$41^{\text {st }}$ Symposium on Nuclear Physics Cocoyoc 2018

Helium Decays of the ${ }^{17,18} \mathrm{O}$ Excited States and Clustering in Oxygen Nuclei

Neven Soić
Ruđer Bošković Institute Zagreb, Croatia

Collaborators

N. Soić, L. Prepolec, L. Grassi, D. Jelavić Malenica, T. Mijatović, S. Szilner, V. Tokić, M. Uroić
Ruđ才er Bošković Institute, Zagreb, Croatia
M. Milin

Faculty of Science, University of Zagreb, Croatia
M. Freer, N. I. Ashwood, Tz. Kokalova, C. Wheldon

School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, UK
N. L. Achouri, F. Delaunay, J. Gibelin, F. M. Marqués, N. A. Orr Laboratoire de Physique Corpusculaire ISMRA and Université de Caen IN2P3-CNRS, Caen, France
F. Haas

Université de Strasbourg, IN2P3-CNRS Institute Pluridisciplinaire Hubert Curien, Strasbourg, France
M. Fisichella, A. Di Pietro, P. Figuera, M. Lattuada, V. Scuderi INFN -Laboratori Nazionali del Sud, Catania, Italy

Experimental Chart of Nuclides 2000

2975 isotopes

Table of Isotopes (1995)

- Light nuclei
- small number of degrees of freedom
- low density of states at moderate excitations
- tests of basic principles of nuclear structure and interaction starting from individual nucleons
- structure \& reactions: single particle - correlated pairs - clusters
- experimentally found p and n drip lines
- reachness of unusall nuclear configurations: Borromean, skin, halo, clusters, molecules

Nuclear molecules

valence neutrons exchanged between the cores ${ }^{9,10,12} \mathrm{Be},{ }^{14,16} \mathrm{C},{ }^{18,20,22} \mathrm{O},{ }^{22,24,26} \mathrm{Ne}$

Decay by ${ }^{6} \mathrm{He}$ emission:

Borromean system
Signature of exotic structure 0.00
N.Soić et al, Europhys.Lett. (1995)
M.Milin et al, Europhys.Lett. (1999)
M.Milin et al, molecular structure Nucl.Phys. (2005)
M.Freer et al,

Phys.Rev.Lett. (2006)

Oxygen isotopes

${ }^{16} \mathrm{O}$: double magic ground state, $\mathrm{I}^{\text {st }}$ excited state ${ }^{12} \mathrm{C}+$ a cluster $\mathrm{K}_{\mathrm{n}}=0^{+}$rotational band

J_{π}	$E_{x} M e V$
0^{+}	6.05
2^{+}	6.92
4^{+}	10.36
6^{+}	16.28

$K_{\pi}=0$ rotational band

J_{π}	$E_{x} \mathrm{MeV}$
1	9.59
3	11.60
5	14.66
7	20.86

Plot of the $4 p-n h$ states for the ${ }^{16-18} O$

${ }^{18} \mathrm{O}$ proposed cluster configurations
 W. von Oertzen et al, Eur. Phys. J. A 43 (2010) 17

Experiment: Tandem IPN Orsay France

Goal: characterization of the ${ }^{18} \mathrm{O}$ resonances decaying by helium emission in excitation energy range 7-25 MeV: excitation energy, width, partial widths
$\mathrm{E}\left({ }^{13} \mathrm{C}\right)_{\text {beam }}=72 \mathrm{MeV},{ }^{9} \mathrm{Be}$ target thickness $100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ 6 telescopes $20 \mu \mathrm{~m}$ SSSD +1000 DSSSD $\mu \mathrm{m}, 50 \times 50 \mathrm{~mm}^{2}$

Micron Semiconductor type W1

Detector telescope	$\vartheta_{\min }^{\text {inplane }}\left[{ }^{\circ}\right]$	$\vartheta_{\max }^{\text {inplane }}\left[{ }^{\circ}\right]$	$\Delta \vartheta\left[{ }^{\circ}\right]$
T 1	11.43	30.30	18.9
T 2	11.38	30.24	18.9
T 3	48.10	66.31	18.2
T 4	52.48	80.53	28.1
T 5	83.90	116.10	32.2
T6	95.49	114.76	18.8

The matching of the $\Delta \mathrm{E}$ (vertical) strips The $\Delta \mathrm{E}$-detector profiles for the T 1 and T 2 . to the E-detector vertical (front) strips

The front-strip vs back-strip energy difference relative to the average. Red line T1, areen T2, blue T3, oranae T4.

${ }^{17} \mathrm{O}$ results

${ }^{9} \mathrm{Be}+{ }^{13} \mathrm{C} \rightarrow{ }^{13} \mathrm{C}+{ }^{4} \mathrm{He}+{ }^{5} \mathrm{He}$ reaction
${ }^{13} \mathrm{C}$ (T1) $-{ }^{-} \mathrm{He}(\mathrm{T} 2),{ }^{13} \mathrm{C}(\mathrm{T} 2)-{ }^{4} \mathrm{He}(\mathrm{T} 1),{ }^{13} \mathrm{C}(\mathrm{T} 1)-{ }^{4} \mathrm{He}(\mathrm{T} 4)$ and ${ }^{13} \mathrm{C}(\mathrm{T} 2)-{ }^{4} \mathrm{He}(\mathrm{T} 3)$ coincident events

The $\Theta_{\text {det }}-\mathrm{Q}$ and $\mathrm{E}_{\text {det }}-\mathrm{Q}$ spectra for the ${ }^{13} \mathrm{C}(\mathrm{T} 1)-{ }^{-4} \mathrm{He}(\mathrm{T} 4)$ coincident events. The black line denotes the graphical cuts used to select the ground state reaction channel.

Exit channel ${ }^{13} \mathrm{C}+{ }^{4} \mathrm{He}+{ }^{5} \mathrm{He}$ ${ }^{17} \mathrm{O}={ }^{13} \mathrm{C}+{ }^{4} \mathrm{He}$ T1-T2 events
${ }^{9} \mathrm{Be}={ }^{4} \mathrm{He}+{ }^{5} \mathrm{He}$ T1-T4, T2-T3 events
${ }^{18} \mathrm{O}={ }^{13} \mathrm{C}+{ }^{5} \mathrm{He}$
not observed

Relative-energy plots for the ${ }^{9} \mathrm{Be}\left({ }^{(33} \mathrm{C},{ }^{13} \mathrm{C}^{4} \mathrm{He}\right)^{5} \mathrm{He}$ reaction. The ${ }^{13} \mathrm{C}(\mathrm{T} 1 / \mathrm{T} 2),{ }^{4} \mathrm{He}(\mathrm{T} 2 / \mathrm{T} 1)$ and ${ }^{5} \mathrm{He}$ (undetected) are labeled by numbers 1, 2 and 3.

The ${ }^{17} \mathrm{O}$ excitation energy spectrum reconstructed from the ${ }^{13} \mathrm{C}\left(\mathrm{gs}, \mathrm{J}_{\mathrm{n}}=1 / 2^{-}\right)+{ }^{4} \mathrm{He}$ coincident events in T1-T2 (red) and T2-T1 (green).

The ${ }^{17} \mathrm{O}$ excitation energy spectrum reconstructed from the ${ }^{13} \mathrm{C}^{*}\left(3.68 \mathrm{MeV}, \mathrm{J}_{\pi}=3 / 2^{-}\right)+{ }^{4} \mathrm{He}$ coincident events in T1-T2 (red) and T2-T1 (green). (possible contribution 3.85 $\mathrm{MeV} \mathrm{J}_{\mathrm{n}}=5 / 2^{+}$)

No.	${ }^{13} \mathrm{C}+{ }^{4} \mathrm{He}$ res. el.		${ }^{13} \mathrm{C}+{ }^{9} \mathrm{Be}$ reactions		References	Tilley et. al. [50]	
	$E_{x}[\mathrm{MeV}]$	J^{π}	${ }^{13} \mathrm{C}+{ }^{4} \mathrm{He}$ coinc.	${ }^{13} \mathrm{C}^{*}+{ }^{4} \mathrm{He}$ coinc.		$E_{x}[\mathrm{MeV}]$	J^{π}
1	8.9	$\left(\frac{7}{2}^{-}\right)$or $\left(\frac{9^{-}}{}{ }^{-}\right.$			[7]		
2	9.2	$\left(\frac{7}{2}^{-}\right)$or $\left(\frac{9}{2}-\right)$	9.15		[3], [1], [98], [10]], [102]	9.147	$\frac{1}{2}^{-}$
3	$10.0{ }^{\dagger}$		10.0		[7]	9.976	$\frac{5}{2}^{-}$
4	10.75^{\dagger}		10.75		[6], [100], [101]	10.777	$\frac{1}{2}^{+}, \frac{7}{2}^{-}$
5	12.0	$\left(\frac{11}{2}^{+}\right)$or $\left(\frac{13}{2}^{-}\right)$	12.25 (wide)		[61], [96], [97], [98]	12.005 ± 15	$>\frac{3}{2}$
6	12.8			12.9	[100]	12.93	
7	13.6	$\left(\frac{11}{2}^{-}\right)$	13.57		[4], [5], [98], [100]	13.58	$\left(\frac{11}{2}, \frac{13}{2}\right)^{-}$
8			14.9	14.8	[4], [6], [100]	15.1 ± 0.1	$\left(\frac{9}{2}+\frac{11}{2}^{+}\right)$
9			15.8	15.7	[4], [6] ${ }^{*}$, [100], [103],	15.95	$\left(\frac{9}{2}^{+}, \frac{11}{2}^{+}\right)$
10			(weak peak)	17.3	[3], [6]*, [98], [105]	17.06	$\frac{11}{2}^{-}$
11			(weak peak)	18.6	[6]*	18.72	
12			19.3		[6], [4], [104]		
13				19.6	[3], [6]	19.6	$\left(\frac{13}{2}^{+}, \frac{15}{2}^{+}\right)$

Published results:
(6) M. Milin et al, EPJ A 41 (2009) 335, the same reaction (7) M. Heil et al, PRC 78 (2008) 025803, the ${ }^{13} \mathrm{C}+{ }^{4} \mathrm{He}$ thick target resonant scattering up to excitation 11.1 MeV

A tentative extension of the proposed ${ }^{17} \mathrm{O}$ positive-parity

 rotational band and the negative-parity rotational band [6].
${ }^{18} \mathrm{O}$ results

$$
\begin{aligned}
& { }^{9} \mathrm{Be}+{ }^{13} \mathrm{C} \rightarrow{ }^{4} \mathrm{He}+{ }^{18} \mathrm{O} * \Rightarrow \\
& { }^{14} \mathrm{C}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He},{ }^{14} \mathrm{C} *\left(\mathrm{E}_{x} \approx 7 \mathrm{MeV} \mathrm{0}, 2^{+}, 2^{-}\right)+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \\
& { }^{12} \mathrm{C}+{ }^{6} \mathrm{He}+{ }^{4} \mathrm{He},{ }^{12} \mathrm{C}^{*}\left(\mathrm{E}^{\times}=4.4 \mathrm{MeV} 2^{+}\right)+{ }^{6} \mathrm{He}+{ }^{4} \mathrm{He} \\
& { }^{10} \mathrm{Be}+{ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He},{ }^{10} \mathrm{Be} *+{ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}, \mathrm{E}_{\mathrm{x}}=3.37 \mathrm{MeV} 2^{+} ; \approx 6.2 \mathrm{MeV} 2^{+}, 1^{-}, 0^{+}, 2^{-}
\end{aligned}
$$

Events for all possible telescope combinations
${ }^{14} \mathrm{C}(\mathrm{T} 1)-{ }^{4} \mathrm{He}(\mathrm{T} 2) \quad{ }^{14} \mathrm{C}\left(\mathrm{gs}, \mathrm{J}_{\pi}=0^{+}\right)+{ }^{4} \mathrm{He}$ and ${ }^{14} \mathrm{C} *(7 \mathrm{MeV})+{ }^{4} \mathrm{He}$ in T1-T2

Relative-energy plots for the ${ }^{9} \mathrm{Be}\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{C}^{4} \mathrm{He}\right){ }^{4} \mathrm{He}$ reaction. The ${ }^{14} \mathrm{C}(\mathrm{T} 1),{ }^{4} \mathrm{He}(\mathrm{T} 2)$ and ${ }^{4} \mathrm{He}$ (undetected) are labeled by numbers 1,2 and 3 .

Relative-energy plots for the ${ }^{9} \mathrm{Be}\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{C}^{4} \mathrm{He}\right){ }^{4} \mathrm{He}$ reaction. The ${ }^{14} \mathrm{C}(\mathrm{T} 1),{ }^{4} \mathrm{He}(\mathrm{T} 4)$ and ${ }^{4} \mathrm{He}$ (undetected) are labeled by numbers 1, 2 and 3 .

The ${ }^{18} \mathrm{O}$ excitation energy spectrum for the ${ }^{14} \mathrm{C}(\mathrm{gs})+{ }^{4} \mathrm{He}$ coincident events in T1-T2 (red), T2-T1 (green), T1-T4 (orange) and T2-T3 (blue).

The ${ }^{18} \mathrm{O}$ excitation energy spectrum for the ${ }^{14} \mathrm{C}^{*}(4.4$ $\mathrm{MeV})+{ }^{4} \mathrm{He}$ events in T1-T2 (red) and T2-T1 (green); ${ }^{8} \mathrm{Be}$ spectrum for
T1-T4 (orange) and T2-T3 (blue).

${ }^{9} \mathrm{Be}+{ }^{13} \mathrm{C} \rightarrow{ }^{12} \mathrm{C}+{ }^{6} \mathrm{He}+{ }^{4} \mathrm{He}$ reaction

Additional $\Delta \mathrm{E}-\mathrm{E}$ spectra filtering to separate ${ }^{6} \mathrm{He}$ from ${ }^{4} \mathrm{He}$ for the T1, $\Delta \mathrm{E}$ strip 8. Black lines show results of simulations for ${ }^{4,6} \mathrm{He}$ in T1

The Catania plot for the ${ }^{6} \mathrm{He}$ detected in T1 and ${ }^{12} \mathrm{C}$ in T2. The red lines are predicted loci for the ${ }^{9} \mathrm{Be}\left({ }^{13} \mathrm{C},{ }^{6} \mathrm{He}{ }^{12} \mathrm{C}(\mathrm{gs})\right)^{4} \mathrm{He}$ and ${ }^{9} \mathrm{Be}\left({ }^{13} \mathrm{C},{ }^{6} \mathrm{He}{ }^{12} \mathrm{C} *(4.4 \mathrm{MeV})\right)^{4} \mathrm{He}$.

broad peak at 26.5 MeV , indications of peaks at 29.5 MeV and around 23.5 MeV .
$\mathrm{E}_{\mathrm{r}}-\mathrm{E}_{\mathrm{r}}$ plots for ${ }^{6} \mathrm{He}$ and ${ }^{12} \mathrm{C}$ (gs) detected in T 1 and T 2 , labelled as 1 and 2. The last plot is the ${ }^{18} \mathrm{O}$ excitation energy spectrum for events selected via graphical cut (black dots). The grey dots correspond to events from the ${ }^{16} \mathrm{O}$ decay. For the ${ }^{12} \mathrm{C}^{*}(4.4 \mathrm{MeV})+{ }^{6} \mathrm{He}$ events excitation spectrum is structureless.

${ }^{9} \mathrm{Be}+{ }^{13} \mathrm{C} \rightarrow{ }^{10} \mathrm{Be}+{ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}$ reaction

Possible ${ }^{10} \mathrm{Be}+{ }^{8} \mathrm{Be}$ decay would indicate three-cluster structure similar to one in ${ }^{12} \mathrm{C}$, not the molecular structure
Analyzed all possible pairs of detected nuclei in all possible telescope combinations, additional filtering of data
Only weak indications for the ${ }^{18} \mathrm{O}$ state(s) were observed, many ${ }^{12,14} \mathrm{C}$ states

the ${ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}$ events for ${ }^{10} \mathrm{Be}(\mathrm{gs})$ in T1T2; possible peaks at 24.5 and 32 MeV

the ${ }^{8} \mathrm{Be}+{ }^{10} \mathrm{Be}$ (gs) events in T1-T2; possible peak at 24 MeV

No.1	$E_{x}\left({ }^{18} \mathrm{O}\right)$ from the ${ }^{13} \mathrm{C}+{ }^{9} \mathrm{Be}$ reactions			References	Tilley et. al. [87]	
	${ }^{14} \mathrm{C}+{ }^{4} \mathrm{He}$	${ }^{14} \mathrm{C}^{*}+{ }^{4} \mathrm{He}$	${ }^{12} \mathrm{C}+{ }^{6} \mathrm{He}$		$E_{x}[\mathrm{MeV}]$	J^{π}
2	10.30 MeV			[12], [13], [14], [106], [107], [108], [109], [110], [11]), [112], [113], [114]	10.290 MeV	4^{+}
3	11.63 MeV			[12], [13], [14], [10]), [106], [107], [108], [109], [1]], [113]	11.62 MeV	$5-$
4	12.51 MeV			[12], [13], [14], [106], [107], [108], [109], [11]	12.53 MeV	6^{+}
5	1375 MeV			[1i1]	13.8	1^{-}
6				[13], [14]	13.82	5^{-}
7	15.75 MeV			[III]	15.8	1^{-}
8		16.1 MeV		[12]	16.315	$(3,2)^{-}$
9	16.9 MeV			[107], [109]	16.948	$(2,3)^{-}$
10	18.0 MeV			[1]5]	18.049	
11	18.8 MeV			[110], [119]	18.68	(4)
12		19.3 MeV				
13	19.8 MeV					
14		20.5 MeV		[110]	20.86	
15	21.3 MeV			[110], [117]	21.42	(4)
16		22.3 MeV		[110]	22.4	4^{-}
17		23.5 MeV	23.5 MeV	[110], [116]	23.8	1^{-}
18		26.3 MeV	26.5 MeV	[116]	27	1^{-}
19			29.5 MeV	[116]	30	

Published many results, some recent:
(14) M. L. Avila et al, PRC 90 (2014) 024327, the ${ }^{14} \mathrm{C}+{ }^{4} \mathrm{He}$ thick target resonant scattering
(12) N. Curtis et al, PRC $66(2002) 024315,{ }^{14} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{14} \mathrm{C}^{4} \mathrm{He}\right)^{14} \mathrm{C}$

A tentative extension of the proposed ${ }^{18} \mathrm{O}$ rotational band [12]. In agreement with proposed rotational bands in W. von Oertzen et al, EPJ A 43 (2009) 17
Conclusion of Ref. [14]. is that the a-strength is typically not concentrated in one state, but spread among multiple states, making such rotational bands unlikely.

Summary \& outlook

- the resonant particle spectroscopy experiment with the ${ }^{13} \mathrm{C}+{ }^{9} \mathrm{Be}$ reaction populated excited states with cluster structure in the ${ }^{17,18} \mathrm{O}$
- existing results on the ${ }^{4} \mathrm{He}$ decays confirmed and extended
- the ${ }^{6} \mathrm{He}$ decaying states in ${ }^{18} \mathrm{O}$ have been observed for the first time - indication of the molecular structure
- these measurements should be complemented with for example thick target resonant scattering measurements
- further measurements using different techniques are needed to determine the exact value of spin and parity, with higher resolution and statistics to separate nearby states
- there are strong indications that molecular structure exist in oxygen isotopes but much more experimental dana are required

