Experimental evidence for cluster structure in ¹¹B

Neven Soić Ruđer Bošković Institute Zagreb, Croatia

International Conference on Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier March 19-23th, 2006 - San Servolo - Venezia - ITALY___

 ${}^{6}\text{He}+{}^{6}\text{Li} \rightarrow {}^{6}\text{He}+\alpha+d$, ${}^{6}\text{He}+{}^{7}\text{Li} \rightarrow {}^{6}\text{He}+\alpha+t$ resonant ${}^{6}\text{He}+\alpha$ elastic scattering ,

Rotational band: $0^+(6.18 \text{ MeV}), 2^+(7.54 \text{ MeV}), 4^+(10.15 \text{ MeV})$ $\hbar/2I = 200 \text{ keV}$; axes ratio 2.5 : 1 very large α -cluster spectroscopic factors α -2n- α molecular structure

¹⁰Be

Available online at www.sciencedirect.com

Nuclear Physics A 753 (2005) 263-287

Sequential decay reactions induced by a 18 MeV ⁶He beam on ⁶Li and ⁷Li

M. Milin^a, M. Zadro^a, S. Cherubini^{b,1}, T. Davinson^c, A. Di Pietro^{c,1}, P. Figuera^d, Đ. Miljanić^a, A. Musumarra^{b,1}, A. Ninane^b, A.N. Ostrowski^{c,2}, M.G. Pellegriti^d, A.C. Shotter^{c,3}, N. Soić^a, C. Spitaleri^d

^a Ruder Boškowić Institute, Zagreb, Croatia
^b Institut de Physique Nucléaire, Untversité Catholique de Louvain, Louvain-la-Neuve, Belgium
^c Department of Physics and Astronomy, Untversity of Edinburgh, Edinburgh, United Kingdom
^d INFN, Laboratori Nazionali del Sud and Università di Catania, Italy

Received 20 January 2005; accepted 28 February 2005

Available online 22 March 2005

PRL 96, 042501 (2006)

PHYSICAL REVIEW LETTERS

week ending 3 FEBRUARY 2006

α:2n:α Molecular Band in ¹⁰Be

M. Freer,¹ E. Casarejos,² L. Achouri,³ C. Angulo,² N.I. Ashwood,¹ N. Curtis,¹ P. Demaret,² C. Harlin,⁴ B. Laurent,³ M. Milin,⁵ N. A. Orr,³ D. Price,¹ R. Raabe,⁶ N. Soić,⁵ and V.A. Ziman¹

¹School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom ²CRCALN Centre de Recherches du Cyclotron, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium ³Laboratoire de Physique Corpusculaire, ISMRA and Université de Caen, IN2P3-CNRS, 14050 Caen Cedex, France ⁴School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom ⁵Department of Experimental Physics, Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia ⁶Instituut voor Kern- en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium (Received 12 August 2005; published 30 January 2006)

¹¹C,¹¹B

- ${}^{16}O({}^{9}Be, {}^{11}C^* \rightarrow {}^{7}Be+\alpha){}^{14}C$, ${}^{7}Li({}^{9}Be, {}^{11}B^* \rightarrow {}^{7}Li+\alpha){}^{5}He$
- resonant particle spectroscopy technique
- 2p pickup to ⁹Be and d pickup to ⁹Be

Nuclear Physics A 742 (2004) 271-290

VIER

www.elsevier.com/locate/npe

α -decay of excited states in ¹¹C and ¹¹B

N. Soić ^{a,b,*}, M. Freer^a, L. Donadille^{a,1}, N.M. Clarke^a, P.J. Leask^a,
 W.N. Catford^c, K.L. Jones^{c,2}, D. Mahboub^c, B.R. Fulton^d,
 B.J. Greenhalgh^d, D.L. Watson^d, D.C. Weisser^e

 ^a School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
 ^b Ruder Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
 ^c School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom
 ^d Department of Physics, University of York, Hestington, York YO10 5DD, United Kingdom
 ^e Department of Nuclear Physics, The Australian National University, Canberra ACT 0200, Australia

Received 14 May 2004; received in revised form 18 June 2004; accepted 22 June 2004

Available online 14 July 2004

these strongly excited states observed in α -decay of both nuclei should have similar cluster structure

Rotational bands:
 ¹¹B:

K=5/2⁺: 7.286, 9.185, 11.265, 14.04 MeV rotational parameter $\hbar/2I=250$ keV K=3/2⁺: 7.978, 9.274, 10.597, (12.5) MeV rotational parameter $\hbar/2I=215$ keV ¹¹C:

K=5/2⁺: 6.905, 8.655, 10.679, 13.4 MeV rotational parameter ħ/2I=240 keV K=3/2⁺: 7.500, 8.699, 10.083, (12.1) MeV rotational parameter ħ/2I=215 keV

very deformed structure

¹¹B: α+t+α

¹¹C: α+³He+α

10,11,12<mark>B</mark>

PHYSICAL REVIEW C 72, 044320 (2005)

a+Li and H+Be decay of 10,11,12B

N. Curtis,^{1,+} N. I. Ashwood,¹ W. N. Catford,¹ N. M. Clarke,¹ M. Freer,¹ D. Mahboub,² C. J. Metelko,^{1,†} S. D. Pain,^{2,‡} N. Soić,^{1,§} and D. C. Weisser³
¹School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom ²School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom ³Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT, 0200, Australia

(Received 13 June 2005; published 31 October 2005)

 $^{12}C(^{7}Li,^{10}B^{*})^{9}Be$ $^{16}O(^{7}Li,^{10}B^{*})^{13}C$ $^{7}Li(^{7}Li,^{11}B^{*})t$ $^{7}Li(^{7}Li,^{12}B^{*})d$ α -decay channel dominates: α +Li cluster structure

12R

15 August 2003

EUROPHYSICS LETTERS Europhys. Lett., 63 (4), pp. 524-530 (2003)

⁸Li + α decay of ¹²B and its possible astrophysical implications

N. SOIĆ¹, S. CHERUBINI², M. LATTUADA², D. MILJANIĆ¹, S. ROMANO²,

C. Spitaleri² and M. Zadro¹

Ruđer Bošković Institute - Zagreb, Croatia
 INFN-Laboratori Nazionali del Sud and Università di Catania - Catania, Italy

(received 10 March 2003; accepted in final form 17 June 2003)

Experimental details

- Measurements performed at the Australian National University's 14UD Tandem Van de Graaff accelerator, Canberra, Australia
- Beam: 70 and 55 MeV ⁹Be intensity ≈3 enA
- Target: Li₂O₃ foil, 100 µg/cm²
- Detector array: four telescopes for charged particles in a cross-like arrangement
- T1: $\theta_c = 17.3^{\circ} \Phi_c = 0^{\circ}$; T2: $\theta_c = 17.8^{\circ} \Phi_c = 180^{\circ}$; $\Theta = \approx 7^{\circ} \approx 28^{\circ}$
- T3: $\theta_c = 28.6^{\circ} \Phi_c = 90^{\circ}$; T4: $\theta_c = 29.7^{\circ} \Phi_c = 270^{\circ}$; $\Theta = \approx 20^{\circ} \approx 38^{\circ}$
- Telescopes: 70µm 5x5cm² silicon detector segmented into 4 squares, 500µm 5x5cm² silicon strip detector divided into 16 position-sensitive strips, 2.5 cm thick CsI detector

Charge and mass resolution from hydrogen to beryllium isotopes

5

⁷Li(⁹Be,¹¹B* $\rightarrow \alpha + \alpha + t$)⁵He

- Q = -4.9 MeV
- similar spectra for other telescope combinations
- peak width: 1.0-1.5 MeV
- width of the ⁵He gs 600 keV

• reaction identification: 3 detected particles of 4 in the exit reaction channel

 ¹¹B excitation energy spectra reconstructed from the energy and momentum of three detected particles: peaks at 13.1, 14.4 and 17.5 MeV

$^{11}B\rightarrow t+^{8}Be(gs)$ decay peaks at 13.1 and 14.4 MeV

$^{11}B{\rightarrow}\alpha{+}^{7}Li^{*}(4.652~MeV,~J^{\pi}{=}7/2^{-})$ decay peaks at 14.4 MeV and 17.5 MeV

- Relative decay strengths of the α+⁷Li(gs), α+⁷Li*(4.652 MeV, J^π=7/2⁻) and t+⁸Be(gs) decays for the 14.4 MeV state in ¹¹B:
 - all angular range for $^{11}B^*(14.4 \text{ MeV})$ c. m. scattering angle θ^*
 - $-10^{\circ} \le 0^* \le 40^{\circ}$ (this range is covered in all three decay channels)
 - three intervals: $10^{\circ} \le \theta^* \le 20^{\circ}$, $20^{\circ} \le \theta^* \le 30^{\circ}$, $30^{\circ} \le \theta^* \le 40^{\circ}$
- data corrected for detection efficiency, analysis excludes events for which kinematics allow decay via two different decay channels (all events included only once), analyzed data for both beam energies
- Result: $N(\alpha + ^7Li(gs)) / N(\alpha + ^7Li^*(4.652 \text{ MeV}, J^{\pi} = 7/2^{-})) = 4.90 \pm 0.75$

 $N(\alpha + {}^{7}Li^{*}(4.652 \text{ MeV}, J^{\pi} = 7/2^{-})) / N(t + {}^{8}Be(gs)) = 5.15 \pm 0.75$

¹¹B* decay thresholds (MeV):

α+ ⁷ Li(gs)	t+2α	t+ ⁸ Be(gs)	p+ ¹⁰ Be	n+ ¹⁰ B	α+ ⁷ Li*(4.652 MeV, J ^π =7/2	-)
8.664	11.131	11.223	11.228	11.454	13.316	

- if the 14.4 MeV state decays only into these three channels: 80.5% into α +⁷Li(gs), 16.3% into α +⁷Li*(4.652 MeV, J^{π}=7/2⁻) and 3.2% into t+⁸Be(gs)
- spin and parity of the 14.4 MeV state unknown
- it has been claimed that at this excitation is $J^{\pi}=5/2^+$, T=3/2 state and that its isospin is mixed
- additional measurements are planned for the near future