10.3 One-Dimensional Search with First Derivatives 405

}

etemp=e;
e=d;
if (fabs(p) >= fabs(0.5*g*etemp) || p <= g*(a-x) || p >= g*(b-x))
d=CGOLD*(e=(x >= xm ? a-x : b-x));
The above conditions determine the acceptability of the parabolic fit. Here we
take the golden section step into the larger of the two segments.
else {
d=p/q; Take the parabolic step.
u=x+d;
if (u-a < tol2 || b-u < tol2)
d=SIGN(toll,xm-x);

}
} else {
d=CGOLD* (e=(x >= xm 7 a-x : b-x));
}
u=(fabs(d) >= toll ? x+d : x+SIGN(toll,d));
fu=(*f) (u);

This is the one function evaluation per iteration.
if (fu <= fx) {
if (u >= x) a=x; else b=x;
SHFT (v, w,x,u)
SHFT (fv,fw,fx,fu)
} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {
v=u;
w=u;
fv=~fw;
fw=~fu;
} else if (fu <= fv || v ==x || v == w) {
v=u;
fv=~fu;

Now decide what to do with our func-
tion evaluation.
Housekeeping follows:

} Done with housekeeping. Back for
another iteration.

nrerror ("Too many iterations in brent");

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 5. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical

Computations (Englewood Cliffs, NJ: Prentice-Hall), §8.2.

10.3 One-Dimensional Search with First

Derivatives

Here we want to accomplish precisely the same goa as in the previous

section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas (a, b, ¢), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

406 Chapter 10. Minimization or Maximization of Functions

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder like rtf1sp or zbrent (§59.2-9.3).
It doesn't takelong to reject that idea: How do we di stingui shmaxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the direction out of the
bracketed interval?

We don’t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought isto “use everything you' vegot”: Computeapolynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, thereisa unique cubic that agrees
with function and derivative a two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in[1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about al the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet (a, b, ¢) indicates uniquely
whether the next test point should be taken in the interval (a,b) or in the interva
(b,¢). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself issuperlinear of order 1.618. (The golden mean again: see[1], p. 57.)
We impose the same sort of restrictions on thisnew tria point asin Brent’'s method.
If the trial point must be rejected, we bisect the interval under scrutiny.

Yes, wearefuddy-duddieswhen it comesto making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives’ don't integrate up to the function value and don't
accurately point the way to the minimum, usualy because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled on brent in the
previous section.

#include <math.h>

#include "nrutil.h"

#define ITMAX 100

#define ZEPS 1.0e-10

#define MOV3(a,b,c, d,e,f) (a)=(d); (b)=(e); (c)=(£);

float dbrent(float ax, float bx, float cx, float (*f)(float),

float (*df) (float), float tol, float *xmin)
Given a function £ and its derivative function df, and given a bracketing triplet of abscissas ax,
bx, cx [such that bx is between ax and cx, and f (bx) is less than both f (ax) and f (cx)],
this routine isolates the minimum to a fractional precision of about tol using a modification of
Brent's method that uses derivatives. The abscissa of the minimum is returned as xmin, and

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

10.3 One-Dimensional Search with First Derivatives 407

the minimum function value is returned as dbrent, the returned function value.

{

int iter,okl,o0k2; Will be used as flags for whether pro-
float a,b,d,d1,d2,du,dv,dw,dx,e=0.0; posed steps are acceptable or not.
float fu,fv,fw,fx,o0lde,toll,tol2,u,ul,u2,v,w,x,xm;

Comments following will point out only differences from the routine brent. Read that
routine first.
a=(ax < ¢cx ? ax : cX);
b=(ax > cx ? ax : cX);
X=w=v=Dbx;
fu=fv=fx=(*f) (x);
dw=dv=dx=(*df) (x) ;
for (iter=1;iter<=ITMAX;iter++) {
xm=0.5% (a+b) ;
toll=tol*fabs(x)+ZEPS;
t012=2.0%toll;
if (fabs(x-xm) <= (t012-0.5%(b-a))) {

All our housekeeping chores are dou-
bled by the necessity of moving
derivative values around as well
as function values.

*xXmin=x;
return fx;
}
if (fabs(e) > toll) {
d1=2.0%*(b-a); Initialize these d’s to an out-of-bracket
d2=41; value.
if (dw != dx) di=(w-x)*dx/(dx-dw); Secant method with one point.
if (dv !'= dx) d2=(v-x)*dx/(dx-dv); And the other.
Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:
ul=x+di;
u2=x+d2;
okl = (a-ul)*(ul-b) > 0.0 && dx*dl <= 0.0;
ok2 = (a-u2)*(u2-b) > 0.0 && dx*d2 <= 0.0;
olde=e; Movement on the step before last.
e=d;
if (okl || ok2) { Take only an acceptable 4, and if
if (okl && ok2) both are acceptable, then take
d=(fabs(d1) < fabs(d2) ? d1 : d2); the smallest one.
else if (ok1)
d=di1;
else
d=d2;
if (fabs(d) <= fabs(0.5%olde)) {
u=x+d;
if (u-a < tol2 || b-u < tol2)
d=SIGN(toll,xm-x);
} else { Bisect, not golden section.
d=0.5*(e=(dx >= 0.0 ? a-x : b-x));
Decide which segment by the sign of the derivative.
}
} else {
d=0.5%(e=(dx >= 0.0 ? a-x : b-x));
}
} else {
d=0.5*(e=(dx >= 0.0 ? a-x : b-x));
}
if (fabs(d) >= toll) {
u=x+d;
fu=(*£) (u);
} else {
u=x+SIGN(toll,d);
fu=(x£) (u);

if (fu > fx) { If the minimum step in the downhill
*xmin=x; direction takes us uphill, then
return fx; we are done.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

408 Chapter 10. Minimization or Maximization of Functions

}

du=(*df) (u) ; Now all the housekeeping, sigh.
if (fu <= fx) {
if (u >= x) a=x; else b=x;
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, x,fx,dx)
MOV3(x,fx,dx, u,fu,du)
} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, u,fu,du)
} else if (fu < fv || v == x || v == w) {
MOV3(v,fv,dv, u,fu,du)

}
}
}
nrerror ("Too many iterations in routine dbrent");
return 0.0; Never get here.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 55; 454-458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), p. 78.

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after thissection will make explicit use of aone-dimensiona minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensiona minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster inal likely applications. However, the downhill simplex method
may frequently be the best method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, in N dimensions, of N + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is atriangle. In three dimensionsit is a tetrahedron,
not necessarily the regular tetrahedron. (The simplex method of linear programming,

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

