
1.1 Program Organization and Control Structures 5

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Kernighan, B., and Ritchie, D. 1978, The C Programming Language (Englewood Cliffs, NJ:
Prentice-Hall). [2] [Reference for K&R “traditional” C. Later editions of this book conform
to the ANSI C standard.]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [3]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather
different, namely a process that unfolds in time. A poem is meant to be read; music,
played; a program, executed as a sequential series of computer instructions.

In all three cases, the target of the communication, in its visual form, is a human
being. The goal is to transfer to him/her, as efficiently as can be accomplished,
the greatest degree of understanding, in advance, of how the process will unfold in
time. In poetry, this human target is the reader. In music, it is the performer. In
programming, it is the program user.

Now, you may object that the target of communication of a program is not
a human but a computer, that the program user is only an irrelevant intermediary,
a lackey who feeds the machine. This is perhaps the case in the situation where
the business executive pops a diskette into a desktop computer and feeds that
computer a black-box program in binary executable form. The computer, in this
case, doesn’t much care whether that program was written with “good programming
practice” or not.

We envision, however, that you, the readers of this book, are in quite a different
situation. You need, or want, to know not just what a program does, but also how
it does it, so that you can tinker with it and modify it to your particular application.
You need others to be able to see what you have done, so that they can criticize or
admire. In such cases, where the desired goal is maintainable or reusable code, the
targets of a program’s communication are surely human, not machine.

One key to achieving good programming practice is to recognize that pro-
gramming, music, and poetry — all three being symbolic constructs of the human
brain — are naturally structured into hierarchies that have many different nested
levels. Sounds (phonemes) form small meaningful units (morphemes) which in turn
form words; words group into phrases, which group into sentences; sentences make
paragraphs, and these are organized into higher levels of meaning. Notes form
musical phrases, which form themes, counterpoints, harmonies, etc.; which form
movements, which form concertos, symphonies, and so on.

The structure in programs is equally hierarchical. Appropriately, good pro-
gramming practice brings different techniques to bear on the different levels [1-3].
At a low level is the ascii character set. Then, constants, identifiers, operands,

6 Chapter 1. Preliminaries

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

operators. Then program statements, like a[j+1]=b+c/3.0;. Here, the best pro-
gramming advice is simply be clear, or (correspondingly) don’t be too tricky. You
might momentarily be proud of yourself at writing the single line

k=(2-j)*(1+3*j)/2;

if you want to permute cyclically one of the values j = (0, 1, 2) into respectively
k = (1, 2, 0). You will regret it later, however, when you try to understand that
line. Better, and likely also faster, is

k=j+1;
if (k == 3) k=0;

Many programming stylists would even argue for the ploddingly literal

switch (j) {
case 0: k=1; break;
case 1: k=2; break;
case 2: k=0; break;
default: {

fprintf(stderr,"unexpected value for j");
exit(1);

}
}

on the grounds that it is both clear and additionally safeguarded from wrong assump-
tions about the possible values of j. Our preference among the implementations
is for the middle one.

In this simple example, we have in fact traversed several levels of hierarchy:
Statements frequently come in “groups” or “blocks” which make sense only taken
as a whole. The middle fragment above is one example. Another is

swap=a[j];
a[j]=b[j];
b[j]=swap;

which makes immediate sense to any programmer as the exchange of two variables,
while

ans=sum=0.0;
n=1;

is very likely to be an initialization of variables prior to some iterative process. This
level of hierarchy in a program is usually evident to the eye. It is good programming
practice to put in comments at this level, e.g., “initialize” or “exchange variables.”

The next level is that of control structures. These are things like the switch

construction in the example above, for loops, and so on. This level is sufficiently
important, and relevant to the hierarchical level of the routines in this book, that
we will come back to it just below.

At still higher levels in the hierarchy, we have functions and modules, and the
whole “global” organization of the computational task to be done. In the musical
analogy, we are now at the level of movements and complete works. At these levels,

1.1 Program Organization and Control Structures 7

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

modularization and encapsulation become important programming concepts, the
general idea being that program units should interact with one another only through
clearly defined and narrowly circumscribed interfaces. Good modularization practice
is an essential prerequisite to the success of large, complicated software projects,
especially those employing the efforts of more than one programmer. It is also good
practice (if not quite as essential) in the less massive programming tasks that an
individual scientist, or reader of this book, encounters.

Some computer languages, such as Modula-2 and C++, promote good modular-
ization with higher-level language constructs absent in C. In Modula-2, for example,
functions, type definitions, and data structures can be encapsulated into “modules”
that communicate through declared public interfaces and whose internal workings
are hidden from the rest of the program [4]. In the C++ language, the key concept
is “class,” a user-definable generalization of data type that provides for data hiding,
automatic initialization of data, memory management, dynamic typing, and operator
overloading (i.e., the user-definable extension of operators like + and * so as to be
appropriate to operands in any particular class) [5]. Properly used in defining the data
structures that are passed between program units, classes can clarify and circumscribe
these units’ public interfaces, reducing the chances of programming error and also
allowing a considerable degree of compile-time and run-time error checking.

Beyond modularization, though depending on it, lie the concepts of object-
oriented programming. Here a programming language, such as C++ or Turbo Pascal
5.5 [6], allows a module’s public interface to accept redefinitions of types or actions,
and these redefinitions become shared all the way down through the module’s
hierarchy (so-called polymorphism). For example, a routine written to invert a
matrix of real numbers could — dynamically, at run time — be made able to handle
complex numbers by overloading complex data types and corresponding definitions
of the arithmetic operations. Additional concepts of inheritance (the ability to define
a data type that “inherits” all the structure of another type, plus additional structure
of its own), and object extensibility (the ability to add functionality to a module
without access to its source code, e.g., at run time), also come into play.

We have not attempted to modularize, or make objects out of, the routines in
this book, for at least two reasons. First, the chosen language, C, does not really make
this possible. Second, we envision that you, the reader, might want to incorporate
the algorithms in this book, a few at a time, into modules or objects with a structure
of your own choosing. There does not exist, at present, a standard or accepted set
of “classes” for scientific object-oriented computing. While we might have tried to
invent such a set, doing so would have inevitably tied the algorithmic content of the
book (which is its raison d’être) to some rather specific, and perhaps haphazard, set
of choices regarding class definitions.

On the other hand, we are not unfriendly to the goals of modular and object-
oriented programming. Within the limits of C, we have therefore tried to structure
our programs to be “object friendly.” That is one reason we have adopted ANSI
C with its function prototyping as our default C dialect (see §1.2). Also, within
our implementation sections, we have paid particular attention to the practices of
structured programming, as we now discuss.

8 Chapter 1. Preliminaries

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Control Structures

An executing program unfolds in time, but not strictly in the linear order in
which the statements are written. Program statements that affect the order in which
statements are executed, or that affect whether statements are executed, are called
control statements. Control statements never make useful sense by themselves. They
make sense only in the context of the groups or blocks of statements that they in turn
control. If you think of those blocks as paragraphs containing sentences, then the
control statements are perhaps best thought of as the indentation of the paragraph
and the punctuation between the sentences, not the words within the sentences.

We can now say what the goal of structured programming is. It is to make
program control manifestly apparent in the visual presentation of the program. You
see that this goal has nothing at all to do with how the computer sees the program.
As already remarked, computers don’t care whether you use structured programming
or not. Human readers, however, do care. You yourself will also care, once you
discover how much easier it is to perfect and debug a well-structured program than
one whose control structure is obscure.

You accomplish the goals of structured programming in two complementary
ways. First, you acquaint yourself with the small number of essential control
structures that occur over and over again in programming, and that are therefore
given convenient representations in most programming languages. You should learn
to think about your programming tasks, insofar as possible, exclusively in terms of
these standard control structures. In writing programs, you should get into the habit
of representing these standard control structures in consistent, conventional ways.

“Doesn’t this inhibit creativity?” our students sometimes ask. Yes, just
as Mozart’s creativity was inhibited by the sonata form, or Shakespeare’s by the
metrical requirements of the sonnet. The point is that creativity, when it is meant to
communicate, does well under the inhibitions of appropriate restrictions on format.

Second, you avoid, insofar as possible, control statements whose controlled
blocks or objects are difficult to discern at a glance. This means, in practice, that you
must try to avoid named labels on statements and goto’s. It is not the goto’s that
are dangerous (although they do interrupt one’s reading of a program); the named
statement labels are the hazard. In fact, whenever you encounter a named statement
label while reading a program, you will soon become conditioned to get a sinking
feeling in the pit of your stomach. Why? Because the following questions will, by
habit, immediately spring to mind: Where did control come from in a branch to this
label? It could be anywhere in the routine! What circumstances resulted in a branch
to this label? They could be anything! Certainty becomes uncertainty, understanding
dissolves into a morass of possibilities.

Some examples are now in order to make these considerations more concrete
(see Figure 1.1.1).

Catalog of Standard Structures

Iteration. In C, simple iteration is performed with a for loop, for example

for (j=2;j<=1000;j++) {
b[j]=a[j-1];
a[j-1]=j;

}

1.1 Program Organization and Control Structures 9

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

yes

no

FOR iteration

(a)

false

true

WHILE iteration

(b)

true

false

BREAK iteration

(d)

true

false

DO WHILE iteration

(c)

iteration

complete?

block

increment

index

while

condition

while

condition

block

break

condition

block

block

block

Figure 1.1.1. Standard control structures used in structured programming: (a) for iteration; (b) while
iteration; (c) do while iteration; (d) break iteration; (e) if structure; (f) switch structure

10 Chapter 1. Preliminaries

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if

condition

block

true

else if

condition

block

false

true

. . .

. . .

false

else block

else if

condition

block

false

true

IF structure

(e)

yes

no

no

no

no

yes

yes

yesbreak?

block

switch

expression

break?

block

case

match?

case

match?

default block

SWITCH structure

(f)

Figure 1.1.1. Standard control structures used in structured programming (see caption on previouspage).

1.1 Program Organization and Control Structures 11

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Notice how we always indent the block of code that is acted upon by the control
structure, leaving the structure itself unindented. Notice also our habit of putting the
initial curly brace on the same line as the for statement, instead of on the next line.
This saves a full line of white space, and our publisher loves us for it.

IF structure. This structure in C is similar to that found in Pascal, Algol,
FORTRAN and other languages, and typically looks like

if (...) {
...

}
else if (...) {

...
}
else {

...
}

Since compound-statement curly braces are required only when there is more
than one statement in a block, however, C’s if construction can be somewhat less
explicit than the corresponding structure in FORTRAN or Pascal. Some care must be
exercised in constructing nested if clauses. For example, consider the following:

if (b > 3)
if (a > 3) b += 1;

else b -= 1; /* questionable! */

As judged by the indentation used on successive lines, the intent of the writer of
this code is the following: ‘If b is greater than 3 and a is greater than 3, then
increment b. If b is not greater than 3, then decrement b.’ According to the rules
of C, however, the actual meaning is ‘If b is greater than 3, then evaluate a. If a is
greater than 3, then increment b, and if a is less than or equal to 3, decrement b.’ The
point is that an else clause is associated with the most recent open if statement,
no matter how you lay it out on the page. Such confusions in meaning are easily
resolved by the inclusion of braces. They may in some instances be technically
superfluous; nevertheless, they clarify your intent and improve the program. The
above fragment should be written as

if (b > 3) {
if (a > 3) b += 1;

} else {
b -= 1;

}

Here is a working program that consists dominantly of if control statements:

#include <math.h>
#define IGREG (15+31L*(10+12L*1582)) Gregorian Calendar adopted Oct. 15, 1582.

long julday(int mm, int id, int iyyy)
In this routine julday returns the Julian Day Number that begins at noon of the calendar date
specified by month mm, day id, and year iyyy, all integer variables. Positive year signifies A.D.;
negative, B.C. Remember that the year after 1 B.C. was 1 A.D.
{

void nrerror(char error_text[]);

12 Chapter 1. Preliminaries

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

long jul;
int ja,jy=iyyy,jm;

if (jy == 0) nrerror("julday: there is no year zero.");
if (jy < 0) ++jy;
if (mm > 2) { Here is an example of a block IF-structure.

jm=mm+1;
} else {

--jy;
jm=mm+13;

}
jul = (long) (floor(365.25*jy)+floor(30.6001*jm)+id+1720995);
if (id+31L*(mm+12L*iyyy) >= IGREG) { Test whether to change to Gregorian Cal-

endar.ja=(int)(0.01*jy);
jul += 2-ja+(int) (0.25*ja);

}
return jul;

}

(Astronomers number each 24-hour period, starting and ending at noon, with
a unique integer, the Julian Day Number [7]. Julian Day Zero was a very long
time ago; a convenient reference point is that Julian Day 2440000 began at noon
of May 23, 1968. If you know the Julian Day Number that begins at noon of a
given calendar date, then the day of the week of that date is obtained by adding
1 and taking the result modulo base 7; a zero answer corresponds to Sunday, 1 to
Monday, . . . , 6 to Saturday.)

While iteration. Most languages (though notFORTRAN, incidentally) provide
for structures like the following C example:

while (n < 1000) {
n *= 2;
j += 1;

}

It is the particular feature of this structure that the control-clause (in this case
n < 1000) is evaluated before each iteration. If the clause is not true, the enclosed
statements will not be executed. In particular, if this code is encountered at a time
when n is greater than or equal to 1000, the statements will not even be executed once.

Do-While iteration. Companion to the while iteration is a related control-
structure that tests its control-clause at the end of each iteration. In C, it looks
like this:

do {
n *= 2;
j += 1;

} while (n < 1000);

In this case, the enclosed statements will be executed at least once, independent
of the initial value of n.

Break. In this case, you have a loop that is repeated indefinitely until some
condition tested somewhere in the middle of the loop (and possibly tested in more

1.1 Program Organization and Control Structures 13

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

than one place) becomes true. At that point you wish to exit the loop and proceed
with what comes after it. In C the structure is implemented with the simple break
statement, which terminates execution of the innermost for, while, do, or switch
construction and proceeds to the next sequential instruction. (InPascal and standard
FORTRAN, this structure requires the use of statement labels, to the detriment of clear
programming.) A typical usage of the break statement is:

for(;;) {
[statements before the test]
if (...) break;
[statements after the test]

}
[next sequential instruction]

Here is a program that uses several different iteration structures. One of us was
once asked, for a scavenger hunt, to find the date of a Friday the 13th on which the
moon was full. This is a program which accomplishes that task, giving incidentally
all other Fridays the 13th as a by-product.

#include <stdio.h>
#include <math.h>
#define ZON -5.0 Time zone−5 is Eastern Standard Time.
#define IYBEG 1900 The range of dates to be searched.
#define IYEND 2000

int main(void) /* Program badluk */
{

void flmoon(int n, int nph, long *jd, float *frac);
long julday(int mm, int id, int iyyy);
int ic,icon,idwk,im,iyyy,n;
float timzon = ZON/24.0,frac;
long jd,jday;

printf("\nFull moons on Friday the 13th from %5d to %5d\n",IYBEG,IYEND);
for (iyyy=IYBEG;iyyy<=IYEND;iyyy++) { Loop over each year,

for (im=1;im<=12;im++) { and each month.
jday=julday(im,13,iyyy); Is the 13th a Friday?
idwk=(int) ((jday+1) % 7);
if (idwk == 5) {

n=(int)(12.37*(iyyy-1900+(im-0.5)/12.0));
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down
until we determine that our desired 13th was or was not a full moon. The
variable icon signals the direction of adjustment.
icon=0;
for (;;) {

flmoon(n,2,&jd,&frac); Get date of full moon n.
frac=24.0*(frac+timzon); Convert to hours in correct time zone.
if (frac < 0.0) { Convert from Julian Days beginning at

noon to civil days beginning at mid-
night.

--jd;
frac += 24.0;

}
if (frac > 12.0) {

++jd;
frac -= 12.0;

} else
frac += 12.0;

if (jd == jday) { Did we hit our target day?
printf("\n%2d/13/%4d\n",im,iyyy);
printf("%s %5.1f %s\n","Full moon",frac,

14 Chapter 1. Preliminaries

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

" hrs after midnight (EST)");
break; Part of the break-structure, a match.

} else { Didn’t hit it.
ic=(jday >= jd ? 1 : -1);
if (ic == (-icon)) break; Another break, case of no match.
icon=ic;
n += ic;

}
}

}
}

}
return 0;

}

If you are merely curious, there were (or will be) occurrences of a full moon
on Friday the 13th (time zone GMT−5) on: 3/13/1903, 10/13/1905, 6/13/1919,
1/13/1922, 11/13/1970, 2/13/1987, 10/13/2000, 9/13/2019, and 8/13/2049.

Other “standard” structures. Our advice is to avoid them. Every
programming language has some number of “goodies” that the designer just couldn’t
resist throwing in. They seemed like a good idea at the time. Unfortunately they
don’t stand the test of time! Your program becomes difficult to translate into other
languages, and difficult to read (because rarely used structures are unfamiliar to the
reader). You can almost always accomplish the supposed conveniences of these
structures in other ways.

In C, the most problematic control structure is the switch...case...default
construction (see Figure 1.1.1), which has historically been burdened by uncertainty,
from compiler to compiler, about what data types are allowed in its control expression.
Data types char and int are universally supported. For other data types, e.g., float
or double, the structure should be replaced by a more recognizable and translatable
if. . .else construction. ANSI C allows the control expression to be of type long,
but many older compilers do not.

The continue; construction, while benign, can generally be replaced by an
if construction with no loss of clarity.

About “Advanced Topics”

Material set in smaller type, like this, signals an “advanced topic,” either one outside of
the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in a few cases) a discussion that is more speculative or an
algorithm that is less well-tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

You may have noticed that, by its looping over the months and years, the programbadluk
avoids using any algorithm for converting a Julian Day Number back into a calendar date. A
routine for doing just this is not very interesting structurally, but it is occasionally useful:

#include <math.h>
#define IGREG 2299161

void caldat(long julian, int *mm, int *id, int *iyyy)
Inverse of the function julday given above. Here julian is input as a Julian Day Number,
and the routine outputs mm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.
{

long ja,jalpha,jb,jc,jd,je;

1.2 Some C Conventions for Scientific Computing 15

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (julian >= IGREG) { Cross-over to Gregorian Calendar produces this correc-
tion,jalpha=(long)(((float) (julian-1867216)-0.25)/36524.25);

ja=julian+1+jalpha-(long) (0.25*jalpha);
} else or else no correction.

ja=julian;
jb=ja+1524;
jc=(long)(6680.0+((float) (jb-2439870)-122.1)/365.25);
jd=(long)(365*jc+(0.25*jc));
je=(long)((jb-jd)/30.6001);
*id=jb-jd-(long) (30.6001*je);
*mm=je-1;
if (*mm > 12) *mm -= 12;
*iyyy=jc-4715;
if (*mm > 2) --(*iyyy);
if (*iyyy <= 0) --(*iyyy);

}

(For additional calendrical algorithms, applicable to various historical calendars, see [8].)

CITED REFERENCES AND FURTHER READING:

Harbison, S.P., and Steele, G.L., Jr. 1991, C: A Reference Manual, 3rd ed. (Englewood Cliffs,
NJ: Prentice-Hall).

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Jones, R., and Stewart, I. 1987, The Art of C Programming (New York: Springer-Verlag). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75–83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53–55; see
also op. cit. 1985, vol. 26, pp. 151–155, and 1986, vol. 27, pp. 506–507. [8]

1.2 Some C Conventions for Scientific
Computing

The C language was devised originally for systems programming work, not for
scientific computing. Relative to other high-level programming languages, C puts
the programmer “very close to the machine” in several respects. It is operator-rich,
giving direct access to most capabilities of a machine-language instruction set. It
has a large variety of intrinsic data types (short and long, signed and unsigned
integers; floating and double-precision reals; pointer types; etc.), and a concise
syntax for effecting conversions and indirections. It defines an arithmetic on pointers
(addresses) that relates gracefully to array addressing and is highly compatible with
the index register structure of many computers.

