Role of Clustering in Nuclear Astrophysics

Neven Soić Ruđer Bošković Institute Zagreb, Croatia

22.06.2019. INFN LNS Catania

Outline

- Nuclear structure and reaction dynamics
- Genesis of the elements
- Triple α fusion
- The (α , γ) reactions on ¹²C and ¹⁶O
- The (α,n) reactions
- Carbon carbon fusion
- Experimental techniques and methods
- Summary

Chemical composition of visible matter

ar s	ystem	velage i			CISC	Isotope	Mass fraction in parts per million	Atom fraction in parts per million
		lvdrogen	1:≈/1	_ %		Hydrogen-1	705,700	909,964
					Abundance	Helium-4	275,200	88,714
	L	Joliume	.770/		is normaliz	Oxygen-16	5,920	477
0	Г	iellum: ≈	·Z/70			Carbon-12	3,032	326
• Ne	Sie	Fe				Nitrogen-14	1,105	102
NA		Il othor	alam	onte :	.70/	Neon-20	1,548	100
1/4	• \/\ • •	N roulei	CICIII	ents. ~	~~/0	Other Elements	3,879	149
N	a¥VV∖Ti∮	√ V Zn				Silicon-28	653	30
, F		Co Ge				Magnesium-24	513	28
в	V V		Te Xe Ba		Pb	Iron-56	1,169	27
	5.0		o · · · · · · · · · · · · · · · · · · ·		D			
	Sc	Ga V • V V Mo	Sn NAA		Pt ●Hg ∧	Sulfur-32	396	16
T	Sc en most common	elements in the Milky Way	Sn VVV	V~~~~~~	Pt ₩	Sulfur-32 Helium-3	396 35	16 15
I	Sc en most common Galaxy, estima	elements in the Milky Way ted spectroscopically ^[6]	Sn VVV	V [*] VVVVV	Pt W • Hg Au Bi	Sulfur-32 Helium-3 Hydrogen-2	396 35 23	16 15 15
Z	Sc en most common Galaxy, estima Element	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in	Sn V V	Pr	Pt W Hg Au Re Bi	Sulfur-32 Helium-3 Hydrogen-2 Neon-22	396 35 23 208	16 15 15 12
T Z	Sc en most common Galaxy, estima Element	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million	Sn	Pr 60 65 70	Pt W + Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26	396 35 23 208 79	16 15 15 12 4
Z	Sc en most common Galaxy, estima Element Hydrogen	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million 739,000	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13	396 35 23 208 79 37	16 15 15 12 4 4
Z 1 2	Sc Fen most common Galaxy, estima Element Hydrogen Helium	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million 739,000 240,000	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25	396 35 23 208 79 37 69	16 15 15 12 4 4 4
Z 1 2 8	Sc Fen most common Galaxy, estima Element Hydrogen Helium Oxygen	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million 739,000 240,000 10,400	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25 Aluminum-27	396 35 23 208 79 37 69 58	16 15 15 12 4 4 4 4 3
Z 1 2 8 6	Sc Fen most common Galaxy, estima Element Hydrogen Helium Oxygen Carbon	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million 739,000 240,000 10,400 4,600	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25 Aluminum-27 Argon-36	396 35 23 208 79 37 69 58 77	16 15 15 12 4 4 4 3 3 3
Z 1 2 8 6 10	Sc Fen most common Galaxy, estima Element Hydrogen Helium Oxygen Carbon Neon	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million 739,000 240,000 10,400 4,600 1,340	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25 Aluninum-27 Argon-36 Calcium-40	396 35 23 208 79 37 69 58 77 60	16 15 15 12 4 4 4 4 3 3 3 2
Z 1 2 8 6 10 26	Sc Galaxy, estima Galaxy, estima Element Hydrogen Helium Oxygen Carbon Neon Iron	elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million 739,000 240,000 10,400 4,600 1,340 1,090	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25 Aluminum-27 Argon-36 Calcium-40 Sodium-23	396 35 23 208 79 37 69 58 77 60 33	16 15 15 12 4 4 4 4 3 3 3 2 2 2 2
Z 1 2 8 6 10 26 7	Sc Fen most common Galaxy, estima Element Hydrogen Helium Oxygen Carbon Neon Iron Nitrogen	Ga Mo elements in the Milky Way ted spectroscopically ^[6] Mass fraction in parts per million 739,000 240,000 10,400 4,600 1,340 1,090 960 960	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt W - Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25 Aluminum-27 Argon-36 Calcium-40 Sodium-23 Iron-54	396 35 208 79 37 69 58 77 60 33 72	16 15 15 12 4 4 4 4 3 3 2 2 2 2 2 2
Z 1 2 8 6 10 26 7 14	Sc Fen most common Galaxy, estima Element Hydrogen Helium Oxygen Carbon Neon Iron Nitrogen Silicon	Ga Mo elements in the Milky Way spectroscopically ^[6] Mass fraction in parts per million 739,000 240,000 10,400 4,600 1,340 1,090 960 650 650	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt M + Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25 Aluminum-27 Argon-36 Calcium-40 Sodium-23 Iron-54 Silicon-29	396 35 23 208 79 37 69 58 77 60 33 72 34	16 15 15 12 4 4 4 4 3 3 3 2 2 2 2 2 2 2 2
Z 1 2 8 6 10 26 7 14 12	Sc Fen most common Galaxy, estima Element Hydrogen Helium Oxygen Carbon Neon Iron Nitrogen Silicon Magnesium	Ga • • • • • • • • • • • • • • • • • • •	Sn Sn Sn Sn Sn Sn Sn Sn	Pr 60 65 70	Pt Hg Au Bi Re 75 80	Sulfur-32 Helium-3 Hydrogen-2 Neon-22 Magnesium-26 Carbon-13 Magnesium-25 Aluminum-27 Argon-36 Calcium-40 Sodium-23 Iron-54 Silicon-29 Nicke1-58	396 35 23 208 79 37 69 58 77 60 33 72 34 34	16 15 15 12 4 4 4 4 3 3 2 2 2 2 2 2 1

Structure of atomic nuclei

• Fundamental forces: strong, weak, electromagnetic & gravitational

- Nucleus is quantum system: specific states depending on intrinsic nucleus energy
- Shell model: spherical systems
- magic numbers: 2, 8, 20, 28, 50, 82, 126

What evidence is there for correlation effects in nuclei?

Clustering

- many-body correlations
- 2-or 3-centre structures
- pronounced in light nuclei
- basic unit is α -particle fermions \leftrightarrow boson

Ikeda diagram

Symmetries (the deformed harmonic oscillator)

Nuclear Binding Energy

Type of processes

Transfer (strong interaction)

¹⁵N $(p, \alpha)^{12}$ C, $\sigma \simeq 0.5$ b at $E_p = 2.0$ MeV

Capture (electromagnetic interaction)

³He(α, γ)⁷Be, $\sigma \simeq 10^{-6}$ b at $E_p = 2.0$ MeV

Weak (weak interaction)

$$p(p, e^+\nu)d$$
, $\sigma \simeq 10^{-20}$ b at $E_p = 2.0$ MeV
b = 100 fm² = 10⁻²⁴ cm²

Cross section determination

The calculation of the cross section requires the determination of the wave function for the system projectile (a) and target (A) for a particular value of energy E. This requires solutions of the Schrodinger equation for a potential

$$V(r) = V_{\text{nuclear}}(r) + V_{\text{coulomb}}(r) + V_{\text{centrifugal}}(r)$$

- Nuclear potential: complicated form with strong dependence on energy, *E*, angular momentum, *J* and parity, π (due to the internal structure of the target and projectile). It is of very short range: $R = 1.2(A_a^{1/3} + A_A^{1/3})$ fm.
- Coulomb potential (only for charged particles):

$$V(r) = \frac{Z_a Z_A e^2}{r}$$

Centrifugal barrier:

$$V(r) = \frac{\hbar^2 l(l+1)}{2mr^2}$$

cross section suppressed for high *l* values. Normally *s*-wave (l = 0) and *p*-wave (l = 1) dominate.

Cross section is mainly determined by long range behaviour of the potential

Cross section

The general form of the total cross section for the formation of a nucleus with $A_C = A_a + A_A$ and $Z_C = Z_a + Z_A$

$$a + A \rightarrow C \rightarrow B + b$$

$$\sigma(E) = \pi \hbar^2 \sum_l (2l+1)T_l, \quad \hbar = \frac{\hbar}{mv} = \frac{\hbar}{\sqrt{2mE}}$$

 T_l transmission coefficient through the potential barrier. The problem reduces to a calculation of the tunneling probability through a barrier.

Nuclear reactions

 $A + a \rightarrow b + B$ $a + a \rightarrow b + B$

- Reaction Q-value: $Q = [(m_a + m_A) (m_b + m_B)] * c^2$
- Total reaction energy: beam energy + Q
- Beam energy defines type of dominant reaction mechanism for particular projectile target combination

- Nuclear reactions: processes between positively charged nuclei: nuclear interaction starts when nuclei are close enough that nuclear force has an effect (10⁻¹⁵ m)
- Nuclei have to overcome Coulomb barrier (assuming s-wave dominates)

$$V_{c} = \frac{Z_{a}Z_{A}e^{2}}{d}$$
$$V_{c} \text{ (MeV)} = 1.44 \text{ (MeV fm)} \frac{Z_{a}Z_{A}}{d \text{ (fm)}}$$

Coulomb barrier height: $p+p \Rightarrow V_c \approx 600 \text{ keV}$ $p+^{12}C \Rightarrow V_c \approx 2.8 \text{ MeV}$ $\alpha+\alpha \Rightarrow V_c \approx 1.5 \text{ MeV}$ $^{16}O+^{16}O \Rightarrow V_c \approx 15.0 \text{ MeV}$

	reaction	Coulomb barrier (MeV)	E ₀ (keV)	Reaction rate (Gamow peak area)
Sun center:	p + p	0.55	5.9	7.0×10 ⁻⁶
$T \sim 15 \times 10^6 \text{ K} \ (T_6 = 15)$	α + ¹² C	3.43	56	5.9×10 ⁻⁵⁶
	¹⁶ O + ¹⁶ O	14.07	237	2.5x10 ⁻²³⁷

Gamow window

Reaction probability (cross section) can change a few order of magnitudes with very small beam energy change \rightarrow RESONANCES

Genesis of elements

Big Bang Nucleosynthesis

Clustering *I* Non-resonant processes

- Adequate density and temperature of matter from 3rd to 20th minute after the Big Bang
- $T \approx 10^{10} \text{ K} \rightarrow \text{kT} \approx 2 \text{ MeV}$
- Mass abundance:
 - − hydrogen: ${}^{1}H\approx75\%$, helium: ${}^{4}He\approx25\%$
 - deuteron ²H: cca 2.5×10^{-5}
 - ³He: cca 1 x 10⁻⁵
 - ⁷Li: cca 1.5 x 10⁻¹⁰
 - ⁶Li cca 5 x 10⁻¹²
- Today observed deuterons are primordial
- ³He is generated in starts
- Lithium problem

Nucleosynthesis in stars

- Stars: mixture of p & ⁴He + e⁻, capture reactions of p & ⁴He
- No stable nuclei of mass 5 and 8 !
- Mass of star → temperature reaction energy → upper limit of mass of produced nuclei
- The first step is hydrogen burning all stars
- Primordial massive stars
- Sun generate energy through p p cycle
- Sun T \approx 15 x 10⁶ K \rightarrow kT \approx 1 keV
- Sun: star of 2nd or 3rd generation, contains also heavy elements
- Sun temperature is too low for reactions on nuclei A > 8

Helium burning – 3α reaction

- Which process produce nuclei A > 8 ?
- Answer: $\alpha + \alpha + \alpha \rightarrow {}^{12}C$ CLUSTERING !!
- 2 step process:
 - 1. $\alpha + \alpha \leftrightarrow {}^{8}Be(gs) Q = -92.1 \text{ keV}, \tau \approx 10^{-16} \text{ s}$
 - 2. ⁸Be+ $\alpha \leftrightarrow {}^{12}C^*$ (Hoyle state) $\tau \approx 10^{-16}$ s

 2γ or e⁺e⁻ pair production \rightarrow ¹²C(g.s.) P(rad.dec.) \approx 4x10⁻⁴

Hoyle (1954): necessary condition is resonance in ¹²C at certain energy and with specific characteristics: $J^{\pi}=0^+$ state at $E_x \approx$ 7.7 MeV; such state increases production rate for factor 10^8 !

Red giant conditions: equilibrium ⁸Be/⁴He= 10⁻¹⁰

The first application of Anthropic principle

¹²C(α,γ)¹⁶O

complications:

- very low cross section makes direct measurement impossible
 - · subthreshold resonances cannot be measured at resonance energy
 - Interference between the E1 and the E2 components

Stages of helium burning

¹³C(α,n)¹⁶O

• main neutron source for the s-process in low mass AGB stars

$^{22}Ne(\alpha,n)^{25}Mg$

• main neutron source for the s-process in large mass AGB stars

$^{14}O(\alpha,p)^{17}F$

breakout route from HCNO cycle

Information on ${}^{14}O(\alpha,p){}^{17}F$ reaction rate from:

7.35

Carbon burning

Red super-giants with mass > 8 Sun mass, T=0.6 – 1 GK Reaction sequence (Coulomb barrier): ¹²C+¹²C, ¹²C+¹⁶O, ¹⁶O+¹⁶O ²⁴Mg is very special nucleus: ¹²C+¹²C structure

Very high excitation energies \rightarrow de-excitation by emission of light nuclei Evolution of very massive stars >15 M(Sun): neutron star or black hole ? Trigger of explosive process of γ -burnst, supernovae type Ia & II

Is there $J^{\pi}=0^+$ resonance with ${}^{12}C+{}^{12}C$ structure in the Gamow window ?

$$\begin{split} \text{THM} &: {}^{12}\text{C} + {}^{14}\text{N} \rightarrow \text{d} + {}^{24}\text{Mg}^* \\ {}^{24}\text{Mg}^* \rightarrow \alpha + {}^{20}\text{Ne} \\ {}^{24}\text{Mg}^* \rightarrow \text{p} + {}^{23}\text{Na} \end{split}$$

Fig. 1 | Excitation functions from THM experimental yields. The quasi-free cross-section for the four channels ${}^{20}Ne + \alpha_0$ (a), ${}^{20}Ne + \alpha_1$ (b), ${}^{23}Na + p_0$ (c) and ${}^{23}Na + p_1$ (d) is projected onto the $E_{\rm cm}$ variable (black dots). Error bars denote $\pm 1\sigma$ uncertainties and account for background

Experimental technique: Resonance Decay Spectroscopy

Coincident detection of 2 (or	more) reaction p	roducts
${}^{12}C + {}^{16}O \rightarrow {}^{4}He + {}^{12}C + {}^{12}C$	Q=-7.16 MeV	E _{thr} (²⁴ Mg)=13.93 MeV
		- (24

\rightarrow ⁴ He + ¹⁶ O + ⁸ Be	Q=-7.37 MeV	E _{thr} (²⁴ Mg)= 14.14 MeV
\rightarrow ⁴ He + ²⁰ Ne + ⁴ He	Q=-2.54 MeV	E _{thr} (²⁴ Mg)= 9.31 MeV
\rightarrow ⁴ He + ²³ Na + ¹ H	Q=-4.92 MeV	E _{thr} (²⁴ Mg)= 11.69 MeV

the ¹⁶O beam from the tandem accelerator beam energy 94 MeV target ¹²C, thickness of 45 μ g/cm² 11 days of beam-time

en1:p/4.0026-e {id==34}

E_x(²⁴Mg): 19.9, 20.9, 21.3, 21.7, 22.7, 23.8, 24.2, 25.6 (25.0+25.9 ?), 27.0, 27.6 (27.0+28.0 ?), 28.0, 28.8 (28.4+29.2 ?), 29.2, 30.4 MeV

Experimental technique: Gas Target Resonant Scattering

INFN - LNL Legnaro 2014 ²⁰Ne beam from PIAVE + ALPI facility LIRAS chamber

- entrance window: 2µm HAVAR foil
- ⁴He gas target pressure up to 800 mbar
- beam stopped before the 0° telescope
- side detectors: scattered α's have low energy + energy loss and straggling in the gas – unresolved resonances

Detector telescope at 0 degree: normalized to previous GANIL measurements and efficiency corrected ($\pm 5^{\circ}$) data for three beam energies (θ_{CM} (²⁴Mg)=177°)

R-matrix fit

Summary

- Clustering is important structural mode in light nuclei
- Clustering governs some key nuclear reactions for elements synthesis in astrophysical enviroments
- An Universe like ours would not be possible without clustering
- The origin of clustering is not fully understood yet, but it is a consequence of the basic principles of nature
- Improved experimental and theoretical results from nuclear physics and astrophysics are needed to pin down the origin of matter