Numerical Recipes in C

The Art of Scientific Computing

Second Edition

William H. Press

Harvard-Smithsonian Center for Astrophysics

Saul A. Teukolsky

Department of Physics, Cornell University

William T. Vetterling

Polaroid Corporation

Brian P. Flannery

EXXON Research and Engineering Company

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

CAMBRIDGE UNIVERSITY PRESS Cambridge New York Port Chester Melbourne Sydney Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Victoria 3166, Australia

Copyright © Cambridge University Press 1988, 1992 except for §13.10 and Appendix B, which are placed into the public domain, and except for all other computer programs and procedures, which are Copyright © Numerical Recipes Software 1987, 1988, 1992 All Rights Reserved.

Some sections of this book were originally published, in different form, in *Computers in Physics* magazine, Copyright © American Institute of Physics, 1988–1992.

First Edition originally published 1988; Second Edition originally published 1992. Reprinted with corrections, 1995. This reprinting is corrected to software version 2.06

Printed in the United States of America Typeset in $T_{\rm E}X$

The computer programs in this book are available, in C, in several machine-readable formats. There are also versions of this book and its software available in the Pascal, FORTRAN, and BASIC programming languages.

To purchase diskettes in IBM PC or Apple Macintosh formats, use the order form at the back of the book or write to Cambridge University Press, 110 Midland Avenue, Port Chester, NY 10573. Also available from Cambridge University Press are the *Numerical Recipes Example Books* and coordinated diskettes in C, FORTRAN, Pascal, and BASIC. These provide demonstration programs that illustrate the use of each subroutine and procedure in this book. They too may be ordered in the above manner.

Unlicensed transfer of Numerical Recipes programs from the abovementioned IBM PC or Apple Macintosh diskettes to any other format, or to any computer except a single IBM PC or Apple Macintosh or compatible for each diskette purchased, is strictly prohibited. Licenses for authorized transfers to other computers are available from Numerical Recipes Software, P.O. Box 243, Cambridge, MA 02238 (fax 617 863-1739, email info@nr.com, or http://world.std.com/~nr). Technical questions, corrections, and requests for information on other available formats should also be directed to this address.

Library of Congress Cataloging in Publication Data Numerical recipes in C : the art of scientific computing / William H. Press

... [et al.]. – 2nd ed.

Includes bibliographical references (p.) and index.

ISBN 0-521-43108-5

 Numerical analysis–Computer programs.
 Science–Mathematics–Computer programs.
 C (Computer program language) I. Press, William H. QA297.N866 1992

519.4'0285'53-dc20

92-8876

A catalog record for this book is available from the British Library.

 ISBN
 0
 521
 43108
 5
 Book

 ISBN
 0
 521
 43720
 2
 Example book in C

 ISBN
 0
 521
 43720
 2
 Example book in C

 ISBN
 0
 521
 43714
 8
 C diskette (IBM 5.25", 1.2M)

 ISBN
 0
 521
 43724
 5
 C diskette (IBM 3.5", 1.44M)

 ISBN
 0
 521
 43715
 6
 C diskette (Mac 3.5", 800K)

Contents

			Copyrigh Permissi readable visit web
			nt (C) 1: on is g files (in site http
	Preface to the Second Edition	xi	988-19 ranted ncludin p://www
	Preface to the First Edition	xiv	92 by Ca for intern g this one v.nr.com
	Legal Matters	xvi	mbridge et users e) to any or call 1-
	Computer Programs by Chapter and Section	xix	Universi to make server c -800-872
1	Preliminaries	1	ty Press. one pap omputer -7423 (N
	1.0 Introduction	1	er c lorth
	1.1 Program Organization and Control Structures	5	opy strict
	1.2 Some C Conventions for Scientific Computing	15	ily p ily p
	1.3 Error, Accuracy, and Stability	28	Copyri heir o rohibit a only
2	Solution of Linear Algebraic Equations	32	ight (C ied. Tc), or s
	2.0 Introduction	32) 19 ord end
	2.1 Gauss-Jordan Elimination	36	er N ema
	2.2 Gaussian Elimination with Backsubstitution	41	ii to
	2.3 LU Decomposition and Its Applications	43	by I by I trad
	2.4 Tridiagonal and Band Diagonal Systems of Equations	50	le@
	2.5 Iterative Improvement of a Solution to Linear Equations	55	epro cup.
	2.6 Singular Value Decomposition	59	can b
	2.7 Sparse Linear Systems	71	n.ac
	2.8 Vandermonde Matrices and Toeplitz Matrices	90	.uk (is
	2.9 Cholesky Decomposition	96	any sket (out:
	2.10 QR Decomposition	98	vare cop tes, side
	2.11 Is Matrix Inversion an N^3 Process?	102	9. or CE North
3	Interpolation and Extrapolation	105	of mac DROM: Amer
	3.0 Introduction	105	hine s ica)
	3.1 Polynomial Interpolation and Extrapolation	108	
	3.2 Rational Function Interpolation and Extrapolation	111	
	3.3 Cubic Spline Interpolation	113	
	3.4 How to Search an Ordered Table	117	
	3.5 Coefficients of the Interpolating Polynomial	120	
	3.6 Interpolation in Two or More Dimensions	123	

3.6 Interpolation in Two or More Dimensions

4	Integration of Functions	129
	4.0 Introduction	129
	4.1 Classical Formulas for Equally Spaced Abscissas	130
	4.2 Elementary Algorithms	136
	4.3 Romberg Integration	140
	4.4 Improper Integrals	141
	4.5 Gaussian Quadratures and Orthogonal Polynomials	147
	4.6 Multidimensional Integrals	161
5	Evaluation of Functions	165
	5.0 Introduction	165
	5.1 Series and Their Convergence	165
	5.2 Evaluation of Continued Fractions	169
	5.3 Polynomials and Rational Functions	173
	5.4 Complex Arithmetic	176
	5.5 Recurrence Relations and Clenshaw's Recurrence Formula	178
	5.6 Quadratic and Cubic Equations	183
	5.7 Numerical Derivatives	186
	5.8 Chebyshev Approximation	190
	5.9 Derivatives or Integrals of a Chebyshev-approximated Function	195
	5.10 Polynomial Approximation from Chebyshev Coefficients	197
	5.11 Economization of Power Series	198
	5.12 Padé Approximants	200
	5.13 Rational Chebyshev Approximation	204
	5.14 Evaluation of Functions by Path Integration	208
6	Special Functions	212
	6.0 Introduction	212
	6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients	213
	6.2 Incomplete Gamma Function, Error Function, Chi-Square	-
	Probability Function, Cumulative Poisson Function	216
	6.3 Exponential Integrals	222
	6.4 Incomplete Beta Function, Student's Distribution, F-Distribution.	
	Cumulative Binomial Distribution	226
	6.5 Bessel Functions of Integer Order	230
	6.6 Modified Bessel Functions of Integer Order	236
	6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical	
	Bessel Functions	240
	6.8 Spherical Harmonics	252
	6.9 Fresnel Integrals, Cosine and Sine Integrals	255
	6.10 Dawson's Integral	259
	6.11 Elliptic Integrals and Jacobian Elliptic Functions	261
	6.12 Hypergeometric Functions	271
7	Random Numbers	274
	7.0 Introduction	274
	7.1 Uniform Deviates	275

Contents

1.0	muouucuon	
7.1	Uniform Deviates	

vi

	Contents	vii
	7.2 Transformation Method: Exponential and Normal Deviates	287
	7.3 Rejection Method: Gamma, Poisson, Binomial Deviates	290
	7.4 Generation of Random Bits	296
	7.5 Random Sequences Based on Data Encryption	300
	7.6 Simple Monte Carlo Integration	304
	7.7 Quasi- (that is, Sub-) Random Sequences	309
	7.8 Adaptive and Recursive Monte Carlo Methods	316
8	Sorting	329
	8.0 Introduction	329
	8.1 Straight Insertion and Shell's Method	330
	8.2 Quicksort	332
	8.3 Heapsort	336
	8.4 Indexing and Ranking	338
	8.5 Selecting the <i>M</i> th Largest	341
	8.6 Determination of Equivalence Classes	345
9	Root Finding and Nonlinear Sets of Equations	347
	9.0 Introduction	347
	9.1 Bracketing and Bisection	350
	9.2 Secant Method, False Position Method, and Ridders' Method	354
	9.3 Van Wijngaarden–Dekker–Brent Method	359
	9.4 Newton-Raphson Method Using Derivative	362
	9.5 Roots of Polynomials	369
	9.6 Newton-Raphson Method for Nonlinear Systems of Equations	379
	9.7 Globally Convergent Methods for Nonlinear Systems of Equations	383
10	Minimization or Maximization of Functions	394
	10.0 Introduction	394
	10.1 Golden Section Search in One Dimension	397
	10.2 Parabolic Interpolation and Brent's Method in One Dimension	402
	10.3 One-Dimensional Search with First Derivatives	405
	10.4 Downhill Simplex Method in Multidimensions	408
	10.5 Direction Set (Powell's) Methods in Multidimensions	412
	10.6 Conjugate Gradient Methods in Multidimensions	420
	10.7 Variable Metric Methods in Multidimensions	425
	10.8 Linear Programming and the Simplex Method	430
	10.9 Simulated Annealing Methods	444
11	Eigensystems	456
	11.0 Introduction	456
	11.1 Jacobi Transformations of a Symmetric Matrix	463
	11.2 Reduction of a Symmetric Matrix to Tridiagonal Form:	
	Givens and Householder Reductions	469
	11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix	475
	11.4 Hermitian Matrices	481
	11.5 Reduction of a General Matrix to Hessenberg Form	482

Vorld Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. 'ermission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine- aadable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs isit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
--

 11.6 The QR Algorithm for Real Hessenberg Matrices 11.7 Improving Eigenvalues and/or Finding Eigenvectors by Inverse Iteration 12 Fast Fourier Transform 12.0 Introduction 12.1 Fourier Transform of Discretely Sampled Data 12.2 Fast Fourier Transform (FFT) 	486 493 496 500 504 510 521 525 532 537
 11.6 The QR Algorithm for Real Hessenberg Matrices 11.7 Improving Eigenvalues and/or Finding Eigenvectors by Inverse Iteration 12 Fast Fourier Transform 12.0 Introduction 12.1 Fourier Transform of Discretely Sampled Data 12.2 Fast Fourier Transform (FFT) 	486 493 496 500 504 510 521 525 532 537
Inverse Iteration 12 Fast Fourier Transform 12.0 Introduction 12.1 Fourier Transform of Discretely Sampled Data 12.2 Fast Fourier Transform (FFT)	493 496 500 504 510 521 525 532 532
 12 Fast Fourier Transform 12.0 Introduction 12.1 Fourier Transform of Discretely Sampled Data 12.2 Fast Fourier Transform (FFT) 	496 500 504 510 521 525 532 537
12.0 Introduction 12.1 Fourier Transform of Discretely Sampled Data 12.2 Fast Fourier Transform (FFT)	496 500 504 510 521 525 532 537
12.1 Fourier Transform of Discretely Sampled Data 12.2 Fast Fourier Transform (FFT)	500 504 510 521 525 532 537
12.2 Fast Fourier Transform (FFT)	504 510 521 525 532 537
	510 521 525 532 537
12.3 FFT of Real Functions, Sine and Cosine Transforms	521 525 532 537
12.4 FFT in Two or More Dimensions	525 532 537
12.5 Fourier Transforms of Real Data in Two and Three Dimensions	532 537
12.6 External Storage or Memory-Local FFTs	537
3 Fourier and Spectral Applications	
13.0 Introduction	537
13.1 Convolution and Deconvolution Using the FFT	538
13.2 Correlation and Autocorrelation Using the FFT	545
13.3 Optimal (Wiener) Filtering with the FFT	547
13.4 Power Spectrum Estimation Using the FFT	549
13.5 Digital Filtering in the Time Domain	558
13.6 Linear Prediction and Linear Predictive Coding 13.7 Power Spectrum Estimation by the Maximum Entropy	564
(All Poles) Method	572
13.8 Spectral Analysis of Unevenly Sampled Data	575
13.9 Computing Fourier Integrals Using the FFT	584
13.10 Wavelet Transforms	591
13.11 Numerical Use of the Sampling Theorem	606
4 Statistical Description of Data	609
14.0 Introduction	609
14.1 Moments of a Distribution: Mean, Variance, Skewness,	(10
and So Forth	610
14.2 Do Two Distributions have the Same Means of Variances?	015
14.5 Ale Two Distributions Different?	620
14.4 Contingency fable Analysis of Two Distributions	626
14.5 Linear Correlation	630
14.7 Do Two Dimensional Distributions Differ?	645
14.8 Savitzky-Golay Smoothing Filters	650
5 Modeling of Data	656
15.0 Introduction	656
15.1 Least Squares as a Maximum Likelihood Estimator	657
15.2 Fitting Data to a Straight Line	661
15.3 Straight-Line Data with Errors in Both Coordinates	666
15.4 General Linear Least Squares	671
15.5 Nonlinear Models	681

	Contents	ix
	15.6 Confidence Limits on Estimated Model Parameters 15.7 Robust Estimation	689 699
16	Integration of Ordinary Differential Equations	707
	16.0 Introduction	707
	16.1 Runge-Kutta Method	710
	16.2 Adaptive Stepsize Control for Runge-Kutta	714
	16.3 Modified Midpoint Method	722
	16.4 Richardson Extrapolation and the Bulirsch-Stoer Method	724
	16.5 Second-Order Conservative Equations	732
	16.6 Stiff Sets of Equations	734
	16.7 Multistep, Multivalue, and Predictor-Corrector Methods	747
17	Two Point Boundary Value Problems	753
	17.0 Introduction	753
	17.1 The Shooting Method	757
	17.2 Shooting to a Fitting Point	760
	17.3 Relaxation Methods	762
	17.4 A Worked Example: Spheroidal Harmonics	772
	17.5 Automated Allocation of Mesh Points	783
	17.6 Handling Internal Boundary Conditions or Singular Points	784
18	Integral Equations and Inverse Theory	788
	18.0 Introduction	788
	18.1 Fredholm Equations of the Second Kind	791
	18.2 Volterra Equations	794
	18.3 Integral Equations with Singular Kernels	797
	18.4 Inverse Problems and the Use of A Priori Information	804
	18.5 Linear Regularization Methods	808
	18.6 Backus-Gilbert Method	815
	18.7 Maximum Entropy Image Restoration	818
19	Partial Differential Equations	827
	19.0 Introduction	827
	19.1 Flux-Conservative Initial Value Problems	834
	19.2 Diffusive Initial Value Problems	847
	19.3 Initial Value Problems in Multidimensions	853
	19.4 Fourier and Cyclic Reduction Methods for Boundary	
	Value Problems	857
	19.5 Relaxation Methods for Boundary Value Problems	863
	19.6 Multigrid Methods for Boundary Value Problems	871
20	Less-Numerical Algorithms	889
	20.0 Introduction	889
	20.1 Diagnosing Machine Parameters	889
	20.2 Gray Codes	894

X	Contents	
	20.3 Cyclic Redundancy and Other Checksums	896
	20.4 Huffman Coding and Compression of Data	903
	20.5 Arithmetic Coding	910
	20.6 Arithmetic at Arbitrary Precision	915
	References	926
	Appendix A: Table of Prototype Declarations	930
	Appendix B: Utility Routines	940
	Appendix C: Complex Arithmetic	948
	Index of Programs and Dependencies	951
	General Index	965

Preface to the Second Edition

Our aim in writing the original edition of *Numerical Recipes* was to provide a book that combined general discussion, analytical mathematics, algorithmics, and actual working programs. The success of the first edition puts us now in a difficult, though hardly unenviable, position. We wanted, then and now, to write a book that is informal, fearlessly editorial, unesoteric, and above all useful. There is a danger that, if we are not careful, we might produce a second edition that is weighty, balanced, scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then, we were making educated guesses, based on existing literature and our own research, about which numerical techniques were the most important and robust. Now, we have the benefit of direct feedback from a large reader community. Letters to our alter-ego enterprise, Numerical Recipes Software, are in the thousands per year. (Please, *don't telephone* us.) Our post office box has become a magnet for letters pointing out that we have omitted some particular technique, well known to be important in a particular field of science or engineering. We value such letters, and digest them carefully, especially when they point us to specific references in the literature.

The inevitable result of this input is that this Second Edition of *Numerical Recipes* is substantially larger than its predecessor, in fact about 50% larger both in words and number of included programs (the latter now numbering well over 300). "Don't let the book grow in size," is the advice that we received from several wise colleagues. We have tried to follow the intended spirit of that advice, even as we violate the letter of it. We have not lengthened, or increased in difficulty, the book's principal discussions of mainstream topics. Many new topics are presented at this same accessible level. Some topics, both from the earlier edition and new to this one, are now set in smaller type that labels them as being "advanced." The reader who ignores such advanced sections completely will not, we think, find any lack of continuity in the shorter volume that results.

Here are some highlights of the new material in this Second Edition:

- a new chapter on integral equations and inverse methods
- a detailed treatment of multigrid methods for solving elliptic partial differential equations
- routines for band diagonal linear systems
- improved routines for linear algebra on sparse matrices
- Cholesky and QR decomposition
- orthogonal polynomials and Gaussian quadratures for arbitrary weight functions
- methods for calculating numerical derivatives
- Padé approximants, and rational Chebyshev approximation
- Bessel functions, and modified Bessel functions, of fractional order; and several other new special functions
- improved random number routines
- quasi-random sequences
- routines for adaptive and recursive Monte Carlo integration in highdimensional spaces
- globally convergent methods for sets of nonlinear equations

- simulated annealing minimization for continuous control spaces
- fast Fourier transform (FFT) for real data in two and three dimensions
- fast Fourier transform (FFT) using external storage
- improved fast cosine transform routines
- wavelet transforms
- Fourier integrals with upper and lower limits
- spectral analysis on unevenly sampled data
- Savitzky-Golay smoothing filters
- fitting straight line data with errors in both coordinates
- a two-dimensional Kolmogorov-Smirnoff test
- the statistical bootstrap method
- embedded Runge-Kutta-Fehlberg methods for differential equations
- high-order methods for stiff differential equations
- a new chapter on "less-numerical" algorithms, including Huffman and arithmetic coding, arbitrary precision arithmetic, and several other topics.

Consult the Preface to the First Edition, following, or the Table of Contents, for a list of the more "basic" subjects treated.

Acknowledgments

It is not possible for us to list by name here all the readers who have made useful suggestions; we are grateful for these. In the text, we attempt to give specific attribution for ideas that appear to be original, and not known in the literature. We apologize in advance for any omissions.

Some readers and colleagues have been particularly generous in providing us with ideas, comments, suggestions, and programs for this Second Edition. We especially want to thank George Rybicki, Philip Pinto, Peter Lepage, Robert Lupton, Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallie Baliunas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomas Loredo, Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold Lewis, Peter Weinberger, David Syer, Richard Ferch, Steven Ebstein, Bradley Keister, and William Gould. We have been helped by Nancy Lee Snyder's mastery of a complicated TEX manuscript. We express appreciation to our editors Lauren Cowles and Alan Harvey at Cambridge University Press, and to our production editor Russell Hahn. We remain, of course, grateful to the individuals acknowledged in the Preface to the First Edition.

Special acknowledgment is due to programming consultant Seth Finkelstein, who wrote, rewrote, or influenced many of the routines in this book, as well as in its FORTRAN-language twin and the companion Example books. Our project has benefited enormously from Seth's talent for detecting, and following the trail of, even very slight anomalies (often compiler bugs, but occasionally our errors), and from his good programming sense. To the extent that this edition of *Numerical Recipes in C* has a more graceful and "C-like" programming style than its predecessor, most of the credit goes to Seth. (Of course, we accept the blame for the FORTRANish lapses that still remain.)

We prepared this book for publication on DEC and Sun workstations running the UNIX operating system, and on a 486/33 PC compatible running MS-DOS 5.0/Windows 3.0. (See §1.0 for a list of additional computers used in

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-his one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs

program tests.) We enthusiastically recommend the principal software used: GNU Emacs, T_EX, Perl, Adobe Illustrator, and PostScript. Also used were a variety of C compilers – too numerous (and sometimes too buggy) for individual acknowledgment. It is a sobering fact that our standard test suite (exercising all the routines in this book) has uncovered compiler bugs in many of the compilers tried. When possible, we work with developers to see that such bugs get fixed; we encourage interested compiler developers to contact us about such arrangements.

WHP and SAT acknowledge the continued support of the U.S. National Science Foundation for their research on computational methods. D.A.R.P.A. support is acknowledged for §13.10 on wavelets.

June, 1992

William H. Press Saul A. Teukolsky William T. Vetterling Brian P. Flannery

Preface to the First Edition

We call this book *Numerical Recipes* for several reasons. In one sense, this book is indeed a "cookbook" on numerical computation. However there is an important distinction between a cookbook and a restaurant menu. The latter presents choices among complete dishes in each of which the individual flavors are blended and disguised. The former — and this book — reveals the individual ingredients and explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational techniques. This book is unique, we think, in offering, for each topic considered, a certain amount of general discussion, a certain amount of analytical mathematics, a certain amount of discussion of algorithmics, and (most important) actual implementations of these ideas in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. You will find that for some topics we have tilted quite far to the analytic side; this where we have felt there to be gaps in the "standard" mathematical training. For other topics, where the mathematical prerequisites are universally held, we have tilted towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation.

We admit, therefore, to some unevenness in the "level" of this book. About half of it is suitable for an advanced undergraduate course on numerical computation for science or engineering majors. The other half ranges from the level of a graduate course to that of a professional reference. Most cookbooks have, after all, recipes at varying levels of complexity. An attractive feature of this approach, we think, is that the reader can use the book at increasing levels of sophistication as his/her experience grows. Even inexperienced readers should be able to use our most advanced routines as black boxes. Having done so, we hope that these readers will subsequently go back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods of numerical computation can be simultaneously efficient, clever, and — important — clear. The alternative viewpoint, that efficient computational methods must necessarily be so arcane and complex as to be useful only in "black box" form, we firmly reject.

Our purpose in this book is thus to open up a large number of computational black boxes to your scrutiny. We want to teach you to take apart these black boxes and to put them back together again, modifying them to suit your specific needs. We assume that you are mathematically literate, i.e., that you have the normal mathematical preparation associated with an undergraduate degree in a physical science, or engineering, or economics, or a quantitative social science. We assume that you know how to program a computer. We do not assume that you have any prior formal knowledge of numerical analysis or numerical methods.

The scope of *Numerical Recipes* is supposed to be "everything up to, but not including, partial differential equations." We honor this in the breach: First, we *do* have one introductory chapter on methods for partial differential equations (Chapter 19). Second, we obviously cannot include *everything* else. All the so-called "standard" topics of a numerical analysis course have been included in this book:

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) by Numerical Recipes Software.

linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration (Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and ordinary differential equations (Chapter 16). Most of these topics have been taken beyond their standard treatments into some advanced material which we have felt to be particularly important or useful.

Some other subjects that we cover in detail are not usually found in the standard numerical analysis texts. These include the evaluation of functions and of particular special functions of higher mathematics (Chapters 5 and 6); random numbers and Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including multidimensional methods (Chapter 10); Fourier transform methods, including FFT methods and other spectral methods (Chapters 12 and 13); two chapters on the statistical description and modeling of data (Chapters 14 and 15); and two-point boundary value problems, both shooting and relaxation methods (Chapter 17).

The programs in this book are included in ANSI-standard C. Versions of the book in FORTRAN, Pascal, and BASIC are available separately. We have more to say about the C language, and the computational environment assumed by our routines, in $\S1.1$ (Introduction).

Acknowledgments

Many colleagues have been generous in giving us the benefit of their numerical and computational experience, in providing us with programs, in commenting on the manuscript, or in general encouragement. We particularly wish to thank George Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz, Bruce Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr, Richard Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: Forman Acton, whose 1970 textbook *Numerical Methods that Work* (New York: Harper and Row) has surely left its stylistic mark on us; and Donald Knuth, both for his series of books on *The Art of Computer Programming* (Reading, MA: Addison-Wesley), and for T_EX, the computer typesetting language which immensely aided production of this book.

Research by the authors on computational methods was supported in part by the U.S. National Science Foundation.

October, 1985

William H. Press Brian P. Flannery Saul A. Teukolsky William T. Vetterling Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.