

Clustering in ^{10,12}Be and ¹³B examined by reactions of ⁹Li beam on LiF target

Neven Soić, Ruđer Bošković Institute Zagreb, Croatia

ISAC-II experiment S1620 TRIUMF Vancouver "Examining the helium cluster decays of the ¹²Be excited states by triton transfer to the ⁹Li beam", spokespersons: N. Soić, M. Freer

Neven Soić, Nikola Vukman, Petra Čolović, Milivoj Uroić

Ruđer Bošković Institute, Zagreb, Croatia

Martin Freer

School of Physics and Astronomy, University of Birmingham, United Kingdom

Martin Alcorta, Devin Connolly, Annika Lennarz, Chris Ruiz, Matthew Williams TRIUMF, Vancouver, Canada

Alessia Di Pietro

INFN – Laboratori Nazionali del Sud, Catania, Italy

Thomas Davinson, Alan Shotter

School of Physics and Astronomy, University of Edinburgh, United Kingdom Athanasios Psaltis

McMaster University, Hamilton, Canada

Structure of neutron-rich light nuclei

- nuclear molecules:

covalent exchange of neutrons between α 's \rightarrow increased stability of the system

Bonding π

 f_{1} f_{2} f_{4} f_{4} f

M.Freer *et al,* Phys.Rev.Lett. (2006)

American Institute of Physics Physics News Update 762, "Nuclear Molecule: Nature's smallest dumbbell"

Neutron-rich isotopes of Be & B

- evolution of clustering with addition of neutrons & proton on the α - α cluster structure
- unbound ⁸Be $\rightarrow \alpha$ -Xn- α molecular structures in ^{10,12}Be

 $\rightarrow \alpha$ -Xn-p- α molecular structures in boron isotopes

 various theoretical aproaches with common results of well developed clustering

Molecular orbitals & 2/3-center clustering in **AMD** formalism: density distributions of the states in: A) ¹⁰Be, B) ¹²Be, C) ¹³B.

Y. Kanada-En'yo et al.Y. Kanada-En'yo et al.Y. Kanada-En'yo et al.PRC 60 (1999) 064304PTEP 1 (2012) 01A202PTEP 120 (5) (2008) 917

^{10,12}Be & ¹³B experimental studies

- ¹⁰Be: transfer reactions, inelastic breakup, resonant elastic scattering
- ¹²Be: inelastic breakup
- ¹³B: inelastic breakup, resonant elastic scattering

Experiment S1620@TRIUMF

- Experiment "Examining the helium cluster decays of the ¹²Be excited states by triton transfer to the ⁹Li beam", spokespersons: N.Soić, M.Freer
- ISAC-II facility ⁹Li beam: 74.8 MeV, average intensity 4x10⁶ pps
- Natural lithium LiF target $\sim 1 mg/cm^2$

Micron Semiconductor Ltd YY1 single side strip detectors 16 strips ΔE+E: 70 μm + 1500 μm

lampshade geometry: 360° in Φ and 16.5-48° in Θ (~2°/strip)

Shematic presentation of LAMP detector telescope setup. Photo of the detector array

dT	$\Delta \phi_{12}^{nom.}$	$\Delta \phi_{12}^{real}$
0	0°	$[0^{\circ}, 55^{\circ}]$
1	60°	$[5^{\circ}, 115^{\circ}]$
2	120°	$[65^{\circ}, 175^{\circ}]$
3	180°	$[125^{\circ}, 180^{\circ}]$

Data analysis

- a sequence of event reconstruction and event selection procedures
- reduction of background contributions
- in each step rigorous criteria for selection of the events applied and quality checks performed
 dE:E spectrum [T1,S5]
- 1) hit reconstruction, multiple hits
- 2) reaction products identification
- 3) reaction exit channel identification
- 4) excited states identification

Typical PID ΔE -E spectrum for 1 strip in E detector

Coincident detection of 2 reaction products - kinematically complete measurements of the 3-body reactions: a full reconstruction of the event kinematics by application of momentum and energy conservation. **Detailed Monte Carlo simulations.**

Data analysis – ¹³B* decay into ⁹Li+⁴He

 ${}^{9}\text{Li} + {}^{7}\text{Li} \rightarrow {}^{3}\text{H} + {}^{13}\text{B}^{*} \rightarrow {}^{3}\text{H} + \alpha + {}^{9}\text{Li}, \text{Q} = -2.46 \text{ MeV}$

 $^{9}\text{Li} + {}^{19}\text{F} \rightarrow {}^{15}\text{N} + {}^{13}\text{B}^{*} \rightarrow {}^{3}\text{H} + \alpha + {}^{9}\text{Li}, \text{Q} = -4.01 \text{ MeV}$

reaction exit chanell identification: Q-value & Catania plot for each event

Catania plot & Q-value plot for the t+ α +⁹Li & α +⁹Li coincidences

Results of the Monte Carlo simulations: separation of the ⁹Li gs and 1st excited state at 2.69 MeV

Data analysis – ¹³B* decay into ⁹Li+⁴He

• excited states identification: 2D correlation plots

$$E_{r12} \propto f(E_1, E_2, \theta_1, \theta_2, \Delta \phi_{12}) - E_{r13} \propto Q + f(E_2^{CM}) - E_{r23} \propto Q + f(E_1^{CM})$$

excitation energy: $Ex^{ij} = E_{tr.}^{ij} + E_{rel.}^{ij}$

Excitation energy spectra for the ¹³B decay to the ⁹Li+⁴He for coincident detection of ⁹Li & ⁴He in dT=3 (A), dT=2 (B) and dT=1 (C) telescope combinations.

¹³B results: ¹³B* \rightarrow ⁹Li+⁴He, ⁷Li+⁶He, ¹⁰Be+³H

⁹Li + ⁷Li → ³H + ⁶He + ⁷Li, Q = -7.59 MeV ⁹Li + ⁷Li → ³H + ¹⁰Be + ³H, Q = -2.64 MeV ⁹Li + ¹⁹F → ¹⁵N + ¹⁰Be + ³H, Q = -4.19 MeV

$^{9}\mathrm{Li}{+}^{3}\mathrm{H}\downarrow\parallel$ Ex [MeV] $_{\rightarrow}$	(12)	13.5	16.5	(18.5)	19.7	21.5
$^{7}\text{Li}(^{9}\text{Li}, ^{9}\text{Li}^{4}\text{He})_{\text{dT}=3}{}^{3}\text{H}$			0	0	•	•
$^{7}\text{Li}(^{9}\text{Li}, ^{9}\text{Li}^{4}\text{He})_{\mathrm{dT}=2}{}^{3}\text{H}$			•	0	•	0
$^{7}\text{Li}(^{9}\text{Li}, ^{9}\text{Li}^{4}\text{He})_{\text{dT}=1}{}^{3}\text{H}$	×	•				
$^{7}\mathrm{Li}(^{9}\mathrm{Li},^{9}\mathrm{Li}^{4}\mathrm{He})_{\mathrm{dT}=0}{}^{3}\mathrm{H}$	0	•				
${\rm ^{19}F(^9Li,~^9Li^4He)_{dT=3}}{\rm ^{15}N}$			0	0	•	×
${}^{19}\mathrm{F}({}^{9}\mathrm{Li},{}^{9}\mathrm{Li}{}^{4}\mathrm{He})_{\mathrm{dT}=3}{}^{15}\mathrm{N}^{*}$			×	0	•	0
${\rm ^{19}F(^9Li,~^9Li^4He)_{dT=1}}{\rm ^{15}N}$	×	•	0	0		
${}^{19}\mathrm{F}({}^{9}\mathrm{Li},{}^{9}\mathrm{Li}{}^{4}\mathrm{He})_{\mathrm{dT}=1}{}^{15}\mathrm{N}^{*}$	×	•	•			
${}^{19}\mathrm{F}({}^{9}\mathrm{Li}, {}^{9}\mathrm{Li}{}^{4}\mathrm{He})_{\mathrm{dT}=0}{}^{15}\mathrm{N}$	•	•				
$^{19}\mathrm{F}(^{9}\mathrm{Li}, ^{9}\mathrm{Li}^{4}\mathrm{He})_{\mathrm{dT}=0}{}^{15}\mathrm{N}^{*}$	0	•				

Excitation energy spectra for the ¹³B decays to the: ⁷Li+⁶He (A, dT=1) and ¹⁰Be+³H (B, dT=3,C, dT=3 on 19F). Note: ⁷Li=g.s. + 0.48 MeV

$^{7}\mathrm{Li}{+}^{6}\mathrm{He}\downarrow \parallel\mathrm{Ex}\;[\mathrm{MeV}]\rightarrow$		18.5	19.5	21.2	22.9	
$^{7}\text{Li}(^{9}\text{Li}, ^{7}\text{Li}^{6}\text{He})_{dT=1}{}^{3}\text{H}$		•	•	0		
$^{10}\mathrm{Be}{+}^{3}\mathrm{H}_{\downarrow}\parallel$ Ex [MeV] $_{\rightarrow}$	16.3	18.5	19.5	21.2	22.9	24.7
$^{19}{\rm F}(^{9}{\rm Li},^{10}{\rm Be^{3}H})_{\rm dT=3}{}^{3}{\rm H}$	0	•	•	0	0	0
${\rm ^{19}F(^9Li,\ ^{10}Be^3H)_{dT=3}}{\rm ^{15}N}$			•		0	0

¹⁰Be results: ¹⁰Be* \rightarrow ⁴He+⁶He, ⁴He+⁶He*

 ${}^{9}\text{Li} + {}^{7}\text{Li} \rightarrow {}^{6}\text{He} + {}^{10}\text{Be}^{*} \rightarrow {}^{6}\text{He} + {}^{4}\text{He} + {}^{6}\text{He}, \text{Q} = 2.24 \text{ MeV}$ ${}^{9}\text{Li} + {}^{19}\text{F} \rightarrow {}^{18}\text{O} + {}^{10}\text{Be}^{*} \rightarrow {}^{18}\text{O} + {}^{4}\text{He} + {}^{6}\text{He}, \text{Q} = 4.23 \text{ MeV}$

Excitation energy spectra for the ¹⁰Be decays to the ⁴He+⁶He and ⁴He+⁶He*(1.8 MeV) (E) for coincident detection of the: ⁴He+⁶He (A-12-dT3, B-13-dT3, D-12dT3*, E-13*-dT3*) and ⁶He+⁶He (C-13+23-dT3, F-13+23-dT3).

${}^{4}\mathrm{He} + {}^{6}\mathrm{He} \downarrow \parallel \mathrm{Ex} \; ({}^{10}\mathrm{Be})[\mathrm{MeV}] \rightarrow$	9.6	10.2	11.8	16.5	18.5	20.5	22.3
7 Li(9 Li, 4 He 6 He 6 He) (12+13)	•	•	•	0			
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{6}\text{He})_{\text{dT}=3}{}^{6}\text{He}$ (12)				0	•	•	•
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{6}\text{He})_{\text{dT}=3}{}^{6}\text{He}^{*}$ (12)				0	•	•	0
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{6}\text{He})_{\text{dT}=0}{}^{6}\text{He}$ (12)	•	0	•				
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{6}\text{He})_{\text{dT}=0}{}^{6}\text{He}^{*}$ (12)	•	0	•				
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{6}\text{He})_{\text{dT}=3}{}^{6}\text{He}$ (13)	0	•	•	•	0	0	0
$^{7}\mathrm{Li}(^{9}\mathrm{Li},\ ^{6}\mathrm{He}^{6}\mathrm{He})_{\mathrm{dT}=3}{}^{4}\mathrm{He}\ (13{+}23)$	×	•	•	•	0	•	0
$^{7}\text{Li}(^{9}\text{Li}, ^{6}\text{He}^{6}\text{He})_{\text{dT}=2}{}^{4}\text{He}$ (13+23)	×	•	•	0	•	•	0

${}^{4}\mathrm{He} + {}^{6}\mathrm{He}^{*} \downarrow \parallel \mathrm{Ex} ({}^{10}\mathrm{Be})[\mathrm{MeV}] \rightarrow$	9.6	10.2	11.8	16.0	21.2
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{6}\text{He})_{\text{dT}=3}{}^{6}\text{He}^{*}$ (13)	0	•	•	0	0

¹²Be results: ¹²Be* \rightarrow ⁶He+⁶He, ⁶He+⁶He*

 ${}^{9}\text{Li} + {}^{7}\text{Li} \rightarrow {}^{4}\text{He} + {}^{12}\text{Be}^{*} \rightarrow {}^{4}\text{He} + {}^{6}\text{He} + {}^{6}\text{He}, Q = 2.24 \text{ MeV}$ ${}^{9}\text{Li} + {}^{19}\text{F} \rightarrow {}^{16}\text{O} + {}^{12}\text{Be}^{*} \rightarrow {}^{16}\text{O} + {}^{6}\text{He} + {}^{6}\text{He}, \text{Q} = -6.98 \text{ MeV}$

	EX(Be) [Mev]	
Excitation energy spectra for the	¹² Be	
decays to the ⁶ He+ ⁶ He and ⁶ He+ ⁶ I	He*(1.8	
MeV) (D) for coincident detection	n of	_
the: ⁴ He+ ⁶ He (A-23-dT3, D-23*-d]	ГЗ*)	
and ⁶ He+ ⁶ He (B-12-dT3, C-12-dT1	, E-12-	
dT2, F-12-dT0).		

$^{6}\mathrm{He}{+}^{6}\mathrm{He}{}_{\downarrow}\parallel$ Ex (^{12}\mathrm{Be}) [MeV] $_{\rightarrow}$	(11.7)	13.5	(16.5)	18.5	(20.0)	22.5	25.4
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{6}\text{He})_{\text{dT}=3}{}^{6}\text{He}$ (23)	×	•	0	•	0	•	•
$^{7}\text{Li}(^{9}\text{Li}, ^{6}\text{He}^{6}\text{He})_{\text{dT}=3}{}^{4}\text{He}$ (12)				•	0	•	•
$^{7}\text{Li}(^{9}\text{Li}, ^{6}\text{He}^{6}\text{He})_{\text{dT}=2}{}^{4}\text{He}$ (12)			0	•	•	•	0
$^{7}\text{Li}(^{9}\text{Li}, ^{6}\text{He}^{6}\text{He})_{\text{dT}=1}{}^{4}\text{He}$ (12)	0	•	×				
$^{7}\text{Li}(^{9}\text{Li}, ^{6}\text{He}^{6}\text{He})_{\text{dT}=0}{}^{4}\text{He}$ (12)	•						

${}^{6}\mathrm{He}{+}{}^{6}\mathrm{He}{}^{*}\downarrow\parallel\mathrm{Ex}~({}^{12}\mathrm{Be})~[\mathrm{MeV}]_{\rightarrow}$	15.4	16.5	17.8	22.1	24.0	
$^{7}\text{Li}(^{9}\text{Li}, {}^{4}\text{He}{}^{6}\text{He})_{\text{dT}=3}{}^{6}\text{He}$ (23)	•	•	٠	•	•	

¹²Be results: ¹²Be* \rightarrow ⁴He+⁸He

⁹Li + ⁷Li → ⁴He + ¹²Be* → ⁴He + ⁴He + ⁸He, Q = 3.402 MeV ⁹Li + ¹⁹F → ¹⁶O + ¹²Be* → ¹⁶O + ⁴He + ⁸He, Q = -5.830 MeV

Excitation energy spectra for the ¹²Be decays to the ⁴He+⁸He for coincident detection of the: ⁴He+⁸He (A-12-dT3, B-23-dT3, D-12-dT2, E-23-dT2) and ⁴He+⁴He (C-13+23-dT3, H-13+23dT2)

${}^{4}\mathrm{He}{+}^{8}\mathrm{He}_{\downarrow}\parallel\mathrm{Ex}\;({}^{12}\mathrm{Be})\;[\mathrm{MeV}]_{\rightarrow}$	10.3	(12.1)	13.8	15.6	17.5	(19.8)	(22.3)
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{8}\text{He})_{\text{dT}=3}{}^{4}\text{He}$ (23)	×	×	•	0	о	0	0
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{8}\text{He})_{\text{dT}=2}{}^{4}\text{He}$ (23)			0	•	•	•	0
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{8}\text{He})_{\text{dT}=3}{}^{4}\text{He}$ (12)				0	•	0	0
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{8}\text{He})_{\text{dT}=2}{}^{4}\text{He}$ (12)			0	0	0	0	0
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{8}\text{He})_{\text{dT}=1}{}^{4}\text{He}$ (12)	•	0	0	•	0		
$^{7}\text{Li}(^{9}\text{Li}, ^{4}\text{He}^{8}\text{He})_{\text{dT}=0}{}^{4}\text{He}$ (12)	•	0					
$^{7}\text{Li}(^{9}\text{Li}, {}^{4}\text{He}{}^{4}\text{He})_{dT=3}{}^{8}\text{He} (13+23)$	0	0	•	•	×	×	×
$^{7}\text{Li}(^{9}\text{Li}, {}^{4}\text{He}{}^{4}\text{He})_{\text{dT}=2}{}^{8}\text{He} (13+23)$	0	0	0	0	•	0	×

Conclusions

- the ⁹Li + ⁷Li experiment provided data for the number of light neutron-rich nuclei, new spectroscopic info for ^{10,12}Be & ¹³B
- ¹³B: observed recently reported states decaying to the ⁹Li+⁴He; indications for new states in this decay channel found; indications for the ⁷Li+⁶He and ¹⁰Be+³H decay found \$\mathcal{a}\$ α+2n+p+2n+α ?
- ¹⁰Be: new states at high excitations observed in the ⁴He+⁶He and ⁴He+⁶He*(1.8 MeV) channels
- ¹²Be: observed states reported in previous studies of inelastic breakup to decay into ⁴He+⁸He and ⁶He+⁶He; indications for new states found; new decay channel ⁶He+⁶He*(1.8 MeV) observed
- could not provide info on the spin, parity and partial decay widths of the states, but provided new important spectroscopic info
- exotic cluster-decay channels at high excitations strong support of the molecular structure of the observed states

This work has been supported in part by the Croatian Science Foundation under Project no. 7194 and Project no. IP-2018-01-1257, by the European Regional Development Fund for the 'Center of Excellence for Advanced Materials and Sensing Devices' (Grant No. KK.01.1.1.01.0001) and for the Competitiveness and Cohesion Operational Programme (Grant No. KK.01.1.1.06), as well as by the European Union's Horizon 2020 research and Innovation programme under grant agreement No. 669014. Part of the work has been supported by the Natural Sciences & Engineering Research Council of Canada under grants SAPPJ-2019-00039 and SAPMR 2020-00004. ADP acknowledges support provided by the Istituto Nazionale di Fisica Nucleare. TD acknowledges support provided by the UK Science & Technology Facilities Council.