 20 μm SSSD + 1000 DSSSD μm, 50x50 mm² Micron Semiconductor type W1


Goal: characterization of the ^{17,18}O resonances decaying by helium emission in excitation energy range 7 - 25 MeV: excitation energy, widths

¹⁷O results


⁹Be + ¹³C \rightarrow ¹³C + ⁴He+ ⁵He (Γ=0.648 MeV) ¹³C(T1)-⁴He(T2), ¹³C(T2)-⁴He(T1), ¹³C(T1)-⁴He(T4) & ¹³C(T2)-⁴He(T3) coincident events



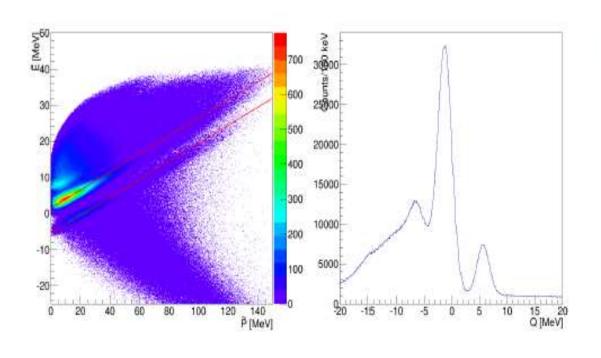
Reaction identification: Catania plot & Q-value plot

Relative-energy plots for the ${}^{9}\text{Be}({}^{13}\text{C}, {}^{13}\text{C}^{4}\text{He}){}^{5}\text{He}$ reaction. The ${}^{13}\text{C}(\text{T}1/\text{T}2)$, ${}^{4}\text{He}(\text{T}2/\text{T}1)$ and ${}^{5}\text{He}$ (undetected) are labeled by numbers 1, 2 and 3.

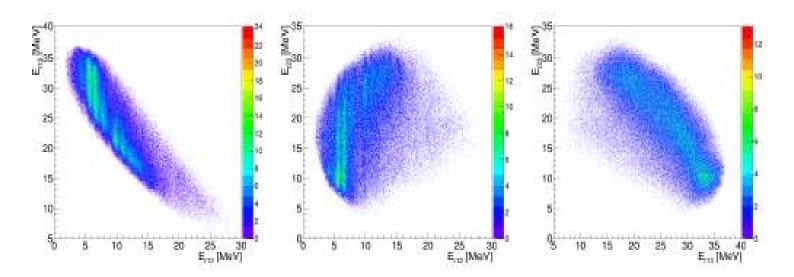
The 17 O excitation energy spectrum from the 13 C(gs, J^{π} =1/2⁻)+ 4 He coincident events in T1-T2 (red) and T2-T1 (green).

The 17 O excitation energy spectrum from the 13 C*(3.68 MeV, J^{π} =3/2-)+ 4 He coincident events in T1-T2 (red) and T2-T1 (green) (possible contribution 3.85 MeV J^{π} =5/2+)

No.	¹³ C+ ⁴ He res. el.		¹³ C+ ⁴ He res. el. ¹³ C+ ⁹ Be reactions		Dafamanac	Tilley et.	Tilley et. al. [50]	
NO.	E_x [MeV]	J^{π}	¹³ C+ ⁴ He coinc.	¹³ C*+ ⁴ He coinc.	References	E_x [MeV]	J^{π}	
1	8.9	$\left(\frac{7}{2}^{-}\right)$ or $\left(\frac{9}{2}^{-}\right)$		2		8		
2	9.2	$\left(\frac{7}{2}\right)$ or $\left(\frac{9}{2}\right)$	9.15		[5], [7], [98], [101], [102]	9.147	$\frac{1}{2}$	
3	10.0 [†]	Accept the first	10.0			9.976	5/2	
4	10.75 [†]	e 8	10.75	2	[6], [100], [101]	10.777	$\frac{1}{2}$ $\frac{5}{2}$ $\frac{1}{2}$, $\frac{7}{2}$	
5	12.0	$\left(\frac{11}{2}^+\right)$ or $\left(\frac{13}{2}^-\right)$	12.25 (wide)		[61], [96], [97], [98]	12.005 ± 15	>	
6	12.8		12.23 (WIGC)	12.9	[100]	12.93		
7	13.6	$\left(\frac{11}{2}^{-}\right)$	13.57	(8	[4], [5], [98], [100]	13.58	$(\frac{11}{2}, \frac{13}{2})$	
8		(28) (2)	14.9	14.8	[4], [6], [100]	15.1 ± 0.1	$\left(\frac{9}{2}^{+}, \frac{11}{2}^{+}\right)$	
9			15.8	15.7	[4], [6]*, [100], [103],	15.95	$(\frac{9}{2}^+, \frac{11}{2}^+)$	
10			(weak peak)	17.3	3. 6*, 98, 105	17.06	11/2	
11			(weak peak)	18.6	6	18.72		
12			19.3		6, 4, 104			
13				19.6	3,6*	19.6	$\left(\frac{13}{2}^{+}, \frac{15}{2}^{+}\right)$	

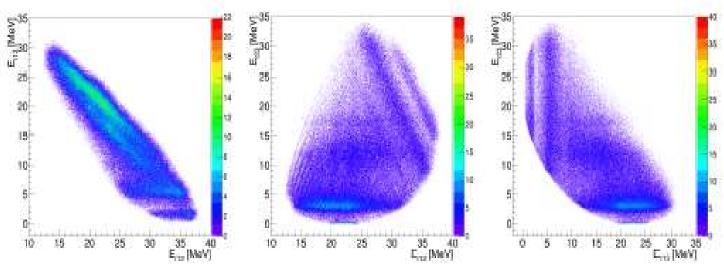

Published results:

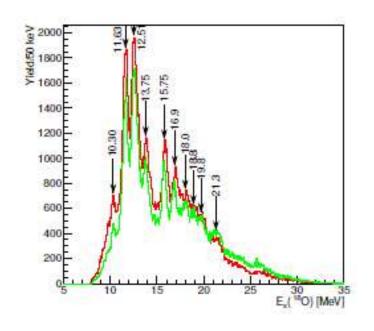
- (6) M. Milin et al, EPJ A 41 (2009) 335, the same reaction
- (7) M. Heil et al, PRC 78 (2008) 025803, the $^{13}\text{C}+^4\text{He}$ thick target resonant scattering up to excitation 11.1 MeV

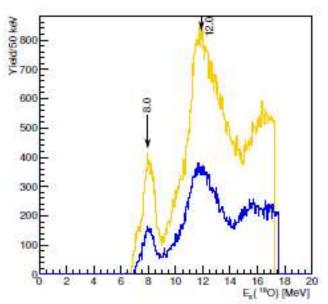

¹⁸O results

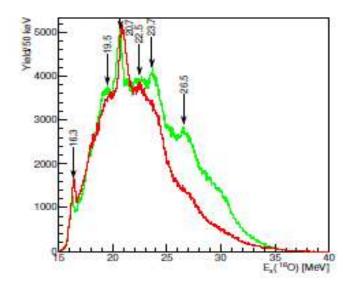
 ${}^{9}\text{Be} + {}^{13}\text{C} \rightarrow {}^{4}\text{He} + {}^{18}\text{O}^{*} \rightarrow$ ${}^{14}\text{C} + {}^{4}\text{He} + {}^{4}\text{He}, \ {}^{14}\text{C}^{*}(E \approx 7 \text{ MeV } 0^{\text{-}}, 2^{\text{+}}2^{\text{-}}) + {}^{4}\text{He} + {}^{4}\text{He}$ ${}^{12}\text{C} + {}^{6}\text{He} + {}^{4}\text{He}, \ {}^{12}\text{C}^{*}(E^{\text{*}}\text{=}4.4\text{MeV } 2^{\text{+}}) + {}^{6}\text{He} + {}^{4}\text{He}$ ${}^{10}\text{Be} + {}^{8}\text{Be} + {}^{4}\text{He}, \ {}^{10}\text{Be}^{*} \ (E = 3.37\text{MeV } 2^{\text{+}}; \approx 6.2 \text{ MeV } 2^{\text{+}}, 1^{\text{-}}, 0^{\text{+}}, 2^{\text{-}}) + {}^{8}\text{Be} + {}^{4}\text{He}$ Events for all possible telescope combinations

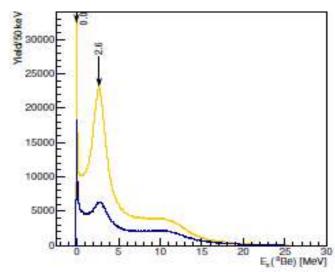
 $^{14}\text{C}(\text{T1})$ - $^{4}\text{He}(\text{T2})$ 14C(gs, J^{π}=0⁺)+ ^{4}He & $^{14}\text{C}^*$ (7 MeV)+ ^{4}He in T1-T2

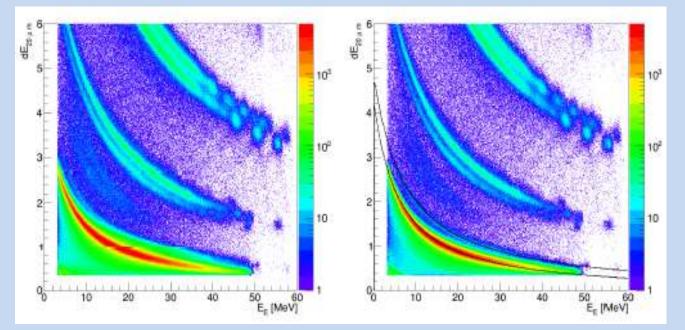


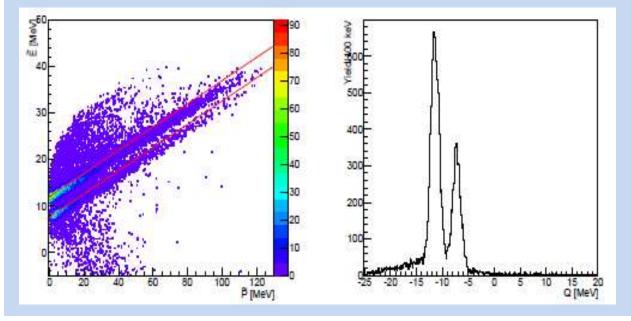



Relative-energy plots for the ${}^{9}\text{Be}({}^{13}\text{C}, {}^{14}\text{C}^{4}\text{He}){}^{4}\text{He}$ reaction. The ${}^{14}\text{C}(\text{T1}), {}^{4}\text{He}(\text{T2})$ and ${}^{4}\text{He}$ (undetected) are labeled by numbers 1, 2 and 3.

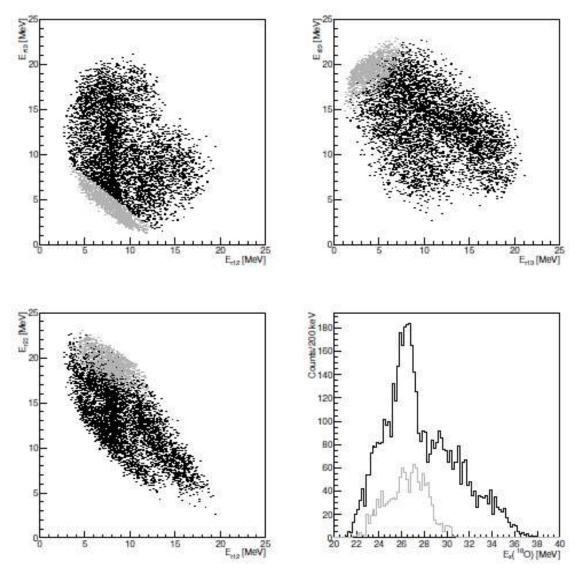



Relative-energy plots for the ${}^{9}\text{Be}({}^{13}\text{C}, {}^{14}\text{C}^{4}\text{He}){}^{4}\text{He}$ reaction. The ${}^{14}\text{C}(\text{T1}), {}^{4}\text{He}(\text{T4})$ and ${}^{4}\text{He}$ (undetected) are labeled by numbers 1, 2 and 3.


The ¹⁸O excitation energy spectrum for the ¹⁴C(gs)+⁴He coincident events in T1-T2 (red), T2-T1 (green), T1-T4 (orange) and T2-T3 (blue).



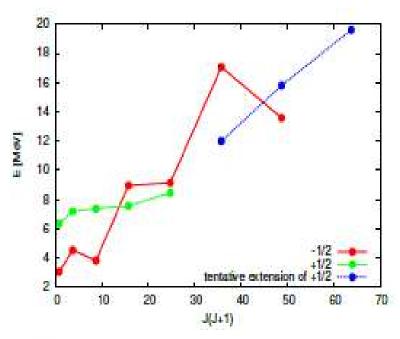
The ¹⁸O excitation energy spectrum for the ¹⁴C*(7 MeV)+⁴He events in T1-T2 (red) and T2-T1 (green); ⁸Be spectrum for T1-T4 (orange) and T2-T3 (blue).


$^{9}\text{Be} + {}^{13}\text{C} \rightarrow {}^{12}\text{C} + {}^{6}\text{He} + {}^{4}\text{He}$

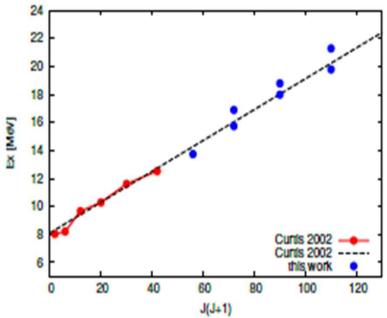
Additional ΔE-E spectra filtering to separate ⁶He from ⁴He for the T1, ΔE-strip 8. Black lines show results of simulations for ^{4,6}He in T1

The Catania plot for the ⁶He detected in T1 and ¹²C in T2. The red lines are predicted loci for the ⁹Be(¹³C,⁶He¹²C(gs))⁴He ⁹Be(¹³C,⁶He¹²C*(4.4 MeV))⁴He.

broad peak at 26.5 MeV, indications of peaks at 29.5 MeV and around 23.5 MeV.


E-E plots for ⁶He and ¹²C(gs) detected in T1 and T2, labelled as 1 and 2. The last plot is the ¹⁸O excitation energy spectrum for events selected via graphical cut (black dots). The grey dots correspond to events from the ¹⁶O decay. For the ¹²C*(4.4 MeV)+⁶He events excitation spectrum is structureless.

Ma	$E_x(^{18}O)$ from the $^{13}C+^{9}Be$ reactions		le reactions	References	Tilley et. al	87
No.	¹⁴ C+ ⁴ He	¹⁴ C*+ ⁴ He	¹² C+ ⁶ He	References	E _x [MeV]	J^{π}
2	10.30 MeV	e.		[12], [13], [14], [106], [107], [108], [109], [110], [111], [112], [113], [114]	10.290 MeV	4+
3	11.63 MeV			[12], [13], [14], [101], [106], [107], [108], [109], [111], [113]	11.62 MeV	5-
4	12.51 MeV	2	0	[12], [13], [14], [106], [107], [108], [109], [111]	12.53 MeV	6+
5	13.75 MeV				13.8	1-
6	15.75 Nie v			[13]. [14]	13.82	5
7	15.75 MeV	8	8		15.8	1-
8		16.1 MeV		[12]	16.315	(3,2)-
9	16.9 MeV			[107], [109]	16.948	$(2,3)^{-}$
10	18.0 MeV			[115]	18.049	
11	18.8 MeV			[110], [115]	18.68	(4^{-})
12		19.3 MeV				
13	19.8 MeV					
14		20.5 MeV		[110]	20.86	
15	21.3 MeV			[110], [117]	21.42	(4^{-})
16		22.3 MeV		[110]	22.4	4-
17		23.5 MeV	23.5 MeV	[110], [116]	23.8	1-
18		26.3 MeV	26.5 MeV	[116]	27	1-
19			29.5 MeV	[116]	30	

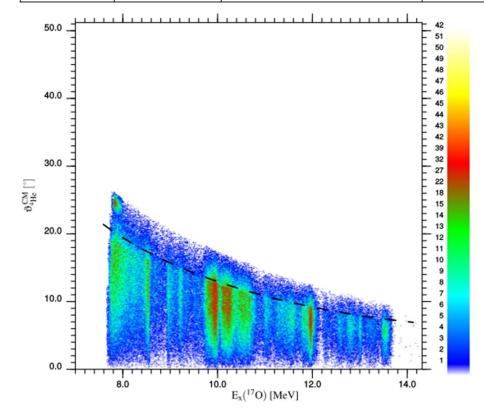

Published many results, some recent:

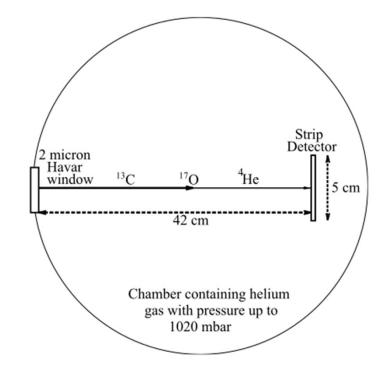
(14) M. L. Avila et al, PRC 90 (2014) 024327, the ¹⁴C+⁴He thick target resonant scattering

(12) N. Curtis et al, PRC 66 (2002) 024315, ¹⁴C(¹⁸O, ¹⁴C⁴He)¹⁴C

A tentative extension of the proposed ¹⁷O positive-parity rotational band and the negative-parity rotational band.

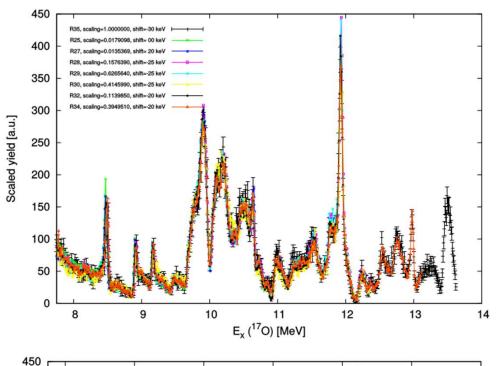
A tentative extension of the proposed ¹⁸O rotational band. In agreement with proposed rotational bands in W. von Oertzen et al, EPJ A 43 (2009) 17

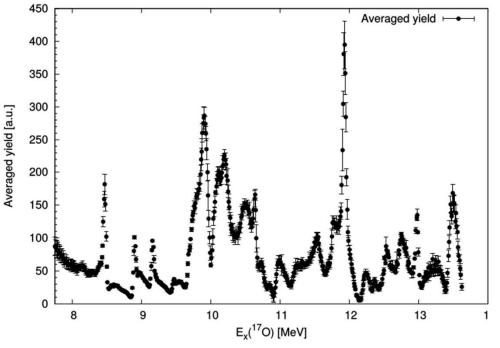

Summary & outlook

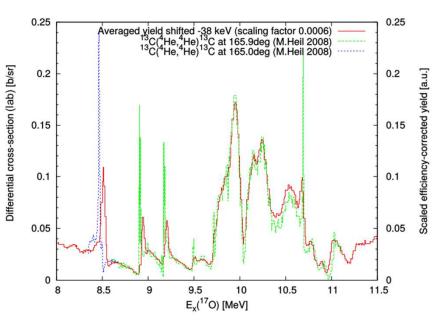

- the resonant scattering ¹³C+⁴He experiment and resonant nucleus spectroscopy experiment with the ¹³C+⁹Be reaction populated excited states with cluster structure in the ¹⁷O and ¹⁸O (RPSE)
- existing results on the ⁴He decays confirmed and extended
- the ⁶He decaying states in ¹⁸O have been observed for the first time the first indication of the molecular structure ¹²C-2n-⁴He
- no ⁵He & ⁸Be decays observed
- these measurements should be complemented with other technique experiments, for example thick target resonant scattering measurements
- further measurements using different techniques are needed to determine the exact value of spin and parity, with higher resolution and statistics to separate nearby states – some of them will be run soon
- there are indications that molecular structure exist in oxygen isotopes but much more experimental data are required

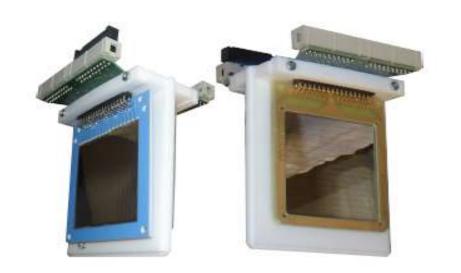
Thank you!

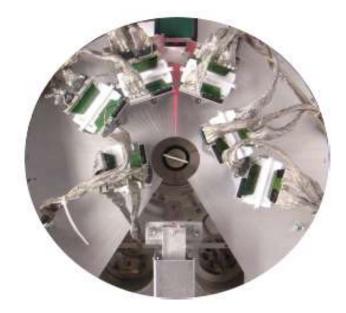
Experiment: Tandem RBI Zagreb Croatia ¹³C+⁴He thick gas target resonant scattering

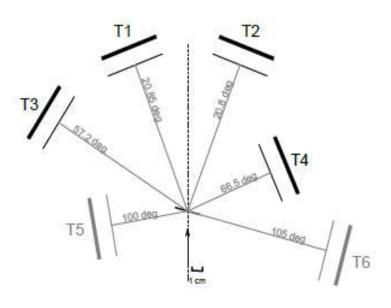

$E_{^{13}\text{C}}$ [MeV]	p _{4He} [mbar]	Inelastic-free $E_x(^{17}O)$ range	Run numbers
20.00	312	7.977 – 11.066	25
25.00	461	9.154 - 12.243	27
30.00	591,589,587	10.331 - 13.420	28-30, 32
33.00	699	11.037 - 14.126	33
35.00	720	11.508 - 14.597	35

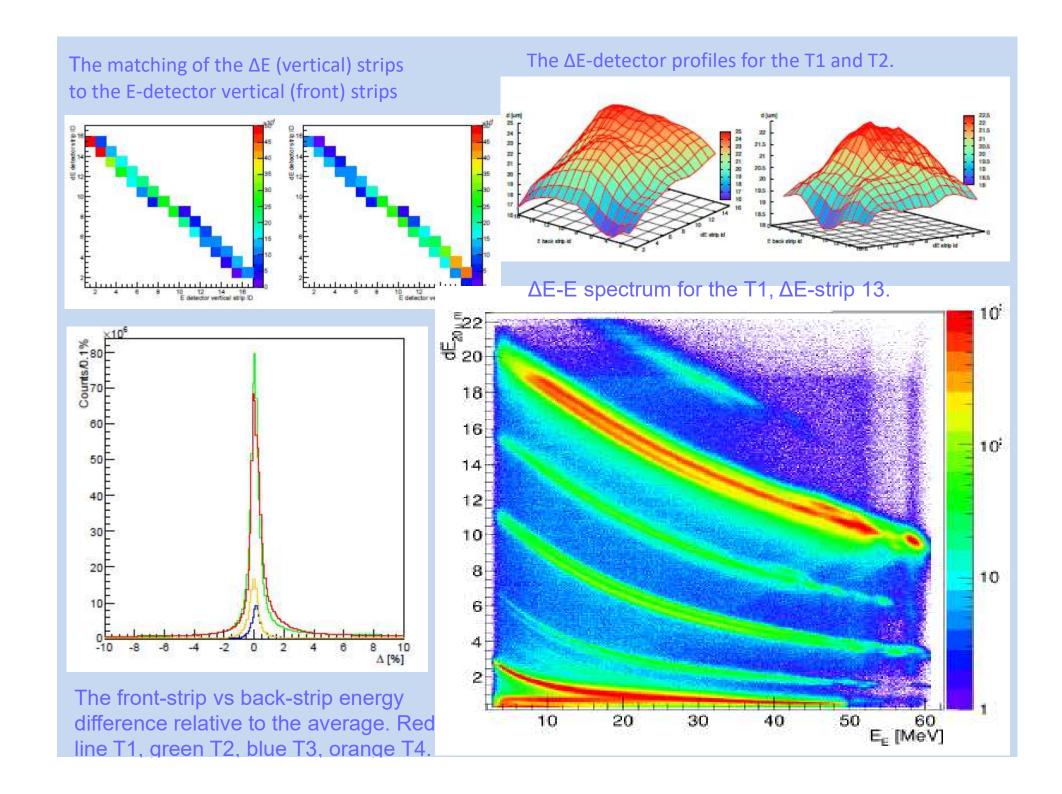

CM angle of scattered 4 He vs. $E_x({}^{17}O)$ Assumed elastic scattering

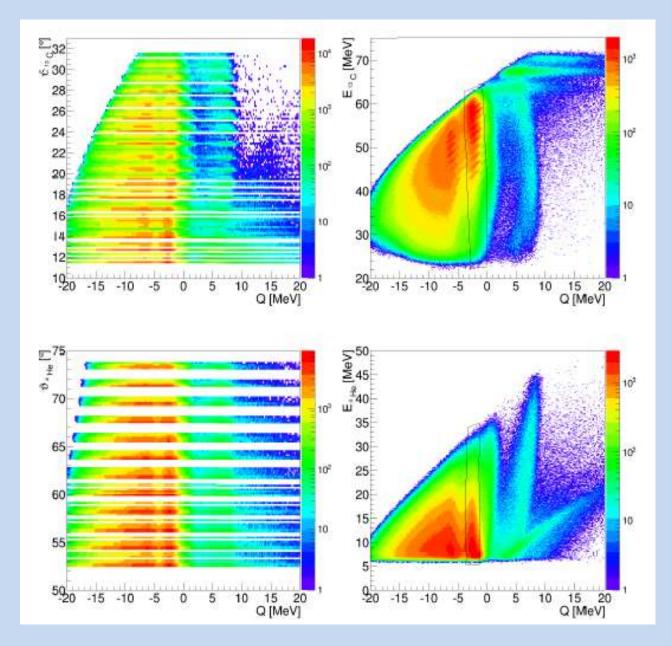

Further steps: detection efficiency correction (Θ_{CM} < 5 deg), normalization, data averaging for different runs


consistent sets of data, inelastic contribution negligible our data at 175 deg


Published data: M Heil et al, PRC 78 (2008) 025803, up to excitation of 11.5 MeV




E(13 C) $_{beam}$ =72 MeV, 9 Be target thickness 100 μg/cm 2 6 telescopes 20 μm SSSD + 1000 DSSSD μm, 50x50 mm 2 Micron Semiconductor type W1



Detector telescope	ϑ ^{in plane} [°]	ϑmax [°]	Δθ [°]
T1	11.43	30.30	18.9
T2	11.38	30.24	18.9
T3	48.10	66.31	18.2
T4	52.48	80.53	28.1
T5	83.90	116.10	32.2
T6	95.49	114.76	18.8

The Θ_{det} -Q and E^{det} -Q spectra for the 13 C(T1)- 4 He(T4) coincident events. The black line denotes the graphical cuts used to select the ground state reaction channel.