41st Symposium on Nuclear Physics Cocoyoc 2018

Helium Decays of the ^{17,18}O Excited States and Clustering in Oxygen Nuclei

Neven Soić Ruđer Bošković Institute Zagreb, Croatia

Collaborators

N. Soić, L. Prepolec, L. Grassi, D. Jelavić Malenica, T. Mijatović, S. Szilner, V. Tokić, M. Uroić
 Ruđer Bošković Institute, Zagreb, Croatia

M. Milin

Faculty of Science, University of Zagreb, Croatia

M. Freer, N. I. Ashwood, Tz. Kokalova, C. Wheldon School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, UK

N. L. Achouri, F. Delaunay, J. Gibelin, F. M. Marqués, N. A. Orr Laboratoire de Physique Corpusculaire ISMRA and Université de Caen IN2P3-CNRS, Caen, France

F. Haas

Université de Strasbourg, IN2P3-CNRS Institute Pluridisciplinaire Hubert Curien, Strasbourg, France

M. Fisichella, A. Di Pietro, P. Figuera, M. Lattuada, V. Scuderi INFN -Laboratori Nazionali del Sud, Catania, Italy

- Light nuclei
- small number of degrees of freedom
- low density of states at moderate excitations
- tests of basic principles of nuclear structure and interaction starting from individual nucleons
- structure & reactions: single particle correlated pairs clusters
- experimentally found p and n drip lines
- reachness of unusall nuclear configurations: Borromean, skin, halo, clusters, molecules

Nuclear molecules

valence neutrons exchanged between the cores ^{9,10,12}Be,^{14,16}C, ^{18,20,22}O, ^{22,24,26}Ne 8.5

Oxygen isotopes

¹⁶O: double magic ground state, 1st excited state ¹²C+α cluster K₁ = 0⁺ rotational band

J _π	$E_x MeV$
0+	6.05
2+	6.92
4+	10.36
6+	16.28

 $K_n = 0^{-}$ rotational band

J _π	$E_x MeV$
1 ⁻	9.59
3⁻	11.60
5 ⁻	14.66
7⁻	20.86

Plot of the 4p-nh states for the ^{16–18}O

¹⁸O proposed cluster configurations W. von Oertzen et al, Eur. Phys. J. A 43 (2010) 17

Experiment: Tandem IPN Orsay France

 ${}^{13}C + {}^{9}Be \rightarrow \alpha + {}^{18}O^*$ ${}^{18}O^* \rightarrow \alpha + {}^{14}C, Q = 6.604 \text{ MeV}$ ${}^{18}O^* \rightarrow {}^{6}He + {}^{12}C, Q = -5.549 \text{ MeV}$ ${}^{18}O^* \rightarrow {}^{8}Be + {}^{10}Be, Q = -5.500 \text{ MeV}$

> Kinematically complete measurements coincidences $\alpha + \alpha/^6$ He/ 8 Be or both decay products

$$\begin{split} & \mathsf{E}_{thr}(\alpha \,+\, {}^{14}\mathrm{C}) = 6.228 \; \mathrm{MeV} \\ & \mathsf{E}_{thr}({}^{6}\mathrm{He} \,+\, {}^{12}\mathrm{C}) = 18.380 \; \mathrm{MeV} \\ & \mathsf{E}_{thr}({}^{8}\mathrm{Be} \,+\, {}^{10}\mathrm{Be}) = 18.332 \; \mathrm{MeV} \end{split}$$

Goal: characterization of the ¹⁸O resonances decaying by helium emission in excitation energy range 7 - 25 MeV: excitation energy, width, partial widths E(¹³C) _{beam}=72 MeV, ⁹Be target thickness 100 μ g/cm² 6 telescopes 20 μ m SSSD + 1000 DSSSD μ m, 50x50 mm²

Micron Semiconductor type W1

Detector telescope	$\vartheta_{\min}^{\inf plane}$ [°]	$\vartheta_{\max}^{\inf plane}$ [°]	Δϑ [°]
T1	11.43	30.30	18.9
T2	11.38	30.24	18.9
T3	48.10	66.31	18.2
T4	52.48	80.53	28.1
T5	83.90	116.10	32.2
T6	95.49	114.76	18.8

difference relative to the average. Red line T1, green T2, blue T3, orange T4

The Δ E-detector profiles for the T1 and T2.

E_∈ [MeV]

¹⁷O results

⁹Be+¹³C→¹³C+⁴He+⁵He reaction ¹³C(T1)-⁴He(T2), ¹³C(T2)-⁴He(T1), ¹³C(T1)-⁴He(T4) and ¹³C(T2)-⁴He(T3) coincident events

Reaction identification: Catania plot $\hat{E} = P/A_3 - Q$, A_3 mass of undetected product $\hat{E} = E_p - E_1 - E_2$ $P = p_3^2/(2m_p)$

The Θ_{det} -Q and E_{det} -Q spectra for the ¹³C(T1)-⁴He(T4) coincident events. The black line denotes the graphical cuts used to select the ground state reaction channel.

5

10

15

20 25 E_{ro} [MeV]

15

Exit channel ¹³C+⁴He+⁵He

¹⁷O=¹³C+⁴He T1-T2 events

⁹Be=⁴He+⁵He T1-T4, T2-T3 events

¹⁸O=¹³C+⁵He not observed

 $\begin{array}{ccc} 25 & 30 \\ \mathsf{E}_{\mathrm{rtb}} \left[\mathsf{MeV}\right] \end{array}$

20

15

Relative-energy plots for the ⁹Be(¹³C,¹³C⁴He)⁵He reaction. The ¹³C(T1/T2), ⁴He(T2/T1) and ⁵He (undetected) are labeled by numbers 1, 2 and 3.

20 25 E_{rg} [MeV]

The ¹⁷O excitation energy spectrum reconstructed from the ¹³C(gs, $J_n = 1/2^-) + {}^4$ He coincident events in T1-T2 (red) and T2-T1 (green). The ¹⁷O excitation energy spectrum reconstructed from the ¹³C*(3.68 MeV, $J_n=3/2^-)+^4$ He coincident events in T1-T2 (red) and T2-T1 (green). (possible contribution 3.85 MeV $J_n=5/2^+$)

No	¹³ C+ ⁴ He res. el.		¹³ C+ ⁹ Be reactions		References	Tilley et. al. 50	
140.	E_x [MeV]	J^{π}	¹³ C+ ⁴ He coinc.	¹³ C*+ ⁴ He coinc.	References	E_x [MeV]	J^{π}
1	8.9	$\left(\frac{7}{2}^{-}\right)$ or $\left(\frac{9}{2}^{-}\right)$					
2	9.2	$\left(\frac{7}{2}^{-}\right)$ or $\left(\frac{9}{2}^{-}\right)$	9.15		5 , 7 , 98 , 101 , 102	9.147	$\frac{1}{2}^{-}$
3	10.0 [†]		10.0			9.976	$\frac{5}{2}^{-}$
4	10.75 [†]		10.75		6, [100], [101]	10.777	$\frac{1}{2}^+, \frac{7}{2}^-$
5	12.0	$\left(\frac{11}{2}^{+}\right)$ or $\left(\frac{13}{2}^{-}\right)$	12.25 (wide)		61, 96, 97, 98	12.005 ± 15	$>\frac{3}{2}$
6	12.8		12.25 (Wide)	12.9	[100]	12.93	
7	13.6	$\left(\frac{11}{2}\right)$	13.57		[4], [5], [98], [100]	13.58	$(\frac{11}{2}, \frac{13}{2})^{-}$
8			14.9	14.8	4, 6, 100	15.1 ± 0.1	$\left(\frac{9^+}{2}, \frac{11}{2}^+\right)$
9			15.8	15.7	[4] , [6] *, [100] , [103] ,	15.95	$\left(\frac{9}{2}^{+}, \frac{11}{2}^{+}\right)$
10			(weak peak)	17.3	[3], [6]*, [98], [105]	17.06	$\frac{11}{2}^{-}$
11			(weak peak)	18.6	6*	18.72	
12			19.3		6, 4, 104		
13				19.6	3,6*	19.6	$\left(\frac{13}{2}^+, \frac{15}{2}^+\right)$

Published results:

(6) M. Milin et al, EPJ A 41 (2009) 335, the same reaction
(7) M. Heil et al, PRC 78 (2008) 025803, the ¹³C+⁴He thick target resonant scattering up to excitation 11.1 MeV

A tentative extension of the proposed ¹⁷O positive-parity rotational band and the negative-parity rotational band [6].

¹⁸O results

⁹Be+¹³C→⁴He+¹⁸O* ⇒ ¹⁴C+⁴He+⁴He, ¹⁴C*($E_x \approx 7 \text{ MeV } 0^-, 2^+, 2^-$)+⁴He+⁴He ¹²C+⁶He+⁴He, ¹²C*(E[×]=4.4MeV 2⁺)+⁶He+⁴He ¹⁰Be+⁸Be+⁴He, ¹⁰Be*+⁸Be+⁴He, $E_x = 3.37 \text{ MeV } 2^+; \approx 6.2 \text{ MeV } 2^+, 1^-, 0^+, 2^-$ Events for all possible telescope combinations

¹⁴C(T1)-⁴He(T2) ¹⁴C(gs, $J_n = 0^+$)+⁴He and ¹⁴C*(7 MeV)+⁴He in T1-T2

Relative-energy plots for the ⁹Be(¹³C,¹⁴C⁴He)⁴He reaction. The ¹⁴C(T1), ⁴He(T2) and ⁴He (undetected) are labeled by numbers 1, 2 and 3.

Relative-energy plots for the ⁹Be(¹³C,¹⁴C⁴He)⁴He reaction. The ¹⁴C(T1), ⁴He(T4) and ⁴He (undetected) are labeled by numbers 1, 2 and 3.

The ¹⁸O excitation energy spectrum for the ¹⁴C(gs)+⁴He coincident events in T1-T2 (red), T2-T1 (green), T1-T4 (orange) and T2-T3 (blue).

The ¹⁸O excitation energy spectrum for the ¹⁴C*(4.4 MeV)+⁴He events in T1-T2 (red) and T2-T1 (green); ⁸Be spectrum for T1-T4 (orange) and T2-T3 (blue).

$^{9}Be+^{13}C\rightarrow^{12}C+^{6}He+^{4}He$ reaction

Additional Δ E-E spectra filtering to separate ⁶He from ⁴He for the T1, Δ Estrip 8. Black lines show results of simulations for ^{4,6}He in T1

The Catania plot for the ⁶He detected in T1 and ¹²C in T2. The red lines are predicted loci for the ⁹Be(¹³C, ⁶He¹²C(gs))⁴He and ⁹Be(¹³C, ⁶He¹²C*(4.4 MeV))⁴He.

broad peak at 26.5 MeV, indications of peaks at 29.5 MeV and around 23.5 MeV.

 E_r - E_r plots for ⁶He and ¹²C(gs) detected in T1 and T2, labelled as 1 and 2. The last plot is the ¹⁸O excitation energy spectrum for events selected via graphical cut (black dots). The grey dots correspond to events from the ¹⁶O decay. For the ¹²C*(4.4 MeV) +⁶He events excitation spectrum is structureless.

⁹Be+¹³C→¹⁰Be+⁸Be+⁴He reaction Possible ¹⁰Be+⁸Be decay would indicate three-cluster structure similar to one in ¹²C, not the molecular structure Analyzed all possible pairs of detected nuclei in all possible telescope combinations, additional filtering of data Only weak indications for the ¹⁸O state(s) were observed, many ^{12,14}C states

\$ 160

the ⁸Be+⁴He events for ¹⁰Be(gs) in T1-T2; possible peaks at 24.5 and 32 MeV

the ⁸Be+¹⁰Be(gs) events in T1-T2; possible peak at 24 MeV

Published many results, some recent: (14) M. L. Avila et al, PRC 90 (2014) 024327, the ${}^{14}C+{}^{4}He$ thick target resonant scattering (12) N. Curtis et al, PRC 66 (2002) 024315, ${}^{14}C({}^{18}O,{}^{14}C{}^{4}He){}^{14}C$

	17	25.5 M	MeV 25.5 MeV			
	19	2010 1	29.5 MeV	(116)		
ublished many results, some recent:						
	14) M. L. Avila et al. PRC 90 (2014) 024327. the $^{14}C+^{4}He$ th					

No	$E_x(^{18}\text{O})$ from the $^{13}\text{C}+^{9}\text{Be}$ reactions		le reactions	References	Tilley et. al. 87	
1	¹⁴ C+ ⁴ He	¹⁴ C*+ ⁴ He	¹² C+ ⁶ He	References	E_x [MeV]	J^{π}
2	10.30 MeV			[12], [13], [14], [106], [107], [108], [109], [110], [111], [112], [113], [114]	10.290 MeV	4+
3	11.63 MeV			[12], [13], [14], [101], [106], [107], [108], [109], [111], [113]	11.62 MeV	5-
4	12.51 MeV			[12], [13], [14], [106], [107], [108], [109], [111]	12.53 MeV	6+
5	13.75 MeV				13.8	1-
6	15.75 110 1			[13], [14]	13.82	5-
7	15.75 MeV			[111]	15.8	1-
8		16.1 MeV		[12]	16.315	(3,2)-
9	16.9 MeV			[107], [109]	16.948	$(2,3)^{-}$
10	18.0 MeV			[115]	18.049	
11	18.8 MeV			[110], [115]	18.68	(4-)
12		19.3 MeV				
13	19.8 MeV					
14		20.5 MeV		[110]	20.86	
15	21.3 MeV			[110], [117]	21.42	(4-)
16		22.3 MeV		[110]	22.4	4-
17		23.5 MeV	23.5 MeV	[110], [116]	23.8	1-
18		26.3 MeV	26.5 MeV	[116]	27	1-
19			29.5 MeV	[116]	30	

A tentative extension of the proposed ¹⁸O rotational band [12]. In agreement with proposed rotational bands in W. von Oertzen et al, EPJ A 43 (2009) 17

Conclusion of Ref. [14]. is that the a-strength is typically not concentrated in one state, but spread among multiple states, making such rotational bands unlikely.

Summary & outlook

the resonant particle spectroscopy experiment with the ¹³C+⁹Be reaction populated excited states with cluster structure in the ^{17,18}O
existing results on the ⁴He decays confirmed and extended
the ⁶He decaying states in ¹⁸O have been observed for the first time – indication of the molecular structure
these measurements should be complemented with for example thick target resonant scattering measurements
further measurements using different techniques are needed to determine the exact value of spin and parity, with higher resolution and statistics to separate nearby states
there are strong indications that molecular structure exist in

oxygen isotopes but much more experimental dana are required

Thank you !