Chapter 10. Minimization or
Maximization of Functions

10.0 Introduction

In anutshell: You are given a single function f that depends on one or more
independent variables. You want to find the value of those variables where f takes
on a maximum or a minimum value. You can then calculate what value of f is
achieved at the maximum or minimum. The tasks of maximization and minimization
are trivially related to each other, since one person’s function f could just as well
be another’'s — f. The computational desiderata are the usual ones: Do it quickly,
chesaply, and in smal memory. Often the computational effort is dominated by
the cost of evaluating f (and also perhaps its partial derivatives with respect to al
variables, if the chosen algorithm requires them). In such cases the desiderata are
sometimes replaced by the simple surrogate: Evauate f as few times as possible.

An extremum (maximum or minimum point) can be either global (truly
the highest or lowest function value) or local (the highest or lowest in a finite
neighborhood and not on the boundary of that neighborhood). (See Figure 10.0.1.)
Finding a globa extremum is, in genera, a very difficult problem. Two standard
heuristics are widely used: (i) find local extrema starting from widely varying
starting values of the independent variables (perhaps chosen quasi-randomly, asin
§7.7), and then pick the most extreme of these (if they are not all the same); or
(ii) perturb aloca extremum by taking a finite amplitude step away from it, and
then see if your routine returns you to a better point, or “aways’ to the same
one. Relatively recently, so-caled “simulated annealing methods’ (§10.9) have
demonstrated important successes on avariety of global extremization problems.

Our chapter title could just as well be optimization, which is the usua name
for this very large field of numerical research. The importance ascribed to the
various tasks in this field depends strongly on the particular interests of whom
you talk to. Economists, and some engineers, are particularly concerned with
constrained optimization, where there are a priori limitations on the allowed values
of independent variables. For example, the production of whesat in the U.S. must
be a nonnegative number. One particularly well-developed area of constrained
optimization is linear programming, where both the function to be optimized and
the constraints happen to be linear functions of the independent variables. Section
10.8, which isotherwise somewhat disconnected from therest of the material that we
have chosen to includein this chapter, implementsthe so-called “simplex a gorithm”
for linear programming problems.
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10.0 Introduction 395

X1 x2

Figure 10.0.1.  Extrema of a function in an interval. Points A, C, and E are local, but not global
maxima. Points B and F are local, but not global minima. The global maximum occurs at G, which
is on the boundary of the interval so that the derivative of the function need not vanish there. The
global minimum is at D. At point E, derivatives higher than the first vanish, a situation which can
cause difficulty for some algorithms. The points X, Y, and Z are said to “bracket” the minimum F,
since Y is less than both X and Z.

One other section, §10.9, aso lies outside of our main thrust, but for a different
reason: so-called “annealing methods’ are relatively new, so we do not yet know
where they will ultimately fit into the scheme of things. However, these methods
have solved some problems previoudly thought to be practically insoluble; they
address directly the problem of finding global extrema in the presence of large
numbers of undesired local extrema

The other sections in this chapter constitute a selection of the best established
algorithms in unconstrained minimization. (For definiteness, we will henceforth
regard the optimization problem as that of minimization.) These sections are
connected, with later ones depending on earlier ones. If you are just looking for
the one “perfect” agorithm to solve your particular application, you may feel that
we are telling you more than you want to know. Unfortunately, there is no perfect
optimization algorithm. Thisis a case where we strongly urge you to try more than
one method in comparative fashion. Your initial choice of method can be based
on the following considerations:

e You must choose between methods that need only evaluations of the
function to be minimized and methods that al so require eval uations of the
derivative of that function. In the multidimensional case, this derivative
is the gradient, a vector quantity. Algorithms using the derivative are
somewhat more powerful than those using only the function, but not
always enough so as to compensate for the additiona calculations of
derivatives. We can easily construct examples favoring one approach or
favoring the other. However, if you can compute derivatives, be prepared
to try using them.

e For one-dimensional minimization (minimize a function of one variable)
without cal cul ation of the derivative, bracket the minimum as described in
§10.1, and then use Brent’s method as described in §10.2. If your function
has a discontinuous second (or lower) derivative, then the parabolic

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM



396 Chapter 10.  Minimization or Maximization of Functions

interpolationsof Brent’s method are of no advantage, and you might wish
to use the simplest form of golden section search, as described in §10.1.

e For one-dimensional minimizationwith calcul ation of thederivative, §10.3
supplies a variant of Brent’s method which makes limited use of the first
derivative information. We shy away from the aternative of using
derivative information to construct high-order interpolating polynomials.
In our experience the improvement in convergence very near a smooth,
analytic minimum does not make up for the tendency of polynomials
sometimes to give wildly wrong interpolationsat early stages, especially
for functions that may have sharp, “exponentia” features.

We now turn to the multidimensiona case, both with and without computation
of first derivatives.

e You must choose between methods that require storage of order N2 and
those that require only of order IV, where N isthe number of dimensions.
For moderate values of N and reasonable memory sizes this is not a
serious constraint.  There will be, however, the occasiona application
where storage may be critical.

e We give in §10.4 a sometimes overlooked downhill simplex method due
to Nelder and Mead. (This use of the word “simplex” is not to be
confused with the simplex method of linear programming.) This method
just crawls downhill in a straightforward fashion that makes amost no
special assumptions about your function. This can be extremely slow, but
it can also, in some cases, be extremely robust. Not to be overlooked is
the fact that the code is concise and completely self-contained: a general
N-dimensional minimization program in under 100 program lines! This
method is most useful when the minimization calculation is only an
incidental part of your overal problem. The storage requirement is of
order N2, and derivative calculations are not required.

e Section 10.5 deals with direction-set methods, of which Powell’s method
isthe prototype. These are the methods of choice when you cannot easily
calculate derivatives, and are not necessarily to be sneered at even if you
can. Although derivatives are not needed, the method does require a
one-dimensional minimization sub-algorithm such as Brent’s method (see
above). Storage is of order N2.

There are two major families of algorithmsfor multidimensional minimization
with calculation of first derivatives. Both families require a one-dimensional
minimization sub-algorithm, which can itself either use, or not use, the derivative
information, as you seefit (depending on therd ative effort of computing thefunction
and of its gradient vector). We do not think that either family dominates the other in
all applications; you should think of them as available alternatives:

e Thefirst family goes under the name conjugate gradient methods, as typi-
fied by the Fletcher-Reeves algorithmand the closely related and probably
superior Polak-Ribiere algorithm. Conjugate gradient methods require
only of order afew times N storage, require derivative caculations and
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10.1 Golden Section Search in One Dimension 397

one-dimensional sub-minimization. Turn to §10.6 for detailed discussion
and implementation.

e The second family goes under the names quasi-Newton or variable metric
methods, as typified by the Davidon-Fletcher-Powell (DFP) agorithm
(sometimes referred to just as Fletcher-Powell) or the closely related
Broyden-Fletcher-Goldfarb-Shanno (BFGS) agorithm. These methods
require of order N? storage, require derivative calculations and one-
dimensional sub-minimization. Details are in §10.7.

You are now ready to proceed with scaling the pesks (and/or plumbing the
depths) of practical optimization.
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10.1 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(§9.1): The root is supposed to have been bracketed in an interva (a,b). One
then evaluates the function at an intermediate point = and obtains a new, smaller
bracketinginterval, either (a, x) or (x, b). The process continues until the bracketing
interval is acceptably small. It is optima to choose z to be the midpoint of (a, b)
so that the decrease in the interval length is maximized when the function is as
uncooperative as it can be, i.e., when the luck of the draw forces you to take the
bigger bisected segment.

There is a precise, though slightly subtle, translation of these considerations to
the minimization problem: What does it mean to bracket a minimum? A root of a
function is known to be bracketed by a pair of points, a and b, when the function
has opposite sign at those two points. A minimum, by contrast, is known to be
bracketed only when thereis atriplet of points, a < b < ¢ (or ¢ < b < a), such that
f(b) islessthan both f(a) and f(c). In this case we know that the function (if it
is nonsingular) has a minimum in the interval (a, c¢).

The analog of bisection is to choose a new point x, either between ¢ and b or
between b and c. Suppose, to be specific, that we make the latter choice. Then we
evaluate f(z). If f(b) < f(x), then the new bracketing triplet of pointsis (a, b, z);
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