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10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, at a given N -
dimensional point P, not just the value of a function f(P) but also the gradient
(vector of first partial derivatives) ∇f(P).

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x) ≈ c − b · x +
1

2
x · A · x (10.6.1)

Then the number of unknown parameters in f is equal to the number of free
parameters in A and b, which is 1

2N(N + 1), which we see to be of order N2.
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order N2 numbers.

In the direction set methods of §10.5, we collected the necessary information by
making on the order of N2 separate line minimizations, each requiring “a few” (but
sometimes a big few!) function evaluations. Now, each evaluation of the gradient
will bring us N new components of information. If we use them wisely, we should
need to make only of order N separate line minimizations. That is in fact the case
for the algorithms in this section and the next.

A factor of N improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation of each component of
the gradient takes about as long as evaluating the function itself. In that case there
will be of order N2 equivalent function evaluations both with and without gradient
information. Even if the advantage is not of order N , however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, a whole
line minimization. (ii) There is often a high degree of redundancy in the formulas
for the various components of a function’s gradient; when this is so, especially when
there is also redundancy with the calculation of the function, then the calculation of
the gradient may cost significantly less than N function evaluations.
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(a)

(b)

Figure 10.6.1. (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.

A common beginner’s error is to assume that any reasonable way of incorporat-
ing gradient information should be about as good as any other. This line of thought
leads to the following not very good algorithm, the steepest descent method:

Steepest Descent: Start at a point P0. As many times
as needed, move from point Pi to the point Pi+1 by
minimizing along the line from Pi in the direction of
the local downhill gradient −∇f(Pi).

The problem with the steepest descent method (which, incidentally, goes back
to Cauchy), is similar to the problem that was shown in Figure 10.5.1. The method
will perform many small steps in going down a long, narrow valley, even if the valley
is a perfect quadratic form. You might have hoped that, say in two dimensions,
your first step would take you to the valley floor, the second step directly down
the long axis; but remember that the new gradient at the minimum point of any
line minimization is perpendicular to the direction just traversed. Therefore, with
the steepest descent method, you must make a right angle turn, which does not, in
general, take you to the minimum. (See Figure 10.6.1.)

Just as in the discussion that led up to equation (10.5.5), we really want a
way of proceeding not down the new gradient, but rather in a direction that is
somehow constructed to be conjugate to the old gradient, and, insofar as possible,
to all previous directions traversed. Methods that accomplish this construction are
called conjugate gradient methods.

In §2.7 we discussed the conjugate gradient method as a technique for solving
linear algebraic equations by minimizing a quadratic form. That formalism can also
be applied to the problem of minimizing a function approximated by the quadratic
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form (10.6.1). Recall that, starting with an arbitrary initial vector g0 and letting
h0 = g0, the conjugate gradient method constructs two sequences of vectors from
the recurrence

gi+1 = gi − λiA · hi hi+1 = gi+1 + γihi i = 0, 1, 2, . . . (10.6.2)

The vectors satisfy the orthogonality and conjugacy conditions

gi · gj = 0 hi · A · hj = 0 gi · hj = 0 i 6= j (10.6.3)

The scalars λi and γi are given by

λi =
gi · gi

hi · A · hi
=

gi · hi
hi · A · hi

(10.6.4)

γi =
gi+1 · gi+1

gi · gi
(10.6.5)

Equations (10.6.2)–(10.6.5) are simply equations (2.7.32)–(2.7.35) for a symmetric
A in a new notation. (A self-contained derivation of these results in the context of
function minimization is given by Polak [1].)

Now suppose that we knew the Hessian matrix A in equation (10.6.1). Then
we could use the construction (10.6.2) to find successively conjugate directions hi
along which to line-minimize. After N such, we would efficiently have arrived at
the minimum of the quadratic form. But we don’t know A.

Here is a remarkable theorem to save the day: Suppose we happen to have
gi = −∇f(Pi), for some point Pi, where f is of the form (10.6.1). Suppose that we
proceed from Pi along the direction hi to the local minimum of f located at some
point Pi+1 and then set gi+1 = −∇f(Pi+1). Then, this gi+1 is the same vector
as would have been constructed by equation (10.6.2). (And we have constructed
it without knowledge of A!)

Proof: By equation (10.5.3), gi = −A · Pi + b, and

gi+1 = −A · (Pi + λhi) + b = gi − λA · hi (10.6.6)

with λ chosen to take us to the line minimum. But at the line minimum hi · ∇f =
−hi · gi+1 = 0. This latter condition is easily combined with (10.6.6) to solve for
λ. The result is exactly the expression (10.6.4). But with this value of λ, (10.6.6)
is the same as (10.6.2), q.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the
Hessian matrix A, nor even the storage necessary to store such a matrix. A sequence
of directions hi is constructed, using only line minimizations, evaluations of the
gradient vector, and an auxiliary vector to store the latest in the sequence of g’s.

The algorithm described so far is the original Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but
sometimes significant, change. They proposed using the form

γi =
(gi+1 − gi) · gi+1

gi · gi
(10.6.7)
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instead of equation (10.6.5). “Wait,” you say, “aren’t they equal by the orthogonality
conditions (10.6.3)?” They are equal for exact quadratic forms. In the real world,
however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of
iterations. There is some evidence [2] that the Polak-Ribiere formula accomplishes
the transition to further iterations more gracefully: When it runs out of steam, it
tends to reset h to be down the local gradient, which is equivalent to beginning the
conjugate-gradient procedure anew.

The following routine implements the Polak-Ribiere variant, which we recom-
mend; but changing one program line, as shown, will give you Fletcher-Reeves. The
routine presumes the existence of a function func(p), where p[1..n] is a vector
of length n, and also presumes the existence of a function dfunc(p,df) that sets
the vector gradient df[1..n] evaluated at the input point p.

The routine calls linmin to do the line minimizations. As already discussed,
you may wish to use a modified version of linmin that uses dbrent instead of
brent, i.e., that uses the gradient in doing the line minimizations. See note below.

#include <math.h>
#include "nrutil.h"
#define ITMAX 200
#define EPS 1.0e-10
Here ITMAX is the maximum allowed number of iterations, while EPS is a small number to
rectify the special case of converging to exactly zero function value.
#define FREEALL free_vector(xi,1,n);free_vector(h,1,n);free_vector(g,1,n);

void frprmn(float p[], int n, float ftol, int *iter, float *fret,
float (*func)(float []), void (*dfunc)(float [], float []))

Given a starting point p[1..n], Fletcher-Reeves-Polak-Ribiere minimization is performed on a
function func, using its gradient as calculated by a routine dfunc. The convergence tolerance
on the function value is input as ftol. Returned quantities are p (the location of the minimum),
iter (the number of iterations that were performed), and fret (the minimum value of the
function). The routine linmin is called to perform line minimizations.
{

void linmin(float p[], float xi[], int n, float *fret,
float (*func)(float []));

int j,its;
float gg,gam,fp,dgg;
float *g,*h,*xi;

g=vector(1,n);
h=vector(1,n);
xi=vector(1,n);
fp=(*func)(p); Initializations.
(*dfunc)(p,xi);
for (j=1;j<=n;j++) {

g[j] = -xi[j];
xi[j]=h[j]=g[j];

}
for (its=1;its<=ITMAX;its++) { Loop over iterations.

*iter=its;
linmin(p,xi,n,fret,func); Next statement is the normal return:
if (2.0*fabs(*fret-fp) <= ftol*(fabs(*fret)+fabs(fp)+EPS)) {

FREEALL
return;

}
fp=(*func)(p);
(*dfunc)(p,xi);
dgg=gg=0.0;
for (j=1;j<=n;j++) {
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gg += g[j]*g[j];
/* dgg += xi[j]*xi[j]; */ This statement for Fletcher-Reeves.

dgg += (xi[j]+g[j])*xi[j]; This statement for Polak-Ribiere.
}
if (gg == 0.0) { Unlikely. If gradient is exactly zero then

we are already done.FREEALL
return;

}
gam=dgg/gg;
for (j=1;j<=n;j++) {

g[j] = -xi[j];
xi[j]=h[j]=g[j]+gam*h[j];

}
}
nrerror("Too many iterations in frprmn");

}

Note on Line Minimization Using Derivatives

Kindly reread the last part of §10.5. We here want to do the same thing, but
using derivative information in performing the line minimization.

The modified version of linmin, called dlinmin, and its required companion
routine df1dim follow:

#include "nrutil.h"
#define TOL 2.0e-4 Tolerance passed to dbrent.

int ncom; Global variables communicate with df1dim.
float *pcom,*xicom,(*nrfunc)(float []);
void (*nrdfun)(float [], float []);

void dlinmin(float p[], float xi[], int n, float *fret, float (*func)(float []),
void (*dfunc)(float [], float []))

Given an n-dimensional point p[1..n] and an n-dimensional direction xi[1..n], moves and
resets p to where the function func(p) takes on a minimum along the direction xi from p,
and replaces xi by the actual vector displacement that p was moved. Also returns as fret
the value of func at the returned location p. This is actually all accomplished by calling the
routines mnbrak and dbrent.
{

float dbrent(float ax, float bx, float cx,
float (*f)(float), float (*df)(float), float tol, float *xmin);

float f1dim(float x);
float df1dim(float x);
void mnbrak(float *ax, float *bx, float *cx, float *fa, float *fb,

float *fc, float (*func)(float));
int j;
float xx,xmin,fx,fb,fa,bx,ax;

ncom=n; Define the global variables.
pcom=vector(1,n);
xicom=vector(1,n);
nrfunc=func;
nrdfun=dfunc;
for (j=1;j<=n;j++) {

pcom[j]=p[j];
xicom[j]=xi[j];

}
ax=0.0; Initial guess for brackets.
xx=1.0;
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
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*fret=dbrent(ax,xx,bx,f1dim,df1dim,TOL,&xmin);
for (j=1;j<=n;j++) { Construct the vector results to return.

xi[j] *= xmin;
p[j] += xi[j];

}
free_vector(xicom,1,n);
free_vector(pcom,1,n);

}

#include "nrutil.h"

extern int ncom; Defined in dlinmin.
extern float *pcom,*xicom,(*nrfunc)(float []);
extern void (*nrdfun)(float [], float []);

float df1dim(float x)
{

int j;
float df1=0.0;
float *xt,*df;

xt=vector(1,ncom);
df=vector(1,ncom);
for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
(*nrdfun)(xt,df);
for (j=1;j<=ncom;j++) df1 += df[j]*xicom[j];
free_vector(df,1,ncom);
free_vector(xt,1,ncom);
return df1;

}

CITED REFERENCES AND FURTHER READING:
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10.7 Variable Metric Methods in
Multidimensions

The goal of variable metric methods, which are sometimes called quasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so that N such line minimizations
lead to the exact minimum of a quadratic form in N dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores


