Insight into the ²⁴Mg excited states located in Gamow window for carbon carbon burning

Neven Soić, Ruđer Bošković Institute, Zagreb, Croatia

Collaborators

1) V. Tokić, S. Blagus, D. Jelavić Malenica, Đ. Miljanić, L. Prepolec, M. Uroić Ruđer Bošković Institute, Zagreb, Croatia

2) M. Milin

Faculty of Science, University of Zagreb, Zagreb, Croatia

- 3) A. Di Pietro, P. Figuera, M. Fisichella, M. Lattuada, V. Scuderi, D. Torresi LNS-INFN/University of Catania, Catania, Italy
- 4) S. Bailey, N. Curtis, M. Freer, T. Wheldon, J. Walshe, C. Wheldon, V. Ziman University of Birmingham, Birmingham, United Kingdom
- 5) L. Acosta, I. Martel, A. Sanchez-Benitez University of Huelva, Huelva, Spain

Motivation

- Objective: search for ¹²C+¹²C resonances at the ²⁴Mg excitations 15-20 MeV and their full characterization: excitation energy, width, spin, parity, partial decay widths
- Two-fold reason: nuclear structure & astrophysical motivation
- Work in progress, data analysis is not finished yet

Important new result is even observation of the 0⁺ state at these excitations with prominent cluster structure – large probability for decay into α +²⁰Ne

20 MeV

$$\begin{split} & \mathsf{E}_{\rm thr}(\mathsf{n}+^{23}\mathsf{Ne}) = 16.532 \; \mathsf{MeV} \\ & \mathsf{E}_{\rm thr}(\alpha + \alpha +^{16}\mathsf{O}) = 14.044 \; \mathsf{MeV} \\ & \mathsf{E}_{\rm thr}(^{12}\mathsf{C}+^{12}\mathsf{C}) = 13.931 \; \mathsf{MeV} \\ & \mathsf{E}_{\rm thr}(^{1}\mathsf{H}+^{23}\mathsf{Na}) = 11.692 \; \mathsf{MeV} \\ & \mathsf{E}_{\rm thr}(\alpha +^{20}\mathsf{Ne}) = 9.313 \; \mathsf{MeV} \end{split}$$

FIG. 1. Excitation curves for the elastic scattering of C¹² by carbon and of O¹⁶ by oxygen. Self-supporting targets of carbon (~ $50\mu g/cm^2$) and of SiO $(\sim 70 \mu g/cm^2)$ and 5×5 mm Au-Si detectors, have been used in these measurements. The inset figure is a typical spectrum at $\theta_{lab} = 45^{\circ}$ obtained for 21.0-Mev carbon ions on carbon. The peak legend is as follows: the double peak at A arises from alpha particles and protons from the reaction which completely traverse the junction and thus provide a measure of its thickness. B is from C¹² elastically scattered by carbon; C is for C^{12} elastically scattered by oxygen; D is from C^{12} elastically scattered by a residual phosphorous contaminant from the stripping compound used in preparing the target, and E is from C^{12} elastically scattered from traces of heavier target contaminants.

D. A. Bromley, J. A. Kuehner, E. Almquist, Phys. Rev Lett 4 (1960) 385

Elastic scattering data Resonant phenomena in heavy ion reaction

365

E. Almquist, D. A. Bromley, J. A. Kuehner, Phys Rev Lett 4 (1960) 515

Reaction data

Formation of quasimolecular states in ²⁴Mg

FIG. 1. Excitation curves for C^{12} on carbon reactions: protons at 27°, alpha particles at 42°, neutrons at 30°, and gamma radiation at 90°. The magnitudes of the corresponding differential cross sections (laboratory system) at 10 Mev (c.m. system) incident energy are: protons-15 mb/sr, alpha particles-34 mb/sr, and neutrons-3 mb/sr. These cross sections refer to protons >6 Mev laboratory energy, alpha particles > 7.5 Mev, and all neutrons. Detectors were, respectively: Si p - njunctions (reference 2) covered by 0.007 inch of Al for protons, Au-Si surface barrier detectors (reference 2) covered by 0.001-inch Al for alpha particles. long counter of Hanson-McKibbon type for neutrons, and NaI crystal detectors biassed to detect gamma radiation > 2.8 Mev energy. Target was a self-supporting ~40- μ g/cm² C foil. Statistical errors are indicated where they are significantly larger than the points. The classical Coulomb barrier is indicated at 6.6 Mev. The inset shows the quasimolecular potential envisaged.

55 years later:

- number of resonances decaying into various channels
- kind of unique nuclear system, very complex structure
- governed by cluster structure of ¹²C oblate deformation in gs
- not fully understood yet

Figure 26. Nilsson–Strutinsky and α -cluster model calculations for ²⁴Mg [50, 88]. The potential energy is shown as a contour plot for the deformation parameters ϵ_2 and γ . Minima are found at particular deformations. For some of the potential minima the shapes obtained with the α -cluster model are indicated. The lower part shows the potential energy for the extension to octupole shapes with the parameter ϵ_3 .

Figure 42. (a) Resonances observed in the ¹²C(¹⁶O,²⁴Mg^{*}) breakup reaction [147, 148]. (b) The energy-spin systematics of the breakup resonances, from [148]. The smaller symbols and the solid line indicates the trend of the yrast states in ²⁴Mg.

T. Kawabata et al,J. Phys. Conf. Ser. 436,012009 (2013)

Figure 1. Typical spectrum for the ${}^{24}Mg(\alpha, \alpha')$ reaction measured at 0°. The excitation spectrum below $E_x = 10$ MeV is downscaled by a factor of 0.4.

Figure 4. Excitation energy spectra in the ${}^{24}\text{Mg}(\alpha, \alpha')$ reaction at $E_x = 9-23.6$ MeV taken from the singles measurement (top) and from the coincidence measurements with decay protons (middle) and α particles (bottom). The vertical arrows show the 0⁺ states at 13.1, 13.4, and 15.8 MeV.

The 13.1, 13.4 and 15.8 MeV states have prominent α-cluster structure

Figure 5. Excitation energy spectra in the ${}^{24}Mg(\alpha, \alpha')$ reaction at $E_x = 17.1-37.1$ MeV taken from the singles measurement (top) and from the coincidence measurements with decay α particles (middle) and ⁸Be (bottom).

- Y. Chiba and M. Kimura, PRC 91, 061302(R) (2015)
- antisymmetrized molecular dynamics combined with the generator coordinate method

FIG. 2. The isoscalar monopole transition strength functions calculated with the basis sets (a) $\Phi_{\beta\gamma}$, (b) $\Phi_{\beta\gamma} + \Phi_{IS0}$, and (c) $\Phi_{\beta\gamma} + \Phi_{IS0} + \Phi_{\Delta N}$. The solid line in the right panel shows the strength function smeared by a Lorentzian with 0.8 MeV width. The vertical dashed lines indicate cluster decay threshold energies which are located at the observed binding energies.

The ²⁴Mg ground state has significant cluster components ⁴He+²⁰Ne and ¹²C+¹²C The ¹²C+¹²C configuration contributes to the O_2^+, O_3^+, O_5^+ , and is the main component of the O_8^+ state at 15.3 MeV Explosive phenomena in binary systems SNIa: initiates thermonuclear runaway on white dwarf temperature 0.5 - 1.2×10^9 K $\rightarrow E_{cm}$ =1.5-3.3 MeV Super-bursts: trigger of ¹²C ignition up to 2.5x10⁹ K - 5.7 MeV

Stellar outbursts

Massive stars:¹²C+¹²C fusion is differentiating between the evolutionary paths leading to either white dwarf or heavy elements burning stages Super-AGB stars Relevant reactions: ${}^{12}C + {}^{12}C \rightarrow {}^{24}Mg + \gamma$ ${}^{12}C + {}^{12}C \rightarrow {}^{20}Ne + \alpha$ ${}^{12}C + {}^{12}C \rightarrow {}^{23}Na + p$ ${}^{12}C + {}^{12}C \rightarrow {}^{23}Mg + n$

E. F. Aguilera et al, Phys. Rev. C 73
(2006) 064601
T. Spillane et al, Phys. Rev. Lett. 98
(2007) 122501

Existing data show large discrepancies Low energy resonance ?

Experiment at INFN – LNS

Coincident detection of 2 (or more) reaction products		
$^{12}C + ^{16}O \rightarrow ^{4}He + ^{12}C + ^{12}C$	Q=-7.16 MeV	E _{thr} (²⁴ Mg)=13.93 MeV
\rightarrow ⁴ He + ¹⁶ O + ⁸ Be	Q=-7.37 MeV	E _{thr} (²⁴ Mg)= 14.14 MeV
\rightarrow ⁴ He + ²⁰ Ne + ⁴ He	Q=-2.54 MeV	E _{thr} (²⁴ Mg)= 9.31 MeV
\rightarrow ⁴ He + ²³ Na + ¹ H	Q=-4.92 MeV	$E_{thr}(^{24}Mg) = 11.69 MeV$

the ¹⁶O beam from the tandem accelerator beam energy 94 MeV target ¹²C, thickness of 45 μg/cm² 11 days of beam-time View English Vi

Detector telescopes: 50 x 50 mm² 20 μ m SSSD + 1000/500 μ m PSD & DSSD Particle identification from p to ¹²C

- ▶ 3 → PSSSD, d = 500 μ m, theta = 19.0°, [12°,26°]
- ▶ 4 → DSSSD, d = 1003 μ m, theta = 22.2°, [16°,29°]
- ▶ 5 → DSSSD, d = 998 μ m, theta = 63.8°, [55°,73°]
- ▶ 6 → PSSSD, d = 500 μ m, theta = 134.0°, [120°,146°]

Single events ²⁴Mg spectra

Telescope 6

α +²⁰Ne decay

(α-α coincident events)

Catania plot: $E_3 - Q = P_3^2/(2A)$

Relative energy plots for the ²⁰Ne ground state decay

⁴He+ ²⁰Ne, id=42

T2-T4

¹²C+¹²C decay ¹²C+¹²C coincident events

¹²C detected in T3 & T4 only

en1:p/4.0026-e {id==34}

Relative energy plots for the ¹²C ground state decay

e12:e23 {id==34&&cut1}

Relative energy plots for the ¹²C+¹²C*(4.4 MeV) decay

 $^{12}C^{+}+^{12}C, id=34$

E_x(²⁴Mg): 24.2, 25.0, 25.9, 26.4, 27.6, 28.8 (28.4+29.2), 30.0, 30.8, 31.2, 31.9, 32.5, 33.2, 33.8 MeV

Relative energy plots for the ¹²C*(4.4 MeV)+¹²C*(4.4 MeV) decay

E_x(²⁴Mg): 30.4, 33.2, **34.1**, 35.7 MeV

A RooPlot of "Ex(²⁴Mg)[MeV] (e12)"

E_x(²⁴Mg): 19.9, 20.9, 21.3, 21.7, 22.7, 23.8, 24.2, 25.0, 25.6, 25.9, 26.4, 27.0, 27.6, 28.0, 28.8, 29.2, 30.4, 30.8, 31.2, 31.9, 32.5, 33.2, 33.8, 34.1, 35.7 MeV

Relative energy plots for the ¹²C+¹²C*(7.6, 9.6 MeV) decay

E_x(²⁴Mg): 28.4, 31.9, 33.2, **34.6** MeV – 7.6 MeV

E_x(²⁴Mg): 31.9, 32.5, 33.2, 34.6, 37.0 MeV – 9.6 MeV

¹²C+¹²C decay ¹²C+ α coincident events e:p {(id==31||id==32||id==35||id==36)} e:p {(id==41||id==42||id==45||id==46)} Entries Mean x Mean y RMS x RMS y E[MeV] E[MeV] 4.3 .73 **90** .57 0ò P[MeV] ō P[MeV] en1:p/12.0-e {id==45} en1:p/12.0-e {id==31||id==32||id==35||id==36} 68 ei en1 'L_____ -25 -20 -15 -10 -5 -25 -20 -15 -10 -5 р/12.0-е р/12.0-е

Relative energy plots for the ¹²C ground state decay

e23:e13 {id==41&&cut1} e23 Entries 224 Mean x 6.295 [MeV4] Mean y 19.41 RMS x 1.901 RMS y 3.995 12 10 2 4 8 10 12 -6 e13[MeV]

e12:e23 {(id==31||id==32||id==35||id==36)&&cut1}

at 18.9, 19.6 and 19.9 MeV

FIG. 6. (Color online) Excitation functions obtained with particle techniques, transformed with the energy shift and the scale factor indicated in the text. Our data are also shown for comparison. The curves are BPM calculations using the proximity adiabatic (PA) and Krappe-Nix-Sierk (KNS) potentials.

¹⁶O+⁸Be decay ¹⁶O+⁸Be coincident events

E_x(²⁴Mg): 21.7, 23.1, 24.2, 24.8, 25.7, 26.7 MeV

²⁰Ne+ α resonant scattering experiment

Thick gas target measurements: detector telescope at 0 deg R-matrix calculations: spin and parity of the resonances

Summary

- a number of states at the ²⁴Mg excitations above 20 MeV have been observed – some are new, some new decay modes observed
- ¹²C+¹²C decay of known states at 18.9, 19.6 and 19.9 MeV observed
 they all also observed to decay into the ²⁰Ne+α channel
- limitations of the experimental setup/DAQ system large rate of accidental coincidence events due to large elastic scatering rate – limited sensitivity obstructs observation of the ¹²C+¹²C decay of the states below 18.9 MeV
- another approach: the ²⁰Ne+α resonant scattering + R-matrix fit search for 0⁺ state(s) below 18.9 MeV

THANK YOU !

H2020 ERA Chair project at RBI

Expanding Potential in Particle and Radiation Detectors, Sensors and Electronics in Croatia

- nuclear physics, high energy physics, applications
- fundind 2.5 M€, 5 years project

We look for the expert on detectors and electronics for the ERA Chair position and four experienced postdocs.

Contact & info: soic@irb.hr