Three-Centre Cluster Structure in ¹¹C and ¹¹B

N. Soić^{1,2}, M. Freer², L. Donadille², N. M. Clarke², P. J. Leask², W. N. Catford³, K. L. Jones³, D. Mahboub³, B. R. Fulton⁴, B. J. Greenhalgh⁴, D. L. Watson⁴, D. C. Weisser⁵ ¹ Ruđer Bošković Institute, Zagreb, Croatia ²University of Birmingham, Birmingham, United Kingdom ³University of Surrey, Guildford, United Kingdom ⁴University of York, York, United Kingdom ⁵Australian National University, Canberra, Australia

NUSTAR'05, University of Surrey, Guildford, Jan 2005.

INTRODUCTION

12C

- many light nuclei possess a prominent cluster structure
- α -particle: basic unit in cluster structures

8 8

⁸Be

- attention has focused on neutron-rich Be and C nuclei: N α +Mn structure

valence neutrons between the α -cores – nuclear molecules

- interesting issue: influence of α -clustering on the structure of neutron deficient ¹¹C and also on boron isotopes, particulary ¹¹B

- are these mirror nuclei two- or three-centre systems ?

- example of the 3-centre systems where are holes rather than particles being exchanged between α -particles

- knowledge of their structure may help in understanding of the molecular nature of light nuclei and its evolution from 2- to 3-centre structure

- astrophysical interest: ${}^{7}Be(\alpha,\gamma){}^{11}C$ reaction is starting point of the hot pp chain and ${}^{7}Li(\alpha,\gamma){}^{11}B$ may bypass A=8 gap in the big-bang nucleosynthesis

experimental signatures for excited states with developed cluster structure:
a) reaction mechanism by which the states are populated
b) large population/decay probability for the channel associated with cluster structure and suppressed single-nucleon population/decay probability
c) rotational band associated with large deformation (moment of inertia I)

$$E_{exc} \sim \frac{\hbar}{(2I)} * [J(J+1)]$$

d) strong γ -transitions between states in the rotational band

- ¹¹C and ¹¹B have been studied extensively but the experimental evidence for cluster structures is rather scarce

- here presented the results of experimental studies which probe cluster structure of ${}^{11}C$ and ${}^{11}B$ via the α -decay of their excited states
- ¹¹C states: the ¹⁶O(${}^{9}Be, \alpha^{7}Be$)¹⁴C reaction
- ¹¹B states: the ⁷Li(⁹Be,α⁷Li)⁵He and ⁷Li(⁹Be,ααt)⁵He reactions
 resonant particle spectroscopy technique
- two-nucleon transfer processes onto the 2α +n cluster nucleus ⁹Be provide a mechanism by which the multi-centre cluster structures may be populated

EXPERIMENTAL DETAILS

-measurements performed at the Australian National University's 14UD tandem accelerator facility, Canberra, Australia

- beam: 70 and 55 MeV 9 Be, intensity ~3 enA
- target: Li_2O_3 foil, 100 µg/cm²

- detector array: four telescopes for charged particles in a cross-like arrangement T1: 17.3° $\phi=0^{\circ}$ T2: 17.8° $\phi=180^{\circ}$ $\Theta = \sim 7^{\circ} - \sim 28^{\circ}$ T3: 28.6° $\phi=90^{\circ}$ T4: 29.7° $\phi=270^{\circ}$ $\Theta = \sim 20^{\circ} - \sim 38^{\circ}$

- telescopes contained 3 elements: 70 μ m 5x5 cm² silicon detectors segmented into four squares, 500 μ m 5x5 cm² silicon strip detectors divided into 16 position-sensitive strips, 2.5 cm thick CsI detectors

- charge and mass resolution from hydrogen to beryllium isotopes
- kinematically complete measurements of the reactions with 3 and 4 particles in the exit channel: determination of the momentum of each particle in the coincident events
- the reaction kinematics fully reconstructed

Si – Si matrix

RESULTS: ¹¹C

 ${}^{16}O({}^{9}Be, {}^{11}C* \rightarrow {}^{7}Be + \alpha){}^{14}C, Q = -14.602 \text{ MeV}$

total energy spectra from 70 MeV data: peak at 55.4 MeV, resolution 1.3 MeV
 contributions from the ⁷Be g.s. and the 1st excited state (429 keV) unresolved

- ¹¹C excitation energy reconstructed from the relative velocity of the fragments
- no contributions from the ¹⁸O $\rightarrow \alpha$ +¹⁴C and ²¹Ne \rightarrow ⁷Be+¹⁴C decays
- detection efficiency calculations performed using Monte Carlo simulations
- uncertainty in the excitation energy 100 keV, resolution 200-300 keV
- data show evidence for only α +⁷Be(gs) decay, E_{thrs}=7.543 MeV

- reaction cross section decreases rapidly with increasing¹¹C* emission angle => main reaction mechanism was two-proton pickup to ⁹Be

¹¹ C excite	d states decay	ying into ($\chi + ^{7}Be(gs)$
Present Ajzenberg-Selove,NPA506			506(1990)
	8.1045	11 eV	3/2-
	8.420	15 eV	5/2-
8.65	8.655	5 keV	$7/2^{+}$
	8.699	15 keV	$5/2^{+}$
	9.20	500	$5/2^{+}$
	9.65	210	$(3/2^{-})$
9.85	9.78	240	$(5/2^{-})$
	9.97	120	$(7/2^{-})$
	10.083	230	$7/2^{+}$
10.7	10.679	200	$9/2^{+}$
	11.03	300	
	11.44	360	
12.1	12.16	270	T = 3/2
	12.4	1-2 MeV	
	12.51	490	1/2-;3/2
(12.6)	12.65	360	$(7/2^{+})$
	(13.01)		
	13.33	270	
(13.4)	13.4	1100	

¹¹ C* decays thres	hold (MeV)
$\alpha + {}^7Be$	7.543
$\mathrm{p}+^{10}\mathrm{B}$	8.6896
3 He+2 α	9.131
³ He+ ⁸ Be	9.223
$n + {}^{10}C$	13.120

- both data sets, taken at E_{beam} =70 and 55MeV, give the same states

- the first direct observation of α -decay for states above 9 MeV

- observed strong α -decay of the 12.1 MeV state which is proposed to be the isobaric analog of the ¹¹Be ground state

RESULTS:¹¹B

⁷Li(⁹Be, ¹¹B* \rightarrow ⁷Li+ α)⁵He, Q = -2.4 MeV

total energy spectra from
70 MeV data, peak at 67.5
MeV, resolution 2MeV
width of the ⁵He gs 600keV
contributions from the ⁷Li
gs and the 1st excited state
(478 keV) unresolved

- no evidence for the ${}^{12}B \rightarrow$ ${}^{7}Li+{}^{5}He$ decay, ${}^{9}Be \rightarrow \alpha+{}^{5}He$ decay observed only in T3+T4 data (its contribution removed from the spectrum)

- uncertainty in the excitation energy is 100 keV, resolution 200 – 300 keV

- data give evidence for only ${}^{11}B \rightarrow \alpha + {}^{7}Li(gs)$ decay,

 $E_{thrs} = 8.664 \text{ MeV}$

- analysis of the angular distributions suggests deutron pickup from ⁷Li to ⁹Be, small contribution of the α -transfer from ⁹Be to ⁷Li possible at larger ¹¹B* angles

- observed α +⁷Li(gs) resonances extend the¹¹B excitation energy range for this decay channel ; the same states observed at E_{beam}=70 and 55 MeV

Present	Ajzenberg	-Selove,N	NPA506(1990)
	8.9202	4.37 eV	/ 5/2-
9.2	9.1850	2 eV	$7/2^{+}$
	9.2744	4 keV	$5/2^{+}$
	9.82		$(1/2^{+})$
	9.876	110 ke	$V 3/2^+$
10.3	10.26	150	3/2-
	10.33	110	5/2-
10.55	10.597	100	$7/2^{+}$
	10.96	4500	5/2-
11.2	11.265	110	$9/2^{+}$
(11.4)	11.444	103	
	11.6	170	$5/2^{+}$
11.8	11.886	200	5/2-
	12.0	1000	$7/2^{+}$
12.5	12.557	210	1/2 ⁺ ;T=3/2
(13.0)	12.916	200	1/2-;3/2
13.1	13.137	426	9/2-
	13.16	430	$(5/2,7/2)^+$
(14.0)	14.04	500	$11/2^{+}$
14.35	14.34	254	5/2+;3/2
	14.565	30	
	15.29	250 (3/	$(2,5/2,7/2)^+;3/2$
	16.437	30	T=3/2
	17.33	1000	
17.4	17.43	100	T=3/2
	18.0	870	T=3/2
(18.6)	18.37	260	$(1/2, 3/2, 5/2)^+$

¹¹B excited states decaying into α +⁷Li(gs)

¹¹ B* decays 1	threshold (MeV)
$\alpha + Li$	8.664
t+2 α	11.131
t+ ⁸ Be	11.223
$p+^{10}Be$	11.228
$n+^{10}B$	11.454
d+9Be	15.815

- four states observed here (T=1/2)coincide with states proposed to be the isobaric analogue states of the ¹¹Be states (T=3/2)

⁷Li(⁹Be,¹¹B* \rightarrow t+ α + α)⁵He, Q = -4.9 MeV

- total energy spectra at $E_{beam} = 70$ and 55 MeV
- peaks at 65.1 and 50.1 MeV, resolution 1.5 -2.0 MeV

- similar spectra for other telescope combinations

- reaction identification: 3 detected particles of 4 in the exit channel

$$\tilde{P} = [\overline{p_{beam}} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3]^2 / (2 \times amu)$$

$$\tilde{E} = E_{beam} - E_1 - E_2 - E_3$$

$$\tilde{E} = \tilde{P} / A_{recoil}$$

PEaT1aT2tT1

Q

- ¹¹B excitation energy spectra reconstructed from the energies and momenta of 3 detected particles: peaks at 13.1, 14.4 and 17.5 MeV
- resolution 250-350 keV, uncertainty 150 keV

- all possible 2- and 3-body decays were reconstructed and it is clear that there is no contribution in presented spectra from any other decay process

⁷Li (⁹Be, $t^{8}Be$) ⁵He

¹¹B* $\rightarrow \alpha$ +⁷Li*(4.652 MeV) decay peaks at 14.4 and 17.5 MeV

 7 Li(9 Be, α^{7} Li * (7/2 $^{-}$)) 5 He

- these results are the first direct evidence for ¹¹B* decays into 3 particles

COMMON FEATURES OF THE ¹¹B AND ¹¹C EXCITED STATES

the observed ¹¹B states at 12.5, 12.9, 14.4 and 17.5 and ¹¹C state at 12.1 coincide with proposed T=3/2 states (isobaric analogue states of ¹¹Be)
these states may have large isospin mixing or may be the new states which have a genuine T=1/2 character and may be linked to rotational bands

¹¹B:

K= $5/2^+$: 7.286 9.185 11.265 14.04 MeV rotational parameter $\hbar^2/2I = 0.25$ MeV K= $3/2^+$: 7.978 9.274 10.597 (12.5) rotational parameter $\hbar^2/2I = 0.215$ MeV ^{11}C :

K= $5/2^+$: 6.905 8.655 10.679 13.4 rotational parameter $\hbar^2/2I = 0.24$ MeV K= $3/2^+$: 7.499 8.699 10.083 (12.1) rotational parameter $\hbar^2/2I = 0.215$ MeV => very deformed structure

-determination of the spins and parities of the 12.5 and 12.1 MeV states in ^{11}B and ^{11}C is required

- interesting feature of the present spectra: we observe the same series of excited states at the lower excitations in both nuclei
- all states observed in ¹¹C appear also as strong resonances in ¹¹B

- these strongly excited states observed in α -decay of both nuclei should have the same structure

- observed strong α +⁷Li(⁷Be) decay of these mirror states produced in the two-nucleon transfer reactions onto ⁹Be and known α +t(³He) cluster structure of ⁷Li(⁷Be) as well as 2α +t decay of ¹¹B states, suggest 2α +t(³He) **3-centre cluster structure of the** ¹¹B(¹¹C) excited states

SUMMARY

- performed measurements provide evidence for α +⁷Be(gs) and α +⁷Li(gs), α +⁷Li*(7/2⁻,4.652 MeV), t+⁸Be(gs) decays of excited states in ¹¹C and ¹¹B - the nature of the reaction processes, two-nucleon transfer onto the 2 α +n nucleus ⁹Be, the α -decay of excited states at excitations where various decay channels are open and known α +t(³He) structure of ⁷Li(⁷Be), as well as observed ¹¹B decays into 2 α +t, indicate that these states correspond to the three-centre 2 α +t(³He) cluster structure

- this cluster structure appears to be more prominent in the positive-parity states where two rotational bands (K= $5/2^+$ and $3/2^+$) corresponding to very deformed structure are suggested
- the observed structure is probably oblate in character
- indications for mixed isospin of some T=3/2 states were found
- present measurements did not provide information on the spin and parity of these states which is crucial step to understand structure of the observed states
 measurements capable of determining these information have been proposed
 the existing theoretical calculations have not examined 3-centre systems where are holes exchanged between α-particles nor the rotational structures of the proposed 3-centre configurations and such calculations would be extremly useful