α-decaying excited states in carbon and boron isotopes

N. Soić^{1,2}, M. Freer², L. Donadille², N. M. Clarke², P. J. Leask², W. N. Catford³, K. L. Jones³, D. Mahboub³, B. R. Fulton⁴, B. J. Greenhalgh⁴ and D. L. Watson⁴

¹ Ruđer Bošković Institute, Zagreb, Croatia
² University of Birmingham, Birmingham, United Kingdom
³ University of Surrey, Guildford,

United Kingdom

⁴ University of York, York, United Kingdom

The 8th International Conference on Clustering Aspects of Nuclear Structure and Dynamics November 24 - 29, 2003, Nara, Japan

Introduction

- light nuclei: variety of structural properties from spherical shell model structure to clustering

- α -particle: basic unit in cluster structures

- beryllium isotopes: good evidence for well developed cluster structure in ^{8,9,10}Be, tentative evidence in ^{11,12,14}Be

- sharing of the neutron(s) between two α -cores

 $\Rightarrow \alpha + Xn + \alpha$ structure \Rightarrow nuclear molecules

- valence neutron around α -particle is in p-type orbit $\Rightarrow \pi$ and σ -type orbits in Be isotopes

- carbon nuclei: 3α cluster structure in ${}^{12}C \Rightarrow$ an extension to the three-centre system

- intrinsic asymmetry of the 3α +n structure \Rightarrow two rotational bands with opposite parity

¹⁴C

- boron isotopes: does α -clustering influence their structure, do they fit to that picture ?

- two- or three-centre systems ?
- ¹¹B: α + α +t three-centre structure
- heavier B isotopes: $\alpha + \alpha + t + Xn$?

- theory: the antisymmetrized molecular dynamics framework (Y. Kanada-En'yo et al), molecular orbit model (N. Itagaki et al)

- reproduce well the properties of Be and C isotopes and suggest that clustering has a determining role in the structural properties of the heavier neutron-rich isotopes - experimental signatures for excited states with molecular structure:

a) reaction mechanism by which the states are populated

b) large population/decay probability for the channel associated with cluster structure and suppressed single-nucleon population/decay probability

c) rotational band associated with large deformation (moment of inertia I)

$$E_{exc} \sim \frac{\hbar}{(2I)} * [J(J+1)]$$

d) strong γ -transitions between states in the rotational band

- boron and carbon nuclei have been studied intensively but the experimental evidence for molecular states is rather scarce

- here presented the results of experimental studies which probe cluster structure of 11,13,14 C and 11,12 B via strong α -decay of their excited states

Experimental details

- the measurements were performed at the Australian National University's 14UD tandem accelerator facility, Canberra, Australia

- beam: 70 MeV ⁹Be, intensity ~ 3enA
- target: Li_2O_3 foil, 100 µg/cm²
- four detector telescopes for charged particles \Rightarrow particle identification

- 2 telescopes at 17.3° and 17.8° (~7° - ~28°), 2 at 28.6° and 29.7° (~20° - ~38°) in a cross-like arrangement

- very thin (~70 μ m) 5 x 5 cm² silicon detectors segmented into four squares, position – sensitive strip detectors with the same active area divided into 16 strips, 2.5 cm thick CsI detectors \Rightarrow provided charge and mass resolution from protons to beryllium isotopes

- kinematically complete measurements of the three-body reactions: determination of the momentum of each particle in coincident events \Rightarrow complete determination of the reaction kinematics

Results: ¹⁴C

 $^{7}\text{Li}(^{9}\text{Be},^{14}\text{C}*\rightarrow ^{10}\text{Be}+\alpha)^{2}\text{H}$

N. Soić et al, Phys. Rev. C 68 (2003) 014321

Excitation energies of ¹⁴C α -decaying states

$^{10}\text{Be}_{gs}+\alpha$	$^{10}\text{Be}(2^{+})+\alpha$	10 Be(6 MeV)+ α	previous
14.7			$14.667(4^{+})$
15.5			$15.44(3^{-})$
16.4			16.43
18.5	18.5		18.5
	(19.1)		
19.8	19.8		
20.6			20.4
	21.4		(21.4)
		22.4	22.1(2 ⁻ ,T=2)
	(23.2)		23.288
		24.0	24.4(4 ⁻ ,T=2)

- no α -decaying states observed before, our results are the first evidence for α -decay in ¹⁴C - the states which decay to the ground and the first 2⁺ state are the same, while a distinct set of states decay to the 6 MeV states \Rightarrow that could reflect their different structure (π and σ neutrons) - measurements of the spins of these states are required for understanding of their structure

Results: ¹³C

 $^{7}\text{Li}(^{9}\text{Be},^{13}\text{C}^{*} \rightarrow ^{9}\text{Be}+\alpha)^{3}\text{H}$

N. Soić et al, Nucl. Phys. A 728 (2003) 12

Events in the larger angle detector pair

Excitation energies and widths of α -decaying states

Present	Lee et al,	Ajzenberg-Selove,		
	PRC 58 (1998) 1005	NPA 523 (1991) 1		
	5 levels at 10.768-11.7	11		
	11.841 46	$11.848 \ 68 \ 7/2^+$		
12.0	11.96 240	$11.95 \ 500 \ 5/2^+$		
		$12.106\ 540\ 3/2^+$		
		12.13 80 5/2-		
		$12.14 430 1/2^+$		
	12.8 1000	13.0 broad		
	13.28 310	(13.28) (340)		
13.4	13.30 33	13.41 35 (9/2)		
	(13.53) (65)	$13.57 \ 620 \ 7/2^{-1}$		
	13.73 77	13.76 300		
	13.92 100			
14.1	14.08 160	14.13 150 $3/2^{-1}$		
	14.36 115	14.39 280		
14.6		14.58 230		
(15.2)		15.27 $9/2^+$		
(16.0)		16.08 150 (7/2+)		
16.8 31	0	16.95 330		
(17.9)		(17.92)		
18.7 57	70	18.699 100		
21.3 53	50	21.28 159		
23.9 110	00	24.0 4000		
(27.3)		27.5 1000		

- from the difference in the widths of the states at 18.7, 21.3 and 23.9 MeV \Rightarrow probably new resonances which may possess a structural link with those at lower excitations

Proposed rotational bands in M. Milin, W. von Oertzen, Eur. Phys. J. A 14 (2002) 295

 3α +n chain structure

K=	=3/2-	K=	$=3/2^+$
3/2-	9.897	$3/2^{+}$	11.080
5/2-	10.818	$5/2^{+}$	11.950
7/2-	12.438	$7/2^{+}$	13.41
9/2-	14.13	$9/2^{+}$	15.28
$11/2^{-1}$	16.08	$11/2^{+}$	16.95

parity splitting is the consequence of the reflection asymmetric shape
very large moment of inertia

- the angular distributions of the ${}^{13}C^*$ prior to breakup reconstructed from the measured momenta of the $\alpha + {}^9Be$ are not highly structured - the minima shift with energy systematically

- indication that the 14.1-21.3 MeV states correspond to the α -transfer to a common orbital - spin determinations are imperative

Results: ¹¹C

¹⁶O(⁹Be,¹¹C* \rightarrow ⁷Be+ α)¹⁴C - two proton pickup to ⁹Be

Excited states in ¹¹C decaying into α +⁷Be_{gs}

	${}^{6}\text{Li}({}^{10}\text{B},^{7}\text{Be})$			
Present	Lee et al,	Ajzen	berg-S	elove,
	PRC 58 (1998) 1005	NPA	506 (1	990) 1
	8.10	8.1045	5 11 eV	V 3/2-
	8.42	8.420	15 eV	V 5/2 ⁻
8.65	8.655	8.655	$\leq 5 \text{ ke}$	$V 7/2^+$
		8.699	15	$5/2^{+}$
		9.65	210	$(3/2^{-})$
9.85		9.78	240	$(5/2^{-})$
		9.97	120	$(7/2^{-})$
		10.083	230	$7/2^{+}$
10.7		10.679	200	$9/2^{+}$
12.1		12.16	270	T=3/2

- 12.1 MeV state is proposed to be the isobaric analogue state of the ¹¹Be ground state, but we observe here its strong $\alpha + {}^7Be_{gs}$ decay \Rightarrow it has mixed isospin

Results: ¹¹B ⁷Li(⁹Be, ¹¹B* \rightarrow ⁷Li+ α)⁵He - d pickup to ⁹Be, α knockout to ⁷Li

Excited states in	¹¹ B decaying into $\alpha + {}^{7}Li_{gs}$
Present	Ajzenberg-Selove,
	NPA 506 (1990) 1
9.27	9.1850 2 eV $7/2^+$
	9.2744 4 keV $5/2^+$
10.25	$10.26 150 3/2^{-1}$
	10.33 110 5/2-
10.55	$10.597 100 7/2^+$
11.2	$11.265 110 9/2^+$
(11.4)	11.444 103
11.8	$11.886 200 5/2^{-1}$
12.5	12.557 210 $1/2^+$ T= $3/2$
(13.0)	12.916 200 $1/2^{-}$ T=3/2
13.15	13.137 426 9/2-
	13.16 430 $5/2^+, 7/2^+$
(14.0)	14.04 500 $11/2^+$
14.35	14.34 254 $5/2^+$ T= $3/2$
(17.45)	17.43 100 T=3/2

- all of these states are tabulated as α -decaying - four states observed here proposed to be the isobaric analogue states of the ¹¹Be states \Rightarrow these states have mixed isospin

- we have the same series of states excited in ¹¹B and ¹¹C \Rightarrow the same cluster structure ?

Results: ¹²B ⁷Li(⁹Be, ¹²B* \rightarrow ⁸Li+ α)⁴He - t pickup to ⁹Be, α +n knockout to ⁷Li

- observed states at 10.9, 11.6, 13.4, (14.1), 15.7 and (17.4) MeV

the same states observed in the first report on α-decaying states in ¹²B (N.Soić et al, Europhys. Lett. 63 (2003) 524)
spin determination !

Summary and Future Prospects

- it was demonstrated that breakup studies provide an effective spectroscopic tool, particularly for cluster states

- reported experimental results on the α -decay of excited states in ^{11,13,14}C and ^{11,12}B indicate cluster structure in these nuclei

- observed states are good candidates for states with molecular structure based on α -particles

- the determination of the spins and parities as well as partial widths of the observed states are imperative in order to fully understand structure of C and B isotopes

- molecular structures could also appear in nuclei similar to these studied here: heavier Be, B and C isotopes, neutron rich nuclei based on α +¹⁶O structure ...

- similar experiments are already performed or planned in the next future to probe the molecular/cluster states in these systems