
Advanced programming
with

lcc-win32

by

Jacob Navia and Friedrich Dominicus

© 2000-2004 Jacob Navia and Q Software Solutions GmbH. This document is part of the
lcc-win32 documentation. Distribution in any form is explicitly not allowed.

Chapter 1 Containers 3

Strings 3

Design criteria 4

The handling of exceptions 4

Description 6

String functions 10

String collections 23

The interface 23

Memory management 25

Using the library 25

Implementation 26

Strings in other languages 30

Generalizing the string collection 32

Subclassing 34

Chapter 2 Network Programming 37

Introduction 37

What is a network? 37

Protocols 38

The HTTP Protocol 38

GetHttpUrl 39

Implementation 39

The FTP protocol 42

Implementing the ftp “GET” 43

Querying the network parameters 44

Writing “ping” 48

How does it work? 48

Client/Server programming using sockets 50

Common steps for server and client 50

Server side 51

Client side 52

Sending and receiving data 52

Simplifying sockets programming with lcc-win32 52

Strings 3
Chapter

Containers

2.1 Strings
Strings are a fundamental data type for a wide type of applications. We have seen in the pre-
ceeding chapters the problems that C strings have. Here is a proposal for a string library that
allows you to avoid those problems. It was started by Friedrich Dominicus, and after his initial
push we have both worked together in this.
The whole source code is available to you for easy customization. At any time you can build a
specialized version of it, to fit a special need or to change one of the design parameters.
The string library is based in the abstract notion of a container, i.e. a common set of interface
functions, that allow you some latitude when building your program. Using the abstract index-
ing notation, you can change your data representation from a vector to an array, or even from a
list to a vector without being forced to change a lot in your own programs.
Strings are a sequence of characters. We can use one or two bytes for storing characters. Occi-
dental languages can use fewer characters than Oriental languages, that need two bytes to store
extended alphabets. But occidentals too, need more than one byte in many applications where
mathematical symbols, drawings and icons increase the size of the available alphabet beyond
the 256 limit of a byte.
We classify then strings in multi_byte sequences of characters, (alphabet is smaller than 256)
or wide character strings, where the alphabet can go up to 65535 characters. The library han-
dles both character types as equivalent.
The definition of a string looks like this:

typedef struct _String {
size_t count;
unsigned char *data;
size_t capacity;

} String;

The count field indicates how many characters are stored in the String. Follows the data
pointer, the allocated size, and the type of the string: either one or two bytes characters.
We store a pointer to the data instead of storing the data right behind the descriptor. We waste
then, sizeof(void *) for each string but this buys an increased flexibility. Strings are now resiz-
able since we can change the pointer and reallocate it with a different size without having to
allocate a new string. This is important since if there are any pointers to this string they will
still be valid after the resize operation, what would not be the case if we had stored the charac-
ters themselves in the data structure.

4 C programming with lcc-win32
Text is stored either coded in one byte characters, or in UNICODE (multi-byte) numbers of
two bytes. For each type of string there are two functions. For instance for copying a string
there is the Strcpy function, that has two flavors, StrcpyA for copying single byte strings, and
StrcpyW for copying wide char strings.
You can use the generic names with only one type of strings, either wide or ascii, but not both.
These names are implemented like this:

#ifdef UNICODE
#define Strcpy StrcpyW
#else
#define Strcpy StrcpyA
#endif

Of course both functions are available, if called explicitly.
The advantage of this schema is that there is only one set of names and a simple rule for using
all the string functions. To copy a string you use Strcpy period.
The functions are patterned after the traditional C functions, but several functions are added to
find sets of characters in a string, or to read a file into a string.
In general, the library tries as hard as possible to mimic the known functions and notation of
the existing C strings.
The string library introduces the concept of iterators, or fat pointers. This data structure con-
sists of a pointer to some character within the container, in this case the string, a count, and a
pointer to the whole strings. String pointers are called Stringp, and they come in two flavors
too: wide and single byte strings.
There are two properties of the string you will want to have access to: its length, and its capac-
ity. The length is the number of characters that the string contains, and the capacity is the num-
ber of characters the string can store before a resize operation is needed. You can access those
properties with

String s1;
...
int len = get_size(s1);

2.1.1 Design criteria
What are the design decisions that make the base of the library?

2.1.1.1 Memory management
The first versions of the library contained for each container a pair of pointers for the memory
allocation and memory release functions. This increases the size of the library, and consider-
ably increases the number of things that can go wrong.
Each container had its own memory management, for releasing elements and maintaining free
lists. This was cumbersome and has been discarded. Memory management is better done by
the memory manager, i.e. the garbage collector.
Since lcc-win32 features a garbage collector (GC) in the standard distribution, this simplifies
the library. Other environments like Java or the recent.Net architecture of Microsoft feature as
a standard library feature the garbage collector too.

2.1.2 The handling of exceptions
All containers check any indexed access for errors. Badly formed input is detected at run time
and the program (by default) is stopped with an error message. Any of the functions in the

Strings 5
interface can throw an exception if given incorrect inputs. This can be disabled by redefining
the macro PRECONDITIONS to be an empty operation. This is surely not recommended, but
the possibility exists.
Each routine in the library specifies in the PRECONDITIONS section the terms of the con-
tract it has with its callers.
Internal routines, i.e. routines only called from within the library, can assume their inputs
valid, and make less checks. That interface is not available to the user code however.

2.1.2.1 Efficiency considerations
The C language has an almost obsessive centering in “efficiency”. Actually, as everybody
knows, efficiency depends on the algorithm much more than in the machine efficiency with
which operations are coded. Length delimited strings are by nature more efficient than normal
C strings since the often used strlen operation takes just a memory read, instead of starting an
unbounded pointer memory scan seeking the trailing zero.
Efficiency must be weighted against security too, and if we have to chose, when implementing
the container library, security has been always more important than machine efficiency. Some
operations like array bound checking can add a small overhead to the run time, but this will be
of no concern to the vast majority of the applications done with this library. Using a hash table
will be always more efficient than a plain linear scan through a hastily constructed table. Even
if we code the table lookup in assembler.
In this version, efficiency has been left out. The weight of the effort has gone into making a
library that works and has fewer bugs.

2.1.2.2 C and C++
If you know the C++ language, most of this things will sound familiar. But beware. This is not
C++. There is no “object oriented” framework here. No classes, instantiated template traits,
default template arguments casted for non “constness”, default copy constructors being called
when trying to copy a memory block. Here, a memory block copy is that: a memory block
copy, and no copy constructors are called anywhere. Actually, there are no constructors at all,
unless you call them explicitly.
You can do copy constructors of course, and the library provides copy_list, copy_bitstring, etc.
But you call them explicitly, the compiler will not try to figure out when they should be called.
All this makes programs clearer: we know what is being called, and the calls do not depend
any more on the specific compiler version.
Yes, the compiler does some automatic calls for you. You can redefine operators, and you have
generic functions. This introduces many problems you are aware of, if you know C++. Here
however, the complexity is enormously reduced, since there are no systematic implicit calls,
and objects are not automatically clustered in classes. You can make classes of objects of
course, but you do it explicitly. No implicit conversions are grained in the language itself.
Here we have a library for using simple data structures. Nothing is hidden from view behind
an opaque complex construct. You have the source and a customizing tool.
C has a formidable power of expression because it gives an accurate view of the machine, a
view that has been quite successful.
C++ is a derived language from C. It introduced the notion of well classified “objects”, an idea
that was put forward by many people, among others Betrand Meyer, and Xerox, with their
Smalltalk system.

6 C programming with lcc-win32
Unfortunately, what was a good paradigm in some situations becomes a nightmare in others.
When we try to make a single paradigm a “fits all” solution, the mythical silver bullet, nothing
comprehensible comes out. To be “object oriented” meant many things at once and after a
while, nothing at all.
For C++ the object oriented framework meant that functions were to be called automatically
by the compiler, for creating and destroying objects. The compiler was supposed to figure out
all necessary calls. This is one solution for the memory management problem.
Another solution, and the one lcc-win32 proposes, is to use a garbage collector. C++ did not
introduce a GC for reasons I have never understood. This solution is much simpler than mak-
ing a complex compiler that figures out everything automatically. The destructor is the GC
that takes care of the left overs of computation.
Then, it becomes possible to make temporary objects without worrying about who disposes of
temps. The GC does. Operators can return dynamically allocated temporary objects without
any problem. The equivalent of C++ automatic object destruction is attained with the GC, and
the complexity of the software is reduced.
At the same time, bounds checked arrays and strings become possible. A general way of using
arrays and other data structures is possible.

2.1.3 Description

2.1.3.1 Creating strings
The simplest way to create strings is to assign them a C string. For instance:

String s = "This is a string";

To allocate a string that will contain at least n characters you write:
String s = new_string(n);

The primitive new_string is a versatile function. It can accept also a character string:
String s = new_string("This is a string");

or a double byte character string:
String s new_string(L"This is a string");

2.1.3.2 Copying
When you assign a String to another, you make a shallow copy. Only the fields of the String
structure will be copied, not the contents of the string. To copy the contents of the string you
use the copy function or its synonym Strdup:

String s2 = copy(s1); // Equivalent to Strdup(s1);

Destructively copying a string is done with the Strcpy function.
String s1 = "a", s2 = "abcd";
Strcpy(s1,s2); // Now s1 contains “abcd”

To destructively copy a certain number of characters into another string, you use the Strncpy
function:

String s1 = "abc", s2 = "123456789";
Strncpy(s1,s2,5); // Now s1 contains "12345";

2.1.3.3 Accessing the characters in a String
The [] notation is used to access the characters as in normal C character strings. Given the
string:

Strings 7
String s1 = "abc";

you access each character with an integer expression:
int c = s1[1]; // Now c contains ‘b’

You assign a character in the string with:
s1[0] = ‘A’;

Now the string contains “Abc”.
Note that mathematical operations with characters are not supported. You can’t write:

s1[0] += 2; // Wrong

The rationale behind this decision is that characters are characters and not numbers. You can
of course do it if you do:

int c = s1[0];
c += 2;
s[0] = c;

Note that pointer notation is not supported. The construct:
*s1 = ‘a’;

is no longer valid. It must be replaced with
s1[0] = ‘a’;

2.1.3.4 Comparing strings
You can compare two strings with the == sign, or with the Strcmp function. Strcmp returns the
lexicographical order (alphabet order) for the given strings. The equals sign just compares if
the strings are equal. Both types of comparison are case sensitive. To use a case insensitive
comparison use Strcmpi. Note that this implementation doesn’t support the case insensitive
wide char comparison yet.

2.1.3.5 Relational operators
The relational operators can be defined like this:

int operator ==(const String & string1, const String & string2)
{

if (isNullString(string2) && isNullString(string1))
return 1;

if (isNullString(string2) || isNullString(string1))
return 0;

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((Strvalid(string1) && Strvalid(string2)), exc);
if (string1.count != string2.count)

return 0;
return !memcmp(string1.content,string2.content,string1.count);

}

We check for empty strings, that can be compared for equality without provoking any errors.
Two empty strings are considered equal. If either of the strings is empty and the other isn’t,
then they can’t be equal.
Those tests done, both strings must be valid. They are equal if their count and contents are
equal. Note that we use memcmp and not strcmp since we support strings with embedded
zeroes in them.
The wide character version differs from this one only in the length of the memory comparison.
The function “isNullString” tests for the empty string, i.e. a string with a count of zero, and
contents NULL.

8 C programming with lcc-win32
An empty string is returned by some functions of the library to indicate failure. It is semanti-
cally the same as the NULL pointer.
The other relational operators are a bit more difficult. Here is “less” for instance:

int operator < (const String & s1, const String &s2)
{

bool s1null = isNullString(s1);
bool s2null = isNullString(s2);
if (s1null && s2null)

return 0;
if (s1null && !s2null)

return 1;
if (!s1null && s2null)

return 0;
struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((Strvalid(s1) && Strvalid(s2)), exc);
if (s1.count == 0 && s2.count != 0)

return 1;
if (s1.count && s2.count == 0)

return 0;
int len = s1.count < s2.count ?

s1.count : s2.count;
return memcmp(s1.content, s2.content, len) < 0;

}

We have to differentiate between a NULL string, an empty string and a valid or invalid string.
This is the same as in standard C where we differentiate between NULL and ““, the empty
string. A pointer can have a NULL value, a valid value pointing to an empty string, or an
invalid value pointing to nowhere.
We put NULL and empty strings at the start of the lexicographical order, so they are always
less than non empty strings. Note that we compare only as much as the shorter of both strings.
This is important, because we wouldn’t want that memcmp continues comparing after the end
of the shorter string. Since we have the length of the string at hand, the operation is very
cheap, a few machine instructions.

2.1.3.6 Dereferencing strings
Another operator worth mentioning is the pointer dereference operator ‘*’.
In C, a table is equivalent to a pointer to the first element. With the definitions:

char str[23];
*str = 0;

The expression *str = 0 is equivalent to str[0] = 0. We can mimic this operation with the redef-
inition of the ‘*’ operator:

char * operator *(StringA &str)
{

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((StrvalidA(str) && str.count > 0), exc);
return &str.content[0];

}

This operator must always return a pointer type. It returns then, a pointer to the first character.
This allows to support the *str = ‘a’ syntax. There are several differences though:

1 An empty string cannot be accessed. In traditional C it is possible to write *s = ‘a’, even
if “s” is an empty string. This destroys the string, of course, it is no longer zero terminated,
but no trap occurs at the point of the assignment since “s” points to valid memory. Traps

Strings 9
occur later, when a non zero terminated string destroys the whole program. Here, any
access to an empty string will provoke an exception.

2 The syntax *s++ is not supported. You can’t increment a string structure. You can only
increment a pointer to a string (a Stringp). Both types are distinct, to the contrary of
traditional C where they are both the same.

3 You may wonder when you see that this operator returns a naked char pointer. Wouldn’t
this mean that this pointer could be misused in the code using the library? Happily for us,
the compiler dereferences immediately the result of this operator, so the pointer can’t be
used anywhere else, or even be assigned to something. If you try to write “char *p = *s” it
will provoke a compile time error since you are assigning a char to a pointer to char, what is
not allowed.

Is it necessary to do this?
We could have decided that the user will always use the array notation (the []), but in general,
it is better to make the string package behave as much as possible (but not more) as traditional
C strings. The objective is that people do not have to retrain themselves to use this package.
As much as possible from the old syntax should be understood.

2.1.3.7 Imitating pointer addition
With traditional C strings it is valid to add an integer to a string pointer to obtain a pointer to
the middle of the string. We can mimic this behavior by overloading the addition operator.

StringpA EXPORT operator+(StringA &s1,int n)
{

StringpA result;
struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((StrvalidA(s1) &&

n >= 0 &&
n < s1.count),exc);

result.count = s1.count - n;
result.content = s1.content + n;
result.parent = &s1;
return result;

}

We test for validity of the given string and check that the offset passed is correct. We return a
Stringp (not a String!) that is initialized to point to the specified offset The result of this opera-
tion is to produce a fat pointer and not a String. This will cause problems, since even if the
library tries to hide most differences, a Stringp is another kind of beast than a normal String.
Note too that adding negative offsets is no longer possible.

2.1.3.8 String pointer operations
The library introduces the notion of string pointer structures, i.e. “fat” pointers that contain,
besides the normal pointer to the contents, a count and a pointer to the parent string. Pointer
operations on this structures are few, and they try to mimic the normal pointer behavior.
This pointers can be used as iterator objects to go through a portion or all the string contents.
You can obtain an iterator to the beginning of the string with:

String str = new_string(15);
Stringp pStr = begin(str);

The polymorphic function “begin” returns a pointer to the beginning of a sequential container.
The operations supported with string pointers are:

10 C programming with lcc-win32
2.1.3.9 Pointer subtraction
int operator -(Stringp &s1, Stringp &s2)
{

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((Strvalidp(s1) && Strvalidp(s2) &&

s1.parent == s2.parent), exc);
return s1.content - s2.content;

}

The operator verifies that both pointers are valid, and that they point to the same string. The
operation is more restricted than in traditional C since a subtraction operation is considered
invalid if the pointers do not point to the same parent.

2.1.3.10 Addition of pointer and integer
This operation moves the given pointer forwards of backwards a specified number of charac-
ters.

Stringp operator+=(Stringp &s1,int n)
{

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((Strvalidp(s1) && n < s1.count),exc);
s1.count -= n;
s1.content += n;
return s1;

}

2.1.3.11 Comparisons of a string pointer with zero
Several string functions return an invalid string pointer to indicate failure. It is practical that
this pointer equals to NULL, so that code snippets like:

if (!Strchr(String,’\n’)) {
}

work as intended. We overload the operator != and the operator == to mimic this behavior:
int operator != (const Stringp & string1, int i)
{

if (isNullStringp(string1) && i == 0)
return 0;

return 1;
}

We allow only comparisons with zero. The operator == is very similar:
int operator == (const Stringp & string1, int i)
{

if (i == 0 && isNullStringpA(string1))
return 1;

return 0;
}

2.1.4 String functions
The string library supports all the standard functions defined in string.h. The names chosen are
the same, with the first letter in upper case: strcat is Strcat, strcmp is Strcmp, etc. Most of those
functions are very simple, the specifications for the C run time library are quite primitive.

2.1.4.1 Comparing strings
 Here is, for instance, the Strcmp function:

Strings 11
int overloaded Strcmp(String & s1, String & s2)
{

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION(Strvalid(s1) && Strvalid(s2), exc);

/* conversion widening the smaller to the wider string type */
if (0 == s1.count && s2.count == 0){

return 0;
}
if (0 == s1.count){

return -1;
}
if (0 == s2.count){

return 1;
}
int len = s1.count < s2.count ? s1.count : s2.count;
return memcmp(s1.content, s2.content, len);

}

Strcmp accepts also a char *, so that users can write:
if (!Strcmp(str,”Annie”)) { ... }

This syntax is widespread, and it is important to support it. Here is a different version of
Strcmp that accepts char pointers.

int overloaded Strcmp(String & string, const char* str)
{

int len;
struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((Strvalid(string) && (str != NULL)), exc);
len = strlen(str);
if (0 == string.count && len == 0) return 0;
if (0 == string.count) return -1
if (0 == len) return 1;
len = len < string.count ? len, : string.count;
return memcmp(string.content,str,len);

}

There are other variations, for supporting wide chars, and changing the order of the arguments.

2.1.4.2 Joining strings

To join several C strings into a single string the library proposes Strcatv1. It receives a series of
strings, transforming them into a single String.

String Strcatv(char *s,...)
{

int len = strlen(s);
va_list ap,save;
char *next,*p;
StringA result;

va_start(ap,s);
save = ap;
next = va_arg(ap,char *);
while (next) {

len += strlen(next);
next = va_arg(ap,char *);

}

1. This is essentially the same function as Str_catv from Dave Hanson’s C Interfaces and implementa-
tions.

12 C programming with lcc-win32
va_start(ap,s);
result = new_stringA(len);
strcat(result.content,s);
p = result.content + strlen(s);
next = va_arg(ap,char *);
while (next) {

while (*next) {
*p++ = *next++;

}
next = va_arg(ap,char *);

}
*p = 0;
result.count = p - result.content;
return result;

}

We make two passes over the strings, first collecting their lengths, then joining them. We
avoid using strcat when joining the strings, since that would be very inefficient. The standard
library strcat needs to find the terminating zero, what is more and more expensive as the length
of the result string grows. Instead, we use a roving pointer that adds right at the end of the pre-
vious string the new one.

2.1.4.3 Accessing strings
The general accessing function for Strings is:

int operator[](String s,size_t index);

This operator returns the character at the given position. The operator checks that s is a valid
string, and that the index is less than the length of the string.

int operator[](const String& string, size_t index)
{

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION(Strvalid(string) && (index < string.count), exc);
return string.content[index];

}

Single byte versions will use StrvalidA and receive StringA strings, double byte versions will
use StringW and call StrvalidW. We will use the generic term String when we mean either
StringW or StringA.

The operation indexed assignment (operator [] =) is handled by:2

int operator[]=(String & string, size_t index, int new_val)
{

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((Strvalid(string) && index < string.count), exc);

string.content[index] = new_val;
return new_val;

}

2.1.4.4 Adding and inserting characters
Inserting a single character is accomplished by the Strinsert function, or its alias “insert” that
should work with all containers.

bool Strinsert(String &s,size_t pos,int newval)
{

char *content;

2. Note that in C++ is not possible to distinguish between this two. There is no []= operator.

Strings 13
int new_capacity;
struct Exception *exc = GetAnExceptionStructure();

PRECONDITION(Strvalid(s), exc);
PRECONDITION(pos < s.count,exc);

new_capacity = calculate_new_capacity(s.capacity,s.capacity+1);
if (new_capacity > s.capacity) {

content = allocate_proper_space(new_capacity,SMALL);
if (content == NULL)

return true;
memcpy(content,s.content,s.count);
s.capacity = new_capacity;
s.content = content;

}
else content = s.content;
memmove(content+pos+1,content+pos,s.count-pos);
s.count++;
content[pos] = newval;
content[s.count] = 0;
return true;

}

The preconditions are a valid string and a valid index. We call the “calculate_new_capacity”
function to get an estimate of the best new size if a string resize is needed. This is a relatively
expensive operation, so we always allocate more space than strictly needed, to avoid resizing
the string at each character added.
After we have ensured that we have the space needed, we make place for the new character by
moving the tail of the string one position up.
The erase function (or Strerase) will remove a character from the string at the indicated posi-
tion.

bool erase_string(String &s,size_t pos)
{

int element_size;
char *pcontents;
wchar_t *pwcontents;
if (!Strvalid(s))

return false;
if (s.count == 0)

return false;
struct Exception *exc = GetAnExceptionStructure();
PRECONDITION(pos < s.count,exc);
pcontents = s.content;
if (pos == s.count-1) {

pcontents[pos] = 0;
s.count--;
return true;

}
memmove(pcontents+pos,pcontents+pos+1,s.count-pos-1);
s.count--;
pcontents[s.count] = 0;
return true;

}

We allow erasing characters from an empty string, and just return false if that is the case. This
allows for loops that will use the result of Strerase to stop the iteration. In this case, we just
return false.Otherwise we require a valid String and a valid index.

14 C programming with lcc-win32
A small optimization is performed when the character to erase is the last character in the
string. We spare us a memmove call by just setting the character to zero and decreasing the
count field of the string structure. Otherwise, we have to move the characters from the position
we are going to use one position down.

2.1.4.5 Mapping and filtering
A mapping operation in a string means applying a function to each character in the source
string, and storing the result of that call in the new string that is the result of the operation.

String Strmap(String & from, int (*map_fun) (int))
{

String result;
struct Exception *exc = GetAnExceptionStructure();

if (map_fun == NULL)
return Strdup(from);

PRECONDITION((Strvalid(from) && map_fun != NULL), exc);
result = new_string(from.count);
result.count = from.count;
for (int i = 0; i < from.count; ++i){

result.content[i] = map_fun(from.content[i]);
}
return result;

}

Note that a NULL function pointer means that the identity function3 is assumed, and the
whole operation becomes just a copy of the source string. We do not need to test for the valid-
ity of the source string in that case since Strdup does that for us.
We allocate a string that will contain at most so many characters as the source string including
always a terminating zero. If the predicate function filters most of the characters, the string
will be almost empty. Since we keep track of this in the capacity field of the String structure,
this is less terrible than it looks like. The other solution would be to call twice the predicate
function, but that would be very expensive in CPU usage.
A similar function is Strfilter, that will output into the result string only those characters that
satisfy a boolean predicate function. Strfilter will accept either Strings or character strings.
Here is the version that uses character strings:

String overloaded Strfilter(String & from, char *set)
{

String result;
int setlength;
struct Exception *exc = GetAnExceptionStructure();

PRECONDITION(Strvalid(from) && set != NULL, exc);
setlength = strlen(set);
result.content = allocate_proper_space(1+from.count,SMALL);
if (result.content == NULL) {

memset(&result,0,sizeof(result));
return result;

}
result.capacity = 1+from.count;
int j = 0;
for(int i = 0; i < from.count; ++i) {

3. The identity function in C is:
int identity(int c) { return c; }

Strings 15
for (int k=0; k<setlength;k++) {
if (from.content[i] == set[k]) {

result.content[j++] = set[k];
break;

}
}

}
result.count = j;
return result;

}

We need a valid string and a non-null set. We allocate space for the string including the termi-
nating zero with the “allocate_proper_space” function. That function will raise an exception if
no more memory is left and terminate the program. In case the user has overridden that behav-
ior, we return an invalid String.
This is the single byte version, and we indicate this to “allocate-proper_space” with the
SMALL parameter. For the wide character set we would replace that with WIDE.
If the allocation succeeds we set the capacity field, and we select the characters to be included
in the result. At the end, we set the count field to the number of chars found that matched the
predicate.

2.1.4.6 Conversions
To interact easily with other software we need to convert Strings in traditional strings, and we
have to allow for converting traditional strings into the String structure. We use the overloaded
cast operator to give the conversions the traditional C meaning.

StringA operator()(char* cstr)
{

struct Exception *exc = GetAnExceptionStructure();
StringA result;
PRECONDITION(cstr != NULL,exc);
result.count = strlen(cstr);
result.capacity = calculate_new_capacity(0,1+result.count);
result.content = allocate_proper_space(result.capacity,SMALL);
if (result.content == NULL) {

return invalid_stringA;
}
strcpy(result.content,cstr);
return result;

}

We build a new String structure from scratch. We require a valid C string, and calculate its
length. We determine the best capacity for the new string, allocate the contents and copy.
We use this operator with a cast, for instance:

void printName(String &s);
...
printName((String)”Annie”);

The inverse operator is the (much simpler) cast from a String to a char *.
char *EXPORT operator()(StringA &str)
{

if (isNullStringA(str))
return NULL;

str.content[str.count] = 0;
return str.content;

}

We use this operator like this:

16 C programming with lcc-win32
String str;
printf(“%s\n”,(char *)str);

Conversions from string pointers to char pointers is more difficult if we want to support point-
ers that span only a subset of the string. For instance if we have a pointer of length 2 that
points to the third character of the string “This is it”, the pointer points to the first ‘i’ and
includes the ‘i’ and the ‘s’ but not more. In that case we need to copy the contents before pass-
ing them to the calling function.

char *EXPORT operator()(Stringp &strp)
{

char *result;

result = strp.content;
if (result[strp.count] == 0)

return result;
result = allocate_proper_space(strp.count+1,SMALL);
if (result == NULL)

return NULL;
memcpy(result,strp.content,strp.count);
return result;

}

2.1.4.7 File operations
Files can be read as a whole into a string for later processing. This is a similar operation as
building a memory mapped file.

StringA EXPORT overloaded Strfromfile (char * file_name,int binarymode)
{

FILE *fp;
StringA result;

if (binarymode)
 fp = fopen(file_name, "rb");

 else
 fp = fopen(file_name, "r");

if (NULL == fp){
return invalid_stringA;

}
size_t needed = 0;
int i_rval = 0;
i_rval = fseek(fp, 0, SEEK_END);
if (0 != i_rval) {

fclose(fp);
return invalid_stringA;

}
needed = ftell(fp);
i_rval = fseek(fp, 0, SEEK_SET);
if (0 != i_rval){

fclose(fp);
return invalid_stringA;

}
result.content = allocate_proper_space(needed+1,SMALL);
if (result.content == NULL)

return invalid_stringA;
result.capacity = needed+1;
size_t u_rval = fread(result.content, 1, needed, fp);
fclose(fp);
if (u_rval != needed){

return invalid_stringA;

Strings 17
}
result.count = needed;
return result;

}

According to the “binary mode” parameter, we read the file including the \r\n sequence into
the contents or not. We determine the file size, then we read the string into the string contents.
Another often needed operation is reading a line from a string.

int Strfgets(StringA & source, int n, FILE *from)
{

int i,val;
if (StrvalidA(source) == 0 || n > source.capacity) {

source.content = allocate_proper_space(n+1, SMALL);
if (source.content == NULL)

return 0;
source.capacity = n+1;

}

for (i = 0; i < n;) {
val = fgetc(from);
if (val == EOF || val == '\n')

break;
if (val != '\r') {

source.content[i++] = val;
}

}
source.content[i] = 0;
source.count = i;
return (i);

}

2.1.4.8 Reversing a String
Reversing the order of elements in a string is accomplished by our Strreverse or our
reverse_string function. Both names lead to the same function.

bool reverse_string(String &s)
{

if (!Strvalid(s))
return false;

char *p = s.content;
char *q = p;
int i = s.count;

p += i;
while (i-- > 0) {

*q++ = *--p;
}
*q = 0;
return true;

}

2.1.4.9 Searching text
The Strstr searches a pattern in a given string, and returns a fat pointer to a string (Stringp), or
an invalid string if not found.

Stringp overloaded Strstr(String & string, String & find_this)
{

char *strp,*end;

18 C programming with lcc-win32
int first_char,r;
struct Exception *exc = GetAnExceptionStructure();

PRECONDITION ((Strvalid(string) && Strvalid(find_this)), exc);
first_char = find_this.content[0];
strp = memchr(string.content,first_char,string.count);
if (strp) {

end = string.content + string.count;
while (strp < end) {

if (!memcmp(strp,find_this.content,find_this.count))
return new_stringp(string,strp);

else
strp++;

}
}
return invalid_stringp;

}

We search the first character of the string to search in the string. Each time we find it, we test
if the search pattern is there. If yes we return a new string pointer, otherwise we go on until we
reach the end of the string.
To search a character in a string we use the Strchr function:

Stringp overloaded Strchr(String & string, int element)
{

struct Exception *exc = GetAnExceptionStructure();
PRECONDITION((Strvalid(string)), exc);
char *p = memchr(string.content,element,string.count);
if (p){ // found

return new_stringp(string,p);
}
return invalid_stringp;

}

2.1.4.10 Making a string from a pipe
The function Strfrompipe will start a program and capture all its textual output into a String.
This is useful for many GUI applications that want to show the results of a program in a differ-
ent way, and many others.
The algorithm used is very simple: we start the command indicated in the string argument with
the process using a redirected standard output into a temporary file. We read then this file into
a string a return the result.

StringA overloaded Strfrompipe(String &Cmdline)
{

STARTUPINFO startInfo;
 char *p;
 int processStarted,m;
 String result = invalidStringA;
 HANDLE hWritePipe;
 LPSECURITY_ATTRIBUTES lpsa=NULL;
 SECURITY_ATTRIBUTES sa;
 SECURITY_DESCRIPTOR sd;
 ThreadParams tparams;
 DWORD Status;
 PROCESS_INFORMATION pi;
 char *tmpfile = tmpnam(NULL);
 char cmdline[1024];
 char arguments[8192];

Strings 19
 memset(cmdline,0,sizeof(cmdline));
 memset(arguments,0,sizeof(arguments));

// Check for quoted file names with spaces in them.
 if (Cmdline.content[0] == '"') {
 p = strchr(Cmdline.content+1,'"');
 if (p) {
 p++;
 strncpy(cmdline,Cmdline.content,p-Cmdline.content);
 cmdline[p-Cmdline.content] = 0;
 strncpy(arguments,p,sizeof(arguments)-1);
 }
 else return invalid_stringA;
 }
 else {
 strncpy(cmdline,Cmdline.content,sizeof(cmdline));

p = strchr(cmdline,' ');
 if (p) {

*p++ = 0;
strcpy(arguments,Cmdline.content);

}
else arguments[0] = 0;

}
if (IsWindowsNT()) {

InitializeSecurityDescriptor(&sd,
SECURITY_DESCRIPTOR_REVISION);
SetSecurityDescriptorDacl(&sd,TRUE,NULL,FALSE);
sa.nLength = sizeof(SECURITY_ATTRIBUTES);
sa.bInheritHandle = TRUE;
sa.lpSecurityDescriptor = &sd;

 lpsa = &sa;
}
memset(&startInfo,0,sizeof(STARTUPINFO));
startInfo.cb = sizeof(STARTUPINFO);
tparams.file = fopen(tmpfile,"wb");
if (tparams.file == NULL) {

return invalid_stringA;
}
hWritePipe = (HANDLE)_get_osfhandle(_fileno(tparams.file));
startInfo.dwFlags =STARTF_USESTDHANDLES|STARTF_USESHOWWINDOW;
startInfo.wShowWindow = SW_HIDE;
startInfo.hStdOutput = hWritePipe;
startInfo.hStdError = hWritePipe;
result = invalid_stringA;
processStarted = CreateProcess(cmdline,arguments,lpsa,lpsa,1,

 CREATE_NEW_PROCESS_GROUP|NORMAL_PRIORITY_CLASS,
 NULL,NULL,&startInfo,&pi);

if (processStarted) {
WaitForSingleObject(pi.hProcess,INFINITE);
GetExitCodeProcess(pi.hProcess,(unsigned long *)&Status);
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
m = 1;

}
else m = 0;
if (tparams.file)

fclose(tparams.file);
if (m) {

result = Strfromfile(tmpfile,1);
}
remove(tmpfile);

20 C programming with lcc-win32
return(result);
}

2.1.4.11 Searching strings
There are several find functions. Here is an overview:
This functions perform primitive string searches. For more sophisticated searches use the reg-

ular expression package or the perl regular expression package (pcre).
Finding the first whitespace character in a string:

Strfind_first_of(Source,"\t ");

Finding the end of the first word in a string:
char *alphabet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
Strfind_first_not_of(Source,alphabet);

Finding a word in a string:
String s = “A long short sentence”;
Stringp ps = Strstr(s,”tence”); // Now ps points to “tence”

Note that Strstr returns a pointer structure, not a new string. You can convert the pointer into a
string with the Strdup function.

2.1.4.12 Strfind_first_of
int overloaded Strfind_first_ofA(StringA &s,StringA &set)

Function Description

Strfind_first_of Finds the first character in a string that matches a given
set. For instance using the set of the tab character and
space, it finds the first whitespace character in a string.

Strfind_last_of Finds the last character that matches the given set. Using
the example above it would find the last white space
character.

Strfind_first_not_of Find the first char not in the given set.

Strfind_last_not_of Find the last char not in the given set

Strcspn Finds the index of the first char that matches any of the
given set. The difference with Strfind_first_of is in the
return value. Strcspn returns the length of the string in
case of error, Strfind_first_of returns -1.

Strchr Finds the first occurrence of a given character in a string.

Strrchr Finds the last occurrence of a given character in a string.

Strstr Finds the first occurrence of a pattern in a string.

Strspn Finds the index of first char that doesn’t match a charac-
ter in a given set. The difference with
Strfind_first_not_of is in the return value: Strspn returns
the string length when no match is found instead of -1.

Strings 21
{
 PRECONDITION(StrvalidA(s) && StrvalidA(set),exc);
 char *strcontents = s.content,*p;
 int i,j,count = s.count,setcount = set.count;
 int c;

 if (set.count == 0 || s.count == 0)
 return -1;
 for (i=0; i<count;i++) {
 p = set.content;
 c = strcontents[i];
 for (j=0; j<setcount;j++) {
 if (c == p[j])
 return i;
 }
 }
 return -1;
}

2.1.4.13 Joining strings
To join a string to another there are several functions described below. Note that the operator
‘+’ is not used for joining strings. The reasoning behind this is that the addition of strings in
the sense used here is non-commutative. “abc” + “dce” give “abcdce” but “dce”+”abc” gives
“dceabc”, what is quite different. An overloading of the + operation is not warranted. Strings
are not numbers, and if we did this overloading, we could come to the interesting conclusion
that "1"+"1" = "11"...

Given the string
S1 = "abcde";

The call
Strcat(S1,"fgh");

will modify the contents of S1, that will after the call contain “abcdefgh”. It is possible that no
resize operation is necessary, if the capacity of S1 was already big enough to accomodate both
strings. Otherwise the library resizes S1.
Resizing operations are expensive when done frequently. To avoid them, it is better to resize
the string before doing the joining in such a way that the resize operation is done once, instead
of several times.

2.1.4.14 Strncat
bool EXPORT overloaded StrncatA(StringA & to,StringA & from,size_t
elements_to_cat)
{

Function Description

Strcat Joins two strings, changing the first.

Strncat Joins up to n characters from the second argument to the
first.

Strchcat Inserts a character at the end of the string.

Strcatv Joins several C strings into a single String.

22 C programming with lcc-win32
 if (!StrvalidA(to)){
 if (StrvalidA(from)) {
 to.count = from.count;
 to.capacity = from.capacity;
 to.content = GC_malloc(from.capacity);
 memcpy(to.content,from.content,from.count);
 return true;
 }
 return false;
 }
 PRECONDITION((StrvalidA(from)), exc);
 size_t needed_space = elements_to_cat + to.count+1;
 to = str_newA(needed_space, to);
 strncat(to.content, from.content, elements_to_cat);
 to.count = needed_space-1;
 to.content[to.count] = 0;
 return true;
}

2.1.4.15 Strcat
bool EXPORT overloaded StrcatA(StringA &to, char* from)
{
 StringA s;

 if (from == NULL)
 return true;
 s.count = strlen(from);
 s.capacity = s.count+1;
 s.content = from;
 return Strncat(to, s, s.count);
}

2.1.4.16 Strmap
This function applies a function in sequence to all characters in a string. It is useful for imple-
menting filters or other transformations to a given string. For instance if we want to change all
characters of a string into upper case, we can do the following:

#include <strings.h>
#include <ctype.h>
int change(int c)
{
 if (islower(c))
 c = toupper(c);
 return c;
}

int main(int argc,char *argv[])
{
 String s,s1;
 for (int i=0; i<argc;i++) {
 s = argv[i];
 s1 = Strmap(s,change);
 printf("%s\n",(char *)s1);
 }
 return 0;
}

String collections 23
This program will output its arguments transformed in uppercase. This is an example, of
course. There is already a function that does that: Strcmpi.

2.1.4.17 Filters
The Strfilter function builds a new string with the characters that fulfill a predicate function
passed to it as an argument or is a member of a given set. For instance, if you want to extract
all numeric data from a string that contains numbers and other data you use:

bool isnumeric(int c)
{

return c >= ‘0’ && c <= ‘9’;
}
String s1 = "Subject age is 45 years";
String s2 = Strfilter(s1,isnumeric); // Now s2 is "45"

Strfilter will also accept a String or char/wide character string. This means that only characters
will be output in the result string that match some character in the given set. For instance:

String s1 = “Subject age is 45 years”;
String s2 = Strfilter(s1,”0123456789”); // Now s2 is “45”

Obviously, this function accepts also two Strings as arguments.

2.2 String collections
After we had finished the strings library, we have developed the string collection package. A
string collection is a table of strings that will grow automatically when you add elements to it.
It has a completely different interface as the strings library, using the popular

string.function

notation like in the C# language or in C++.

2.2.1 The interface
Each string collection structure has a table of function pointers that contains all functions that
can be used with the collection. This allow us to give mnemonic names to each of those func-
tions like “Add”, for instance without fearing to clash with names in the user space. The usage
is a bit more complicated, but lcc-win32 provides some shortcuts to easy the usage. This inter-
face is defined in strcollections.h, a header provided with the lcc-win32 distribution.
We define first an empty structure, that will be fully defined later, to be able to define the func-
tions in our interface

typedef struct _StringCollection StringCollection;

With his behind us, we can now define the interface:
typedef struct {

// Returns the number of elements stored4

int (*GetCount)(StringCollection &SC);

// Is this collection read only?
int (*IsReadOnly)(StringCollection &SC);

// Sets this collection read-only or unsets the read-only flag
int (*SetReadOnly)(StringCollection &SC,int flag);

4. Note that it is probably faster to use SC.count directly, but accessing the internal fields of the SC struc-
ture is discouraged, even if it means code a bit slower.

24 C programming with lcc-win32
// Adds one element at the end. Given string is copied
int (*Add)(StringCollection &SC,char *newval);

// Adds a NULL terminated table of strings
int (*AddRange)(StringCollection &SC,char **newvalues);

// Clears all data and frees the memory
int (*Clear)(StringCollection &SC);

//Case sensitive search of a character string in the data
int (*Contains)(StringCollection &SC,char *str);

// Copies all strings into a NULL terminated vector
char **(*CopyTo)(StringCollection &SC);

//Returns the index of the given string or -1 if not found
int (*IndexOf)(StringCollection &SC,char *SearchedString);

// Inserts a string at the position zero.
int (*Insert)(StringCollection &SC,char *);

// Inserts a string at the given position
int (*InsertAt)(StringCollection &SC,int idx,char *newval);

// Returns the string at the given position
char *(*IndexAt)(StringCollection &SC,int idx);

// Removes the given string if found
int (*Remove)(StringCollection &SC,char *);

//Removes the string at the indicated position
int (*RemoveAt)(StringCollection &SC,int idx);

// Frees the memory used by the collection
int (*Finalize)(StringCollection &SC);

// Returns the current capacity of the collection
int (*GetCapacity)(StringCollection &SC);

// Sets the capacity if there are no items in the collection
int (*SetCapacity)(StringCollection &SC,int newCapacity);

// Calls the given function for all strings. "Arg" is a used supplied argument
// (that can be NULL) that is passed to the function to call
void (*Apply)(StringCollection &SC,

int (*Applyfn)(char *,void * arg),void *arg);

// Calls the given function for each string and saves all results in an integer vector
int *(*Map)(StringCollection &SC,int (*Applyfn)(char *));

// Pushes a string, using the collection as a stack
int (*Push)(StringCollection &SC,char *str);

// Pops the last string off the collection
char * (*Pop)(StringCollection &SC);

// Replaces the character string at the given position with a new one
char *(*ReplaceAt)(StringCollection &SC,int idx,char *newval);

String collections 25
} StringCollectionFunctions;

Once the interface is defined, the rest is quite simple:
// Definition of the String Collection type
struct _StringCollection {

StringCollectionFunctions *lpVtbl; // The table of functions
 size_t count; /* in element size units */
 char **contents; /* The contents of the collection */
 size_t capacity; /* in element_size units */

unsigned int flags; // Read-only or other flags
};

Each string collection will have a pointer to the interface. This uses a few bytes for the pointer,
but I think this is RAM well spent. Besides, any medium size collection will hold a lot of data
anyway, so the space used by the pointer is not significant at all.
The only exported function of this library is of course the creation function:

StringCollection * newStringCollection(int startsize=0);

The creation function allocates and initializes the data structure, setting a pointer to the inter-
face function table.

2.2.2 Memory management
The easiest way to use the string collection is to use it with the garbage collector. The collec-
tion copies all the data it receives, but when indexing a collection you receive not a copy but
the data itself. You have to remember to call the “Finalize” function to free the memory allo-
cated by the collection when you are finished with it. And you should not free a string from
the collection since this will provoke a trap. To avoid all this problems, just use it with the GC.
It could be argued that a simpler interface would have been to make a copy of the string that
the user receives each time we access the collection but then, it would be necessary for you to
free the strings received from the collection, what makes the usage of the library in a DLL that
is called from another compiler runtime impossible.

2.2.3 Using the library
There is a problem however. To call one of those functions, for instance “Add”, to add a string
to the collection we will have to write:

SC = newStringCollection(25);
SC->lpVtbl->Add(SC,”This is a string to be added”);

Lcc-win32 has developed a shorthand notation for this, that allows you to write:
SC->Add(“This is a string to be added”);

This is even more pronounced when indexing the string collection:
char *p = SC->lpVtbl->IndexAt(SC,5);

instead of
char *p = SC[5];

The algorithm used by the compiler is very simple. When dereferencing a structure, if the field
indicated (in this case “Add”) does NOT exist, the compiler looks at the first position for a
function table called “lpVtbl”. If this field exists, and it has a function called with the same
name the user wrote (in this case, we know, it is the name “Add”), and this function pointer
has as its first argument a pointer to the structure we are dereferencing, the compiler supplies
the call as if the user had written the full syntax.
Here is a small sample program that demonstrates what you can do with this library:

26 C programming with lcc-win32
#include <strcollection.h>
static void PrintStringCollection(StringCollection *SC)
{
 printf("Count %d, Capacity %d\n",SC->count,SC->capacity);
 for (int i=0; i<SC->GetCount();i++) {
 printf("%s\n",SC[i]);
 }
 printf("\n");
}
int main(void)
{
 StringCollection *SC = newStringCollection();
 char *p;
 SC->Add("Martin");
 SC->Insert("Jakob");
 printf("Count should be 2, is %d\n",SC->GetCount());
 PrintStringCollection(SC);
 SC->InsertAt(1,"Position 1");
 SC->InsertAt(2,"Position 2");
 PrintStringCollection(SC);
 SC->Remove("Jakob");
 PrintStringCollection(SC);
 SC->Push("pushed");
 PrintStringCollection(SC);
 SC->Pop();
 PrintStringCollection(SC);
 p = SC[1];
 printf("Item position 1:%s\n",p);
 PrintStringCollection(SC);
}

2.2.4 Implementation

2.2.4.1 Creating a string collection.
StringCollection * newStringCollection(int startsize=0)
{
 StringCollection *result = MALLOC(sizeof(StringCollection));
 if (result == NULL)
 return NULL;
 result->count = 0;
 if (startsize == 0)
 startsize = DEFAULT_START_SIZE;
 result->contents = MALLOC(startsize*sizeof(char *));
 if (result->contents == NULL) {
 FREE(result);
 return NULL;
 }
 memset(result->contents,0,sizeof(char *)*startsize);
 result->capacity = startsize;
 result->count = 0;
 result->flags = 0;
 result->lpVtbl = &lpVtableSC;
 return result;
}

We allocate memory for the string collection structure, then for the data, and we set the capac-
ity to the initial size. Since lcc-win32 supports functions with default arguments, we can sup-
pose that a length of zero means the parameter wasn’t there, and we use the default value. In

String collections 27
another environments/compilers, the same convention can be used, but the argument must be
there.
We are immediately confronted with the first design decision. What happens if we do not get
the memory needed?

Many actions are possible:
1: Throw an exception. This could be catched with a __try/__except construct but it requires
heavy involvement from the part of the user.

2: Print an error message and abort the program. This is decision with too many consequences
for the user, and gives him/her no chance to correct anything.

3: Return NULL. If there isn’t any test in user code for a wrong return value, the program will
crash the first time the user wants to use the collection. This is better than crashing in a
library function, and such an error can be easily spotted in most cases.

Note the usage of the FREE macro. We leave the user the choice of compiling the library with
the GC or without it. If the macro NO_GC is defined, we avoid the garbage collector and use
the malloc/free system.
We assign to the table of functions field (lpVtbl) the address of a static function table defined
in the module. Note that the function table can be in principle be modified by the user, by
replacing one or more functions with other functions more adapted to his/her needs. This “sub-
classing” could be added later to the interface of the string collection library.

2.2.4.2 Adding items to the collection
This function returns the number of items in the collection after the addition, or a value less or
equal to zero if there was an error.

static int Add(StringCollection &SC,char *newval)
{
 if (SC.flags & SC_READONLY)
 return -1;
 if (SC.count >= SC.capacity) {
 if (!Resize(SC))
 return 0;
 }

 if (newval) {
 SC.contents[SC.count] = DuplicateString(newval);
 if (SC.contents[SC.count] == NULL) {
 return 0;
 }
 }
 else
 SC.contents[SC.count] = NULL;
 SC.count++;
 return SC.count;
}

The library supports a “Read only” flag, that allows the user to build a collection and then pro-
tect it from accidental change. In the case that the flag is set we do not touch the collection and
return a negative value to indicate failure.
If the collection is full, we try to resize it. If that fails, the result is zero and we exit. More
about this below.

28 C programming with lcc-win32
If the resizing succeeded or there was enough place in the first place, we go on and store the
new element. Since the user could store a NULL value, we test for it, and avoid trying to
duplicate a null pointer. Note that we always duplicate the given string before storing it
The function that resizes the collection is straightforward:

static int Resize(struct _StringCollection &SC)
{
 int newcapacity = SC.capacity + CHUNKSIZE;
 char **oldcontents = SC.contents;
 SC.contents = MALLOC(newcapacity*sizeof(char *));
 if (SC.contents == NULL) {
 SC.contents = oldcontents;
 return 0;
 }
 memset(SC.contents,0,sizeof(char *)*newcapacity);
 memcpy(SC.contents,oldcontents,SC.count*sizeof(char *));
 SC.capacity = newcapacity;
 FREE(oldcontents);
 return 1;
}

The algorithm here is just an example of what could be done. Obviously, if you resize very
often the collection, the overhead of this is considerable. The same interface is used in case
that we do not find any memory for the bigger collection: we return zero, without making any
harsh action. The new fields are zeroed5, and the old contents are discarded.

2.2.4.3 Adding several strings at once
You can pass an array of string pointers to the collection, finished by a NULL pointer. The col-
lection adds the strings at the end.

static int AddRange(struct _StringCollection & SC,char **data)
{
 int i = 0;
 if (SC.flags & SC_READONLY)
 return 0;
 while (data[i] != NULL) {
 int r = Add(SC,data[i]);
 if (r <= 0)
 return r;
 i++;
 }
 return SC.count;
}

We use the Add function for this, iterating through the input string array. Note that any error
stops the operation with some strings added, and others not. This could be done differently,
making a “roll back” before returning, so that the user could be sure that either all strings were
added, or none. To keep the code simple however, it is better to leave this “as is”.

2.2.4.4 Removing strings from the collection
RemoveAt returns the number of items in the collection or a negative value if an error occurs.

static int RemoveAt(struct _StringCollection &SC,int idx)
{

5. You see how this operation could be done faster? Look at the code again. Do we zero only the new
fields?

String collections 29
 if (idx >= SC.count || idx < 0 || (SC->flags & SC_READONLY))
 return -1;
 if (SC.count == 0)
 return -2;
 FREE(SC.contents[idx]);
 if (idx < (SC.count-1)) {
 memmove(SC.contents+idx,SC.contents+idx+1,
 (SC.count-idx)*sizeof(char *));
 }
 SC.contents[SC.count-1]=NULL;
 SC.count--;
 return SC.count;
}

We start by taking care of the different error conditions. Note that to simplify things several
errors return the same result. A more detailed error reporting is quite trivial however.
If we are not removing the last item in the collection, we should move all items beyond the
one we are removing down towards the origin. This is done with memset.
We do not free the memory used by the pointer array, only the memory used by the string that
we just remove. This could be a problem for a collection that grows to a huge size, then it is
emptied one by one. We could add logic here that would check if the capacity of the collection
relative to the used space is too big, and resize the collection.6

A question of style is important here. Note that the code above could have been written like
this:

 SC.contents[--SC.count]=NULL;
 return SC.count;

instead of
 SC.contents[SC.count-1]=NULL;
 SC.count--;
 return SC.count;

We avoid a subtraction of one with the first form. But I think the second form is much
clearer...

2.2.4.5 Retrieving elements
To get a string at a given position we use IndexAt.

static char *IndexAt(struct _StringCollection &SC,int idx)
{
 if (idx >=SC.count || idx < 0)
 return NULL;
 return SC.contents[idx];
}

What to do when we receive a bad index? This is a similar problem to memory exhaustion.
Something needs to be done, maybe even more so than in the case of lack of memory. This is a
hard error in the program. You can modify the code here to change the library, but keeping in
line with the behavior of the library in other places, we just return NULL.
This is not a very good solution since the user could have stored NULL in the collection, at
would be mislead into thinking that all went well when in fact this is not the case.

6. Is it really necessary to set the pointer to NULL? Strictly speaking not, since the collection should
never access an element beyond the count of elements. In a garbage collection environment however,
setting the pointer to NULL erases any references to the string and allows the garbage collector to col-
lect that memory at the next GC.

30 C programming with lcc-win32
Since lcc-win32 allows operator overloading, we can use it to easy the access to the members
of the collection:

char *operator[](StringCollection SC,int idx)
{
 return IndexAt(SC,idx);
}

We can now use the string collection as what it is: a table of strings

2.2.4.6 Finding a string
The function IndexOf will return the index of a string in the collection or a negative value if
the string is not found.

static int IndexOf(struct _StringCollection &SC,char *str)
{
 int i;
 int (*cmpfn)(char *,char *);

 if (SC.flags & SC_IGNORECASE) {
 cmpfn = stricmp;
 }
 else cmpfn = strcmp;

 for (i=0; i<SC.count;i++) {
 if (!cmpfn(SC.contents[i],str)) {
 return i;
 }
 }
 return -1;
}

To avoid testing at each step in the loop if the comparison will be case insensitive or not, we
assign the function to use to a function pointer before the loop starts.

2.2.4.7 Conclusion
These are the most important functions in the library. There are several others, and you can
look at the code distributed with the lccwin32 distribution for the complete source. The docu-
mentation will tell you exactly what each function is supposed to do, and the different return
values of each function. The source code will be installed in
\lcc\src\stringlib
It comes with a makefile, so if you have lcc in the path, you just need to type “make” to build
the library.

2.3 Strings in other languages
Strings are a very common, I would say almost universal data type. Here is a comparison with
the interface provided by other languages.

Strings in other languages 31
Language Implementation

C++ The C++ strings package is very similar to the one proposed here. I used a
similar interface on purpose: Avoid gratuitous incompatibilities with C++.
Of course, essential differences remain. in C there are no constructors,
destructors, templates etc.
C++ accepts many initializers forms: you can write

string mystring(“Initial content”);
string mystring = “Initial_content”);
string s2 = s1(mystring,0,1); // s2 is then “I”

Other operations are supported like append, insert, erase, replace, etc. They
all use the C++ function table in each object:

s2 = “ABC”;
s2.append(“abc”); // Now s2 is “ABCabc”

The same operation in C is:
append(s2,”abc”);

Common
Lisp

Lisp has a “string” data type, that is defined as a specialized vector of charac-
ters. Accessing an element is done with:

(char "Abcd" 1) ==> "b"
Comparison is done with

(string= string1 string2)
There are other optional arguments to indicate a starting and ending point for
the comparison. The result is either true (strings equal, or false, different).
For lexicographical comparisons there are the functions string<, etc.
To modify a character in a string you use:

(setf (char "Abcd" 1) #\l) ==> "lbcd"

APL Apl is a language where vectors are the main data type, in contrast to Lisp,
where lists are paramount. APL strings are just vectors like all others. The
rich primitive operations of APL in vectors can be applied to strings.

Ruby Ruby strings can contain characters or just binary data, as our strings. There
is an elaborate escaping mechanism to specify numerical values within
strings. Embedded commands within strings allow specifications like:

"{‘Ho! ‘*3}Merry Christmas" ==>
"Ho! Ho! Ho! Merry Christmas"

Search expressions are very sophisticated, including regular expressions.
There are more than 75 methods for the string library. Here is for instance the
“slice” method:

a = "hello there"
a.slice(1) ==> 101
a.slice(1,3) ==> "ell"
a.slice(1..3) ==> "ell"
a.slice(-4..-2) ==> "her"

Note that slicing a string with only one index produces an integer, in this
case the ASCII value of ‘h’.

C# C sharp has a class string, with a similar implementation as the strings
described above.
The string collection library presented above borrows extensively from the
C# StringCollection class.

32 C programming with lcc-win32
2.4 Generalizing the string collection
We have now a general framework for handling string collections. Looking at the code, it is
easy to see that with a little effort, we could make this much more general if we would replace
the strings with a fixed size object, that can be any data structure. This general container is
present in other languages like C#, where it is called “ArrayList”. You can store in an ArrayL-
ist anything, in C# it is not even required that the objects stored inside should be of the same
type.
Since the nature of the objects stored is not known to the container, it is necessary to cast the
result of an ArrayList into the final type that the user knows it is in there. In C# this is the
“object”, the root of the object hierarchy, in C it is the void pointer, a pointer that can point to
any kind of object.
If we look at the code of one of the string collection functions we can see the following:

static char *IndexAt(struct _StringCollection &SC,int idx)
{
 if (idx >=SC.count || idx < 0)
 return NULL;
 return SC.contents[idx];
}

We can easily generalize this to a container by changing the char pointer declaration to just
void pointer!
Slightly more difficult is the Add function. The code of it in our string collection looked like
this:

static int Add(StringCollection &SC,char *newval)
{
 if (SC.flags & SC_READONLY)
 return -1;
 if (SC.count >= SC.capacity) {
 if (!Resize(SC))
 return 0;
 }

 if (newval) {
 SC.contents[SC.count] = DuplicateString(newval);
 if (SC.contents[SC.count] == NULL) {
 return 0;
 }
 }
 else
 SC.contents[SC.count] = NULL;
 SC.count++;
 return SC.count;
}

We see that there are only two places where we have character string specific code: In the type
declaration and in the call to the DuplicateString procedure. The first is easy to fix, but
the seconds needs a little bit more reflection. DuplicateString doesn’t needs to know how
many bytes to copy because it uses the terminating zero of the string to stop. When generaliz-
ing to a general data structure we can’t count with the absence of embedded zeroes in the data,
so we have to give the size of the object explicitly.
If we decide to store only one type of object into our containers, we could store the size in the
container structure at creation time, and then use it within our code.
The code of our Add function for flexible arrays would look like this:

Generalizing the string collection 33
static int Add(StringCollection &AL,void *newval)
{
 if (AL.flags & SC_READONLY)
 return -1;
 if (AL.count >= AL.capacity) {
 if (!Resize(AL))
 return 0;
 }

 if (newval) {
 AL.contents[AL.count] =
 DuplicateElement(newval,AL.ElementSize);
 if (AL.contents[AL.count] == NULL) {
 return 0;
 }
 }
 else
 AL.contents[AL.count] = NULL;
 AL.count++;
 return AL.count;
}

This is almost the same code but now, we use the extra field in the container structure to indi-
cate to DuplicateElement how big is the object being stored. Obviously, Duplica-
teElement will use memcpy and not strcpy to copy the contents, but besides this minor
change the code is the same.
The interface of the creation function must be changed also. We need an extra parameter to
indicate it how big will be the objects stored in the flexible array. The interface for the creation
function looks now like this:

ArrayList * newArrayList(size_t elementsize,int startsize=0);

The first argument is required and not optional: we must know the size of each element. The
ArrayList structure will have a new field (ElementSize) to store the size that each object will
have.
The change to other functions is trivial. Here is the code for the Contains function:

static int Contains(ArrayList &AL,void *str)
{
 int c;
 if (str == NULL)
 return 0;
 for (int i = 0; i<AL.count;i++) {
 if (!memcmp(AL.contents[i],str,AL.ElementSize))
 return 1;
 }
 return 0;
}

The code for the Contains function for a string collection is:
static int Contains(struct _StringCollection & SC,char *str)
{
 int c;
 int (*cmpfn)(char *,char *);
 if (str == NULL)
 return 0;
 c = *str;
 if ((SC.flags & SC_IGNORECASE) == 0) {

34 C programming with lcc-win32
 cmpfn = strcmp;
 }
 else {
 cmpfn = stricmp;
 }
 for (int i = 0; i<SC.count;i++) {
 if (!cmpfn(SC.contents[i],str))
 return 1;
 }
 }
 return 0;
}

Since we use memcmp, there is no sense to worry about case sensitivity. Besides that, only one
line needs to be changed.
Note that we make a shallow comparison: if our structure contains pointers we do not compare
their contents, just the pointer value will be compared. If our structure contains pointers to
strings for example they will compare differently even if both pointers contain the same char-
acter sequence.
What is interesting too is that we use the same names for the same functionality. Since the
function names are in their own name space, we can keep mnemonic names like Add, Con-
tains, etc.

2.4.1 Subclassing
Let’s suppose you have a structure like this:

typedef struct {
int HashCode;
char *String;

} StringWithHash;

You would like to change the code of the IndexOf function so that it uses the hash code instead
of blindly making a memcmp.
This is possible by rewriting the function table with your own pointer, say, HashedIndexOf.

static int HashedIndexOf(ArrayList &AL,void *str)
{
 int i,h,top;
 StringWithHash *src=(StringWithHash *)str,*elem;

 h = src->HashCode;
 top = AL->GetCount();
 for (i=0; i<top;i++) {
 elem = (StringWithHash *)AL[i];
 if (elem->HashCode == h &&
 !strcmp(elem->String,src->String))
 return i;
 }
 }
 return -1;
}

Before doing the strcmp, this function checks the hash code of the string. It will only call
strcmp if the hash code is equal. This is an optimization that can save a lot of time if the list of
strings is long. Note that we kept the interface of the function identical to IndexOf. That is very
important if we want this to work at all.
You can set this function instead of the provided IndexOf function just with:

Generalizing the string collection 35
StringWithHash hStr;
// The structure is allocated, hash code calculated, etc.
// We allocate a 8000 long ArrayList and fill it in
ArrayList *AL = newArrayList(sizeof(StringWithHash,8000);
// Code for the fill-in omitted
// Now we set our function at the right place
AL->lpVtbl->IndexOf = HashedIndexOf;

Done.
There is an important point to remember however. If you look at the creation code of the
newArrayList function, you will see that the lpVtbl structure member is just a pointer to a
static table of functions. By doing this you have made all ArrayLists use the new function,
even those that do not hold StringWithHash structures. You have modified the master copy of
the function table. This may be what you want, probably it is not.
A safer way of doing this is to copy first the lpVtbl structure into a freshly allocated chunk of
memory and then assigning the function pointer.

// Allocate a new function table.
ArrayListFunctions *newFns =

GC_malloc(sizeof(ArrayListFunctions));
// Copy the master function table to the new one
memcpy(newFns,AL->lpVtbl,sizeof(ArrayListFunctions));
// Assign the new function in the copied table
newfns->IndexOf = HashedIndexOf;
//Assign this new table to this array list only
AL->lpVtbl = newFns;

This way, you modify only this particular ArrayList to use the function you want. Note that
there is no freeing of the allocated memory since we used the memory manager. If you use
malloc you should free the memory when done with it.
This subclassing is done automatically in other languages, but following specified rules. Here
we are in C, you are on your own. This allows you much more flexibility since it is you that
writes the rules how the subclassing is going to happen, but introduces more opportunities for
making errors.
This method of replacing the default functions with your own will work of course with all
structures having a function table, like the StringCollection.

2.4.1.1 Drawbacks
All this is nice but we have no longer compiler support. If we initialize an ArrayList with the
wrong size or give an ArrayList the wrong object there is no way to know this until our pro-
gram crashes, or even worst, until it gives incorrect results. We have used everywhere a void
pointer, i.e. a pointer that can’t be checked at all by the compiler.

36 C programming with lcc-win32

Introduction 37
Chapter

Network Programming

4.1 Introduction
Network programming under windows started with the windows socket implementation under
windows 3.0. That implementation was a port of the sockets implementation of Unix to win-
dows, that added some support for the asynchronous calls under the weak multitasking of the
16 bit windows implementation.
When windows passed to 32 bits under windows 95, the sockets implementation improved, of
course, since a real multitasking operating system was running.
Based on the windows sockets implementation, Microsoft released first the wininet interface,
later the winhttp interface. The wininet interface is better for people that are concerned with
some other protocols as http of course, and it is a more low level interface than winhttp. Of
course “low level” is here very relative. Having implemented a full FTP protocol under win-
dows 3.1, the wininet interface is kilometer higher than the bare windows sockets interface.

4.1.1 What is a network?
Let’s start with a short review of the basic network terminology. The figure below demon-
strates a simple network that you might find in a small business or in the home. Each machine
has a network adapter that connects it to the network, as well as a name that uniquely identifies
it. The network adapter determines the type of network, generally either Ethernet, WI-FI, or
older types of networks like Token Ring . The adapter also controls the media used for the net-
work: coax, twisted pair, radio waves, etc. The important thing to recognize is that all of the
machines in a simple network like this can communicate with all of the others equally.

38 C Tutorial
The machines send electrical signals through the medium used by the network, be it coax,
twisted pair, or radio waves. This signals are encoded in precise bit patterns called protocols,
that give meaning to the bit stream. To comunicate with one another, machines follow specific
rules for speech, unlike people. The slightest interference, the slightest error in the sequence
and the machines lose completely the conversation and get stuck. Protocols are the base of all
the network.
Many protocols have been used in the PC, from the early LANMAN days, to now, where TCP/
IP has displaced all others.
With the rise of the internet , the internet protocol has been accepted as a quasi universal stan-
dard. This protocol runs over other more basic protocols like the ethernet protocol, in the case
of coax, or token ring, or whataver is actually sending and receiving the data.
But let’s get practical. Let’s start a small program that we can do withouit a lot of effort.
We will start then, with a simple program to read files from the internet.

4.2 Protocols
Protocols are standardized exchanges between two automata: a “client”, that asks some infor-
mation or resource from the “server” automaton, that manages that information and sends it
through the network.
The information exchanged can be anything: an image, sound, an e-mail, hyper-text you name
it. It can be even a pdf file where you read this lines.

4.3 The HTTP Protocol
The Hyper Text Transfer Protocol relies on “transactions”, i.e. a standardized exchange
between two computers. Within a HTTP transaction, you exchange information with another
computer elsewhere on a network. The information exchanged can be a file that contains data
in the form of text, sound, video, or whatever, or it can be the results of a database query. A
piece of information exchanged over a network is called a resource. Normally the computer
that sends a resource is the server and the computer that receives that resource is a client.
The process of obtaining a resource using the HTTP protocol requires that a series of mes-
sages be exchanged between the client and the server. The client begins the transaction by
sending a message that requests a resource. This message is called an HTTP request, or some-
times just a request. An HTTP request consists of the following components.

1) Method, Uniform Resource Identifier (URI), protocol version number

2) Headers

3) Entity body
The request is sent as plain text over the network. It uses the TCP/IP port 80.
When a server receives a request, it responds by sending a message back to the client. The
message sent by the server is called an HTTP response. It consists of the following compo-
nents.

1) Protocol version number, status code, status text

2) Headers

3) Entity body

The HTTP Protocol 39
The response either indicates that the request cannot be processed, or provides requested infor-
mation. Depending on the type of request, this can be information about a resource, such as its
size and type, or can be some or all of the resource itself. The part of a response that includes
some or all of the requested resource is called the "response data" or the "entity body,' and the
response is not complete until all the response data is received.

4.3.1 GetHttpUrl
The interface for our function should be as simple as possible. It will receive two character
strings, representing the name of the URL to retrieve, and the name of the output file where
the file should be stored. If you are interested in using the resulting code you can skip this sec-
tion.
We start by opening an http session. The general schema for an http session is like this:

Clasic. We open a session, connect, and send requests. In this case we are concerned only with
retrieving the data, i.e. a “GET” request.
We do then an open, we connect, and start a request for a resource. We read from the headers
some info (before we read the data, it would be nice to check that the resource actually exists)
and accordingly we read the content of the file or not.

4.3.2 Implementation
We open a session using the WinHttpOpen API.

hSession = WinHttpOpen(L"lcc WinHTTP/1.0",
WINHTTP_ACCESS_TYPE_DEFAULT_PROXY,
WINHTTP_NO_PROXY_NAME,
WINHTTP_NO_PROXY_BYPASS,
0);

40 C Tutorial
// Check to see if the session handle was successfully created.
if (hSession == NULL) {

fRet = GetLastError();
if (fRet == 0)

fRet = -1;
return fRet;

}

The first argument to WinHttpOpen is the name of the application that issues the request for
data, or “user agent”. The user agent is the client application that requests a document from an
HTTP server so that the server can determine the capabilities of the client software. In this
case we send just a default name.
WinHttp uses a proxy if needed. We rely that a configuration utility has already set up the
proxy settings for us, and request that WinHttp uses the default configuration.
If we can’t open the session, we just return the error code.
If all goes well, we initialize our local variables. We zero the rcContext structure, where we
store the relevant information for our session, and we translate the name of the URL into UNI-
CODE. The winhttp primitives are all in UNICODE, and there is no ANSI equivalent.

// Initialize local stuff
ZeroMemory(&urlComp, sizeof(urlComp));
urlComp.dwStructSize = sizeof(urlComp);
memset(&rcContext,0,sizeof(rcContext));
mbstowcs(szWURL,url,1+strlen(url));

// Use allocated buffer to store the Host Name.
urlComp.lpszHostName = szHost;
urlComp.dwHostNameLength = sizeof(szHost) / sizeof(szHost[0]);

// Set non zero lengths to obtain pointer to the URL Path.
/* note: if we threat this pointer as a NULL terminated string
this pointer will contain Extra Info as well. */
urlComp.dwUrlPathLength = -1;

// Crack HTTP scheme.
urlComp.dwSchemeLength = -1;

Parsing an URL is a tricky business that we better leave for an API than trying to do this our-
selves.

if (!WinHttpCrackUrl(szWURL, 0, 0, &urlComp)) {
goto cleanup;

}

Note that all errors are processed using a “goto cleanup”, what simplifies the error handling.
The famous “goto” statement is not that bad after all.
This is it. We attempt to open a connection now.

// Open an HTTP session.
rcContext.hConnect = WinHttpConnect(hSession, szHost,

urlComp.nPort, 0);
if (NULL == rcContext.hConnect)
{

goto cleanup;
}

Note that no actual connection will be done until we start a request. This is a “GET” request.
dwOpenRequestFlag = (INTERNET_SCHEME_HTTPS == urlComp.nScheme) ?

WINHTTP_FLAG_SECURE : 0;

The HTTP Protocol 41
// Open a "GET" request.
rcContext.hRequest = WinHttpOpenRequest(rcContext.hConnect,

L"GET", urlComp.lpszUrlPath,
NULL, WINHTTP_NO_REFERER,
WINHTTP_DEFAULT_ACCEPT_TYPES,
dwOpenRequestFlag);

if (rcContext.hRequest == 0)
goto cleanup;

Now we are ready to send our request. This will open a connection.
// Send the request.
if (!WinHttpSendRequest(rcContext.hRequest,

WINHTTP_NO_ADDITIONAL_HEADERS, 0,
WINHTTP_NO_REQUEST_DATA, 0, 0,0))
goto cleanup;

We wait for the answer.
if (!WinHttpReceiveResponse(rcContext.hRequest,0))

goto cleanup;

We are now ready to query the headers of the resource we are tryingt to obtain. The reason is
simple: if our routine received a request for an inexistent resource, many servers will send data
anyway containing some HTML that will show the famous page “Unable to find server” or
similar.We surely do not want to get that, so we have to scan the headers to see if we get a
“404”, the http error for indicating that the resource is unavailable.
We do not know how long the headers can be. We first query the length of the buffers, allocate
memory, then we make the request to get the actual header data.

dwSize = 0;
WinHttpQueryHeaders(rcContext.hRequest,

WINHTTP_QUERY_RAW_HEADERS_CRLF ,
WINHTTP_HEADER_NAME_BY_INDEX,NULL,
&dwSize,WINHTTP_NO_HEADER_INDEX);

if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
goto cleanup;

}
dwSize++; // count the trailing zero
swzHeaders = malloc(dwSize * sizeof(wchar_t));
szHeaders = malloc(dwSize);
if (swzHeaders == NULL || szHeaders == NULL) {

goto cleanup;
}
dwSize--;
WinHttpQueryHeaders(rcContext.hRequest,

WINHTTP_QUERY_RAW_HEADERS_CRLF ,
WINHTTP_HEADER_NAME_BY_INDEX,
swzHeaders,&dwSize,WINHTTP_NO_HEADER_INDEX);

We got the headers. Now we parse them to find the return code in them. The standard HTTP
specifies a response like:

HTTP/1.1 200 OK
Date: Fri, 07 May 2004 09:08:14 GMT
Server: Microsoft-IIS/6.0
P3P: CP="ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo
OUR SAMo CNT COM INT NAV ONL PHY PRE PUR UNI"
X-Powered-By: ASP.NET
Content-Length: 39601
Content-Type: text/html
Expires: Fri, 07 May 2004 09:08:14 GMT
Cache-control: private

42 C Tutorial
We are interested in the first line, that contains the return code for the operation. We just skip
the HTTP/1.1 and get it:

memset(szHeaders,0,dwSize);
wcstombs(szHeaders,swzHeaders,dwSize);
char *p = szHeaders;
while (*p != ' ')

p++;
while (*p == ' ')

p++;
sscanf(p,"%d",&rc);
if (rc == 404) {

rcContext.Status = 404;
goto cleanup;

}

The next thing to do is to open the output file. If we can’t open it, there is no point in going
further. We close the session and return an error code.

rcContext.OutputFile = fopen(outfile,"wb");
if (rcContext.OutputFile == NULL) {

WinHttpCloseHandle(hSession);
return -2;

}

Now we have everything. We have an open file ready to receive the data, a correct answer
from the server that tells that the file exists, so we have just to loop getting the data chunks
until there is none left.

do {
// Check for available data.
dwSize = 0;
if(!WinHttpQueryDataAvailable(rcContext.hRequest, &dwSize))

goto cleanup;
// Allocate space for the buffer.
char *pszOutBuffer = malloc(dwSize+1);
if(!pszOutBuffer) {

goto cleanup;
}
// Read the data.
ZeroMemory(pszOutBuffer, dwSize+1);
if(!WinHttpReadData(rcContext.hRequest,

(LPVOID)pszOutBuffer,
dwSize, &dwDownloaded)) {
free(pszOutBuffer);
goto cleanup;

}
// OK Write the data
fwrite(pszOutBuffer,1,dwDownloaded,

rcContext.OutputFile);
// Free the memory allocated to the buffer.
free(pszOutBuffer);

} while(dwSize > 0);

We are finished. We fall through to the cleanup section.

4.4 The FTP protocol
The library winhttp.lib, that we used for implementing the HTTP “GET” functionality above
is OK for its intended use: HTTP. There are however several other interesting protocols avail-

The FTP protocol 43
able to get information from the net, like FTP, Gopher, and others. We will turn ourselves to
another high level library: wininet.lib. This library (with its header file wininet.h) implements
FTP, Gopher, and HTTP. It comes with an embedded caching schema, and many other
advanced features. We will just use a tiny part of it, the one that implements the FTP protocol
suite.
FTP means File Transfer Protocol, and is one of the oldest protocols around. It is a 8 bit client/
server protocol able to handle any type of file any need to encode its contents, unlike MIME or
UUENCODE. The problem with ftp is that it is very slow to start (high latency), and needs,
when using manually, a lengthy login procedure.
The current standard for FTP is RFC 959, which obsoleted the previous specification RFC
765. The first FTP specification was RFC 114, written by A. Bhushan in the MIT project
MAC the 16 April 1971.
Yes. It is a really old protocol.

4.4.1 Implementing the ftp “GET”
We use a simple interface again, ignoring all complexities. GetFtpUrl needs 3 arguments:

1) The name of the host

2) The name of the file to get

3) The name of the local file where the remote file will be written

int GetFtpUrl(char *host,char *infile,char *outfile)
{

HINTERNET hOpen,hConnect;
int fret = -1;

/* The first thing to do is to check that there is an internet connection. If the local machine is not
connected to the internet a call to this function will bring up a dialog box and a series of wizards
to set up the connection..
*/

fret = InternetAttemptConnect(0);
if (fret)

return fret;
/* We can assume now that an internet connection exists. We initialize the inet library specifying
the default proxy settings, and using some character string as the name of the “user agent” */

hOpen = InternetOpen ("FTP lcc ",
 INTERNET_OPEN_TYPE_PRECONFIG , NULL, 0, 0) ;
if (!hOpen)

return -1;
/* We establish now the connection, using the default FTP port, and passive mode. We pass
NULL as user name and password. This means that we always use the “anonymous” login */

hConnect = InternetConnect (hOpen,
host,INTERNET_INVALID_PORT_NUMBER,
NULL, NULL, INTERNET_SERVICE_FTP,
INTERNET_FLAG_PASSIVE , 0);

if (hConnect) {
/* OK. We arrive at the interesting part. We retrieve the file using INTERNET_FLAG_RELOAD,
what means a download is forced of the requested file, object, or directory listing from the origin
server, not from the cache . Besides this, we always use binary mode for all transfers7 */

7. The FTP protocol has two modes of transmission: binary, where no modifications are done to the
transmitted data, and text, where the sequence \r\n will be translated as a single \n. The text mode will
destroy an executable file or zip file that can contain embedded \r\n sequences.

44 C Tutorial
fret = FtpGetFile (hConnect,infile, outfile,
FALSE, // Do not fail if local file exists
INTERNET_FLAG_RELOAD,
FTP_TRANSFER_TYPE_BINARY, 0);

if (fret == 0)
fret = GetLastError();

else
fret = 0;

// Cleanup
InternetCloseHandle (hConnect);

}
else

fret = GetLastError();
InternetCloseHandle(hOpen);
return fret;

}

int main(void)
{

return GetFtpUrl("ftp.cs.virginia.edu",
"/pub/lcc-win32/README",
"README");

}

To give you an idea, when the first FTP protocol implementations under windows 3.0 were
monster programs of several thousand lines. Of course those thousands of lines are still there,
in the code of those FtpGetFile primitives. The advantage is that you do not have to worry
about it.
To link this program you should use the wininet.lib import library.

4.5 Querying the network parameters
The program ipconfig shows the parameters of the TCPIP configuration. We will make here a
similar program, to give you an idea how you can get those parameters under program control.
We will use the APIs defined in the IP helper API. The header file is iphlp.h and the library to
include is iphlp.lib.
The interface for our program is very simple. There is no parameters, and the return value is
zero if everything went OK, an error code otherwise.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#include <winsock2.h>
#include <iphlpapi.h>

int main(void)
{

FIXED_INFO*pFixedInfo;
IP_ADDR_STRING*pIPAddr;
ULONG ulOutBufLen;
DWORD dwRetVal;
int rc;

Querying the network parameters 45
/* We use the GetNetworkParams API to query the host name, the domain name, and other
related information. We make two calls: in the first one we give an insufficient buffer,. This call
fails obviously, returning in the ulOutBufLen the necessary buffer length. Using this information
we allocate the necessary memory, and then call GetNetworkParams again. This is a common
interface with many network APIs that need buffers of varying length.
*/

pFixedInfo = (FIXED_INFO *) malloc(sizeof(FIXED_INFO));
ulOutBufLen = sizeof(FIXED_INFO);

rc = GetNetworkParams(pFixedInfo, &ulOutBufLen);
if (rc == ERROR_BUFFER_OVERFLOW) {

free(pFixedInfo);
pFixedInfo = (FIXED_INFO *) malloc (ulOutBufLen);

}
else return GetLastError(); // failed for another reason. Exit.
// Now this call is for real
dwRetVal = GetNetworkParams(pFixedInfo, &ulOutBufLen);
if (dwRetVal != NO_ERROR) {

printf("Call to GetNetworkParams failed.\nError code %d\n",
GetLastError());

return 1;
}
// Show the retrieved information
printf("\tHost Name: %s\n", pFixedInfo -> HostName);
printf("\tDomain Name: %s\n", pFixedInfo -> DomainName);
printf("\tDNS Servers:\n");
printf("\t\t%s\n", pFixedInfo -> DnsServerList.IpAddress.String);
// The server list is stored as a linked list. Go through that list until we hit a NULL.
pIPAddr = pFixedInfo -> DnsServerList.Next;
while (pIPAddr) {

printf("\t\t%s\n", pIPAddr -> IpAddress.String);
pIPAddr = pIPAddr -> Next;

}
// Show the other parameters
printf("\tEnable Routing: %s\n",

(pFixedInfo -> EnableRouting) ? "Yes" : "No");

printf("\tEnable Proxy: %s\n",
(pFixedInfo -> EnableProxy) ? "Yes" : "No");

printf("\tEnable DNS: %s\n",
(pFixedInfo -> EnableDns) ? "Yes" : "No");

IP_ADAPTER_INFO*pAdapterInfo,*pAdapter;
/* The same technique as above. We pass to the API a buffer of a given length, and if it doesn’t
suffice we allocate the buffer in the returned length
*/

pAdapterInfo = IP_ADAPTER_INFO *)malloc(sizeof(IP_ADAPTER_INFO));
ulOutBufLen = sizeof(IP_ADAPTER_INFO);
rc = GetAdaptersInfo(pAdapterInfo, &ulOutBufLen);
if (rc != ERROR_SUCCESS) {

free(pAdapterInfo);
pAdapterInfo = (IP_ADAPTER_INFO *) malloc (ulOutBufLen);

}
dwRetVal = GetAdaptersInfo(pAdapterInfo, &ulOutBufLen);
if (dwRetVal != NO_ERROR) {

printf("Call to GetAdaptersInfo failed.\nError %d\n",
GetLastError());

return 1;
}

46 C Tutorial
pAdapter = pAdapterInfo;
/* We have now a linked list of adapters. Go through that list printing the information. */

while (pAdapter) {
printf("\tAdapter Name: \t%s\n", pAdapter->AdapterName);
printf("\tAdapter Desc: \t%s\n", pAdapter->Description);
printf("\tAdapter Addr: \t%#x\n", pAdapter->Address);
printf("\tIP Address: \t%s\n",

pAdapter->IpAddressList.IpAddress.String);
printf("\tIP Mask: \t%s\n",

pAdapter->IpAddressList.IpMask.String);
printf("\tGateway: \t%s\n",

pAdapter->GatewayList.IpAddress.String);
if (pAdapter->DhcpEnabled) {

printf("\tDHCP Enabled: Yes\n");
printf("\t\tDHCP Server: \t%s\n",

pAdapter->DhcpServer.IpAddress.String);
printf("\tLease Obtained: %ld\n",

pAdapter->LeaseObtained);
}
else printf("\tDHCP Enabled: No\n");
if (pAdapter->HaveWins) {

printf("\t\tPrimary Wins Server: \t%s\n",
pAdapter->PrimaryWinsServer.IpAddress.String);

printf("\t\tSecondary Wins Server: \t%s\n",
pAdapter->SecondaryWinsServer.IpAddress.String);

}
else printf("\tHave Wins: No\n");
pAdapter = pAdapter->Next;

}
/* We query now the interface information */

IP_INTERFACE_INFO* pInfo;
pInfo = (IP_INTERFACE_INFO *) malloc(sizeof(IP_INTERFACE_INFO));
rc = GetInterfaceInfo(pInfo,&ulOutBufLen);
if (rc == ERROR_INSUFFICIENT_BUFFER) {

free(pInfo);
pInfo = (IP_INTERFACE_INFO *) malloc (ulOutBufLen);
printf("ulLen = %ld\n", ulOutBufLen);

}
else {

printf("GetInterfaceInfo failed with error %d\n",
GetLastError());

return 1;
dwRetVal = GetInterfaceInfo(pInfo, &ulOutBufLen);
if (dwRetVal == NO_ERROR) {

printf("Adapter Name: %S\n", pInfo->Adapter[0].Name);
printf("Adapter Index: %ld\n", pInfo->Adapter[0].Index);
printf("Num Adapters: %ld\n", pInfo->NumAdapters);

}
/* Instead of printing a more or less meaningless error message, we can use FormatMessage
to give a more comprehensible description of the problem */

if (dwRetVal) {
LPVOID lpMsgBuf;
if (FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,

NULL,
dwRetVal,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) &lpMsgBuf,

Querying the network parameters 47
0,
NULL))

{
printf("\tError: %s", lpMsgBuf);

}
LocalFree(lpMsgBuf);

}
/* Show the information for the ip address table */

MIB_IPADDRTABLE*pIPAddrTable;
DWORD dwSize;
struct in_addr IPAddr;
char *strIPAddr;

pIPAddrTable = (MIB_IPADDRTABLE*)malloc(sizeof(MIB_IPADDRTABLE));
dwSize = 0;
IPAddr.S_un.S_addr = ntohl(pIPAddrTable->table[1].dwAddr);
strIPAddr = inet_ntoa(IPAddr);
rc = GetIpAddrTable(pIPAddrTable, &dwSize, 0);
if (rc == ERROR_INSUFFICIENT_BUFFER) {

free(pIPAddrTable);
pIPAddrTable = (MIB_IPADDRTABLE *) malloc (dwSize);

}
dwRetVal = GetIpAddrTable(pIPAddrTable, &dwSize, 0);
if (dwRetVal != NO_ERROR) {

printf("Call to GetIpAddrTable failed.\nError %d\n",
GetLastError());

return 1;
}

/* Now show the information */
printf("Address: %#x\n", pIPAddrTable->table[0].dwAddr);
unsigned int mask = pIPAddrTable->table[0].dwMask;
printf("Mask: %d.%d.%d.%d\n",0xff&mask,0xff&(mask >> 8),

0xff&(mask >> 16),0xff&(mask >> 24));
printf("Index: %ld\n", pIPAddrTable->table[0].dwIndex);
printf("BCast: %ld\n", pIPAddrTable->table[0].dwBCastAddr);
printf("Reasm: %ld\n", pIPAddrTable->table[0].dwReasmSize);
/* Get the statistics about IP usage */
MIB_IPSTATS *pStats;

pStats = (MIB_IPSTATS*) malloc(sizeof(MIB_IPSTATS));

if ((dwRetVal = GetIpStatistics(pStats)) != NO_ERROR) {
printf("\tError %d getting stats.\n",GetLastError());
return 1;

}
printf("\tNumber of IP addresses: %ld\n", pStats->dwNumAddr);
printf("\tNumber of Interfaces: %ld\n", pStats->dwNumIf);
printf("\tReceives: %ld\n", pStats->dwInReceives);
printf("\tOut Requests: %ld\n", pStats->dwOutRequests);
printf("\tRoutes: %ld\n", pStats->dwNumRoutes);
printf("\tTimeout Time: %ld\n", pStats->dwReasmTimeout);
printf("\tIn Delivers: %ld\n", pStats->dwInDelivers);
printf("\tIn Discards: %ld\n", pStats->dwInDiscards);
printf("\tTotal In: %ld\n",

pStats->dwInDelivers+pStats->dwInDiscards);
printf("\tIn Header Errors: %ld\n", pStats->dwInHdrErrors);
/* Get the TCP statistics */
MIB_TCPSTATS*pTCPStats;

pTCPStats = (MIB_TCPSTATS*) malloc (sizeof(MIB_TCPSTATS));

48 C Tutorial
if ((dwRetVal = GetTcpStatistics(pTCPStats)) != NO_ERROR)
printf("Error %d getting TCP Stats.\n",GetLastError());

printf("\tActive Opens: %ld\n", pTCPStats->dwActiveOpens);
printf("\tPassive Opens: %ld\n", pTCPStats->dwPassiveOpens);
printf("\tSegments Recv: %ld\n", pTCPStats->dwInSegs);
printf("\tSegments Xmit: %ld\n", pTCPStats->dwOutSegs);
printf("\tTotal # Conxs: %ld\n", pTCPStats->dwNumConns);

}

Getting accurate information about the TCP and IP statistics is very important when you want
to measure the performance of a network program. By getting the count of the packets trans-
mitted, connections, etc, you can measure exactly how is the performance of your network
application.

4.6 Writing “ping”
“Ping” is a small program that attempts to send an echo request to another machine. If the
response arrives, the other machine is up and running, if not... well, there is a problem with the
physical connection somewhere or the other machine is down.
Simple.
Lcc-win32 provides a “ping” function, that can be used to “ping” a host under program con-
trol. To use that, it is just necessary to include the “ping.h” header file. The simplest program
using ping can be written like this:

#include <ping.h>
#include <stdio.h>
int main(int argc,char *argv[])
{

PingInterface p;
memset(&p,0,sizeof(p));
p.HostName = argv[1]);
if (ping(&p)) {

printf(“Host %s is up\n”,argv[1]);
}
else

printf(“Host %s is down\n”,argv[1]);
}

4.6.1 How does it work?
The algorithm followed by the implementation of ping is to open a connection (a socket) using
the “raw” state, i.e. without using any higher level protocol, not even the TCP protocol. Using
this socket we write an ICMP packet (Internet Control Management Protocol) into the buffer
we are going to send, and we wait for the answer. When the answer arrives we record how
much time it took for the packet to make the round trip.
It sounds simple but it isn’t. It took me quite a while to make an implementation that is at the
same time easy to use and robust. For instance, what happens if the other side never answers?
It would be really bad if ping would freeze waiting for an answer that will never come.
Many other problems can occur, and within the “PingInterface” structure there are a lot of
fields that inform you what is going on.
The basic design principle is that you establish a callback function that is called by the ping
function each time a packet arrives or a timeout is detected.

Writing “ping” 49
A more sophisticated usage of ping() is the “remake” of the program of the same name. Here
is a possible implementation of that.
First we write a callback function to show progress in the screen as we receive a packet.

#include <ping.h>
int PrintReport(PingInterface *Data)
{

if (Data->Errorcode == WSAETIMEDOUT) {
printf("Timed out\n");
return 1;

}
printf("%d bytes from %s:",Data->Bytes, Data->ip);
printf(" icmp_seq = %d. ",Data->Seq);
printf(" time: %d ms ",Data->Time);
printf("\n");
return 1;

}

This function is called by ping() and just prints out the fields. Note that we test the error code
flag to see if we are being called because of a timeout or because of a packet arrived.
In this function we could send a message to a GUI window, or we would update some pregress
control, etc.
The main function is now trivial. We zero the interface structure, we set some fields and there
we go.

int main(int argc, char **argv)
{

PingInterface p;
int r;

memset(&p,0,sizeof(p));
// We set the host name field
p.HostName = argv[1];
// We modify the default time between packets
p.SleepTime = 500;
// If we time out more than 5 times we exit
p.MaxTimeouts = 5;
// We set our callback
p.Callback = PrintReport;
r = ping(&p);
if (r == 0) {

printf(“%s is down\n”,p.HostName);
return 1;

}
printf("\n");
printf("\n%d packets from %s (%s). ",

p.TotalPackets, p.HostName,p.ip);
printf("Received: %d, Sent: %d\n",p.TotalReceived,p.TotalSent);
if (p.TotalPackets == 0)

p.TotalPackets = 1;
printf("Max time: %d ms, Min time %d ms, Avg time= %g ms\n",

p.MaxTime,p.MinTime,
(double)p.TotalTime/ (double) p.TotalPackets);

return 0;
}

50 C Tutorial
4.7 Client/Server programming using sockets
There are two distinct types of socket network applications: Server and Client. The server is
normally the propietary of a ressource: a data file, an image, or other information that it serves
to its clients. Clients request information from the server, and display it to the user.
Servers and Clients have different behaviors; therefore, the process of creating them is differ-
ent.

4.7.1 Common steps for server and client

4.7.1.1 Initializing
All Winsock applications must be initialized to ensure that Windows sockets are supported on
the system. To initialize Winsock you should call the WSAStartup function, giving it the ver-
sion number you want to use, and the address of a WSADATA structure, where windows
writes information about the type of network software that is running.
A typicall call would be:

WSADATA wsadata;
if (WSAStartup(MAKEWORD(2,1),&wsaData) != 0){

return GetLastError();
}

The cryptic MAKEWORD(2,1) means we want at least version 2.1 of the network software.
Note that the library included with lcc-win32 doesn’t need this step, since it will perform it
automatically if it detects that the network wasn’t initialized.

4.7.1.2 Creating a socket
Once initilized, we can create a socket, trough which we are going to send and receive the
data. We call for this the ‘socket’ function:

SOCKET Socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

The error report of the socket call is a return value of INVALID_SOCKET. A typical sequence
would be:

if (Socket == INVALID_SOCKET) {
printf("Error: %ld\n", WSAGetLastError());

}

Note that under the UNIX operating system, socket descriptors are equivalent to file handles.
This is not the case under windows. Furthermore, under UNIX all sockets descriptors are
small positive numbers. This is not the case under windows. You will see under UNIX code
that looks like this:

Client Server

Initialize WSA. Initialize WSA

Create a socket Create a socket

Connect to the server Listen on the socket

Accept a connection

Send and receive data Send and receive data

Disconnect Disconnect

Client/Server programming using sockets 51
s = socket(...);
if (s == -1) /* or s < 0 */
 {...}

This will not work under windows or produce a series of compiler warnings about signed/
unsigned comparisons. The preferred style is as shown above: comparing explictely with the
INVALID_SOCKET constant.

4.7.2 Server side

4.7.2.1 Binding a socket
For a server to accept client connections, it must be bound to a network address within the sys-
tem. This code demonstrates how to bind a socket to an IP address and port. Client applica-
tions use the IP address and port to connect to the host network.
First we create a sockkaddr object, that contains the type of network (we use AF_INET), the
server IP number (we use the local loop address 127.0.0.1) and the port in that IP number we
want to connect to. We can use any port number between 1024 and 65535.

sockaddr_in service;
service.sin_family = AF_INET;
service.sin_addr.s_addr = inet_addr("127.0.0.1");
service.sin_port = htons(49025);

Second, we bind the socket to this network address.
int rc = bind(m_socket, (SOCKADDR*) &service, sizeof(service));
if (rc == SOCKET_ERROR) {
 printf("bind() failed.\n");
}

4.7.2.2 Listening on a socket
After the socket is bound to an IP address and port on the system, the server must then listen
on that IP address and port for incoming connection requests.
To listen on a socket call the listen function, passing the created socket and the maximum
number of allowed connections to accept as parameters.

if (listen(Socket, 1) == SOCKET_ERROR)
 printf("Error listening on socket.\n");

4.7.2.3 Accepting connections.
Once the socket is listening for a connection, we must handle connection requests on that
socket. To accept a connection on a socket we create a temporary socket object for accepting
connections.

SOCKET AcceptSocket;

Create a continuous loop that checks for connections requests. If a connection request occurs,
call the accept function to handle the request.

printf("Waiting for a client to connect...\n");
while (1) {
 AcceptSocket = SOCKET_ERROR;
 while (AcceptSocket == SOCKET_ERROR) {
 AcceptSocket = accept(Socket, NULL, NULL);
 }

When the client connection has been accepted, assign the temporary socket to the original
socket and stop checking for new connections.

52 C Tutorial
 printf("Client Connected.\n");
 Socket = AcceptSocket;
 break;
}

There we go, we have a socket ready to send and receive data.

4.7.3 Client side
For a client to communicate on a network, it must connect to a server. To connect to a socket
we create a sockaddr_in object and set its values.

sockaddr_in clientService;
clientService.sin_family = AF_INET;
clientService.sin_addr.s_addr = inet_addr("127.0.0.1");
clientService.sin_port = htons(49025);

Call the connect function, passing the created socket and the sockaddr_in structure as parame-
ters.

int rc;
rc = connect(Socket,(SOCKADDR*)&clientService,sizeof(clientService));
if (rc == SOCKET_ERROR) {
 printf("Failed to connect.\n");
}

4.7.4 Sending and receiving data
We can receive data from the network using the recv function. A typical call looks like this:

int bytesReceived = recv(Socket,buffer,sizeof(buffer),0);

If we want to receive text, we ensure the zero terminated string with:
buffer[sizeof(buffer)-1] = 0;
bytesReceived = recv(Socket,buffer,sizeof(buffer)-1,0);

To send data we use the send function.
bytesSent = send(Socket, buffer, strlen(buffer), 0);

This sends a character string through the network without the trailing zero.

4.7.5 Simplifying sockets programming with lcc-win32
Lcc-win32 provides functions that relieve you from programming all the above. A client looks
like this:

#include <stdio.h>
#include <stdlib.h>
#include "netutils.h"

int main(int argc,char *argv[])
{

Session session;
char buf[256];

memset(&session,0,sizeof(session));
session.port = 25876;
session.Host = "127.0.0.1";
if (ClientConnect(&session)) {

printf("Unable to connect\n");
goto end;

}

Client/Server programming using sockets 53
if (Send(&session,5,"data")) {
printf("Unable to send\n");
goto end;

}
if (Receive(&session,5,buf)) {

printf("Unable to receive\n");
goto end;

}
buf[session.BytesReceived] = 0;
printf("Received %d bytes: %.5s\n",

session.BytesReceived, buf);
end:

CloseSession(&session);
}

Simple isn’t it?
A server looks like this:

#include <stdio.h>
#include "netutils.h"
int main(int argc,char *argv[])
{

Session session;
char buf[8192];

memset(&session,0,sizeof(session));
session.port = 25876;
session.Host = "127.0.0.1";
if (ServerConnect(&session))

return 0;
printf("Connected...\n");
memset(buf,0,sizeof(buf));
if (Receive(&session,sizeof(buf)-1,buf))

return 0;
printf("received request\n");
printf("data is: %s\n",buf);
if (Send(&session,5,"data"))

return 0;
CloseSession(&session);

}

Basically those procedures implement all the steps described above for client and server sides.
They are the building blocks for implementing the FTP or HTTP protocols we saw above. To
use this functions include “netutils.lib” in the linker command line and include “netutils.h” to
get the prototypes and structure declarations.

54 C Tutorial

	Containers
	2.1 Strings
	2.1.1 Design criteria
	2.1.1.1 Memory management

	2.1.2 The handling of exceptions
	2.1.2.1 Efficiency considerations
	2.1.2.2 C and C++

	2.1.3 Description
	2.1.3.1 Creating strings
	2.1.3.2 Copying
	2.1.3.3 Accessing the characters in a String
	2.1.3.4 Comparing strings
	2.1.3.5 Relational operators
	2.1.3.6 Dereferencing strings
	2.1.3.7 Imitating pointer addition
	2.1.3.8 String pointer operations
	2.1.3.9 Pointer subtraction
	2.1.3.10 Addition of pointer and integer
	2.1.3.11 Comparisons of a string pointer with zero

	2.1.4 String functions
	2.1.4.1 Comparing strings
	2.1.4.2 Joining strings
	2.1.4.3 Accessing strings
	2.1.4.4 Adding and inserting characters
	2.1.4.5 Mapping and filtering
	2.1.4.6 Conversions
	2.1.4.7 File operations
	2.1.4.8 Reversing a String
	2.1.4.9 Searching text
	2.1.4.10 Making a string from a pipe
	2.1.4.11 Searching strings
	2.1.4.12 Strfind_first_of
	2.1.4.13 Joining strings
	2.1.4.14 Strncat
	2.1.4.15 Strcat
	2.1.4.16 Strmap
	2.1.4.17 Filters

	2.2 String collections
	2.2.1 The interface
	2.2.2 Memory management
	2.2.3 Using the library
	2.2.4 Implementation
	2.2.4.1 Creating a string collection.
	2.2.4.2 Adding items to the collection
	2.2.4.3 Adding several strings at once
	2.2.4.4 Removing strings from the collection
	2.2.4.5 Retrieving elements
	2.2.4.6 Finding a string
	2.2.4.7 Conclusion

	2.3 Strings in other languages
	2.4 Generalizing the string collection
	2.4.1 Subclassing
	2.4.1.1 Drawbacks

	Network Programming
	4.1 Introduction
	4.1.1 What is a network?

	4.2 Protocols
	4.3 The HTTP Protocol
	4.3.1 GetHttpUrl
	4.3.2 Implementation

	4.4 The FTP protocol
	4.4.1 Implementing the ftp “GET”

	4.5 Querying the network parameters
	4.6 Writing “ping”
	4.6.1 How does it work?

	4.7 Client/Server programming using sockets
	4.7.1 Common steps for server and client
	4.7.1.1 Initializing
	4.7.1.2 Creating a socket

	4.7.2 Server side
	4.7.2.1 Binding a socket
	4.7.2.2 Listening on a socket
	4.7.2.3 Accepting connections.

	4.7.3 Client side
	4.7.4 Sending and receiving data
	4.7.5 Simplifying sockets programming with lcc-win32

		jacob@jacob.remcomp.fr
	2005-06-09T09:36:39+0200
	Paris, France
	jacob navia
	I am the author of this document

