
430 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Quasi-Newton methods like dfpmin work well with the approximate line
minimization done by lnsrch. The routines powell (§10.5) and frprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods

Although rare, it can conceivably happen that roundoff errors cause the matrix Hi to
become nearly singular or non-positive-definite. This can be serious, because the supposed
search directions might then not lead downhill, and because nearly singular Hi’s tend to give
subsequent Hi’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioned in §10.4: In case
of any doubt, you should restart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metric
methods deal with the problem in a more sophisticated way.

Instead of building up an approximation to A−1, it is possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations

A · (xm − xi) = −∇f(xi) (10.7.11)

At first glance this seems like a bad idea, since solving (10.7.11) is a process of order
N3 — and anyway, how does this help the roundoff problem? The trick is not to store A but
rather a triangular decomposition of A, its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition of A is of order N2 and can be arranged to
guarantee that the matrix remains positive definite and nonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray [1,2].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1, §§3–6 (by K. W. Brodlie). [2]

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), pp. 56ff. [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 467–468.

10.8 Linear Programming and the Simplex
Method

The subject of linear programming, sometimes called linear optimization,
concerns itself with the followingproblem: ForN independent variables x1, . . . , xN ,
maximize the function

z = a01x1 + a02x2 + · · ·+ a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)

10.8 Linear Programming and the Simplex Method 431

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and simultaneously subject to M = m1 + m2 + m3 additional constraints, m1 of
them of the form

ai1x1 + ai2x2 + · · ·+ aiNxN ≤ bi (bi ≥ 0) i = 1, . . . , m1 (10.8.3)

m2 of them of the form

aj1x1 + aj2x2 + · · ·+ ajNxN ≥ bj ≥ 0 j = m1 + 1, . . . , m1 +m2 (10.8.4)

and m3 of them of the form

ak1x1 + ak2x2 + · · ·+ akNxN = bk ≥ 0

k = m1 +m2 + 1, . . . , m1 + m2 + m3

(10.8.5)

The various aij’s can have either sign, or be zero. The fact that the b’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by −1.
There is no particular significance in the number of constraints M being less than,
equal to, or greater than the number of unknowns N .

A set of values x1 . . . xN that satisfies the constraints (10.8.2)–(10.8.5) is called
a feasible vector. The function that we are trying to maximize is called the objective
function. The feasible vector that maximizes the objective function is called the
optimal feasible vector. An optimal feasible vector can fail to exist for two distinct
reasons: (i) there are no feasible vectors, i.e., the given constraints are incompatible,
or (ii) there is no maximum, i.e., there is a direction in N space where one or more
of the variables can be taken to infinity while still satisfying the constraints, giving
an unbounded value for the objective function.

As you see, the subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly cultivated by a
coterie of stern acolytes who have devoted themselves to the field. Actually, the
basic ideas of linear programming are quite simple. Avoiding the shrubbery, we
want to teach you the basics by means of a couple of specific examples; it should
then be quite obvious how to generalize.

Why is linear programming so important? (i) Because “nonnegativity” is the
usual constraint on any variable xi that represents the tangible amount of some
physical commodity, like guns, butter, dollars, units of vitamin E, food calories,
kilowatt hours, mass, etc. Hence equation (10.8.2). (ii) Because one is often
interested in additive (linear) limitations or bounds imposed by man or nature:
minimum nutritional requirement, maximum affordable cost, maximum on available
labor or capital, minimum tolerable level of voter approval, etc. Hence equations
(10.8.3)–(10.8.5). (iii) Because the function that one wants to optimize may be
linear, or else may at least be approximated by a linear function — since that is the
problem that linear programming can solve. Hence equation (10.8.1). For a short,
semipopular survey of linear programming applications, see Bland [1].

Here is a specific example of a problem in linear programming, which has
N = 4, m1 = 2, m2 = m3 = 1, hence M = 4:

Maximize z = x1 + x2 + 3x3 − 1
2
x4 (10.8.6)

432 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

additional constraint (inequality)

additional constraint (inequality)
the optimal feasible vector

some feasible vectors

x1

primary constraint x2

a feasible basic vector

(not optimal)

pr
im

ar
y

co
ns

tr
ai

nt

additional constraint (equality)

z = 3.1

z = 2.9z = 2.8z = 2.7z = 2.6z = 2.5z = 2.4

z = 3.0

Figure 10.8.1. Basic concepts of linear programming. The case of only two independent variables,
x1, x2, is shown. The linear function z, to be maximized, is represented by its contour lines. Primary
constraints require x1 and x2 to be positive. Additional constraints may restrict the solution to regions
(inequality constraints) or to surfaces of lower dimensionality (equality constraints). Feasible vectors
satisfy all constraints. Feasible basic vectors also lie on the boundary of the allowed region. The simplex
method steps among feasible basic vectors until the optimal feasible vector is found.

with all the x’s nonnegative and also with

x1 + 2x3 ≤ 740

2x2 − 7x4 ≤ 0

x2 − x3 + 2x4 ≥ 1
2

x1 + x2 + x3 + x4 = 9

(10.8.7)

The answer turns out to be (to 2 decimals) x1 = 0, x2 = 3.33, x3 = 4.73, x4 = 0.95.
In the rest of this section we will learn how this answer is obtained. Figure 10.8.1
summarizes some of the terminology thus far.

Fundamental Theorem of Linear Optimization

Imagine that we start with a fullN -dimensional space of candidate vectors. Then
(in mind’s eye, at least) we carve away the regions that are eliminated in turn by each
imposed constraint. Since the constraints are linear, every boundary introduced by
this process is a plane, or rather hyperplane. Equality constraints of the form (10.8.5)

10.8 Linear Programming and the Simplex Method 433

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

force the feasible region onto hyperplanes of smaller dimension, while inequalities
simply divide the then-feasible region into allowed and nonallowed pieces.

When all the constraints are imposed, either we are left with some feasible
region or else there are no feasible vectors. Since the feasible region is bounded by
hyperplanes, it is geometrically a kind of convex polyhedron or simplex (cf. §10.4).
If there is a feasible region, can the optimal feasible vector be somewhere in its
interior, away from the boundaries? No, because the objective function is linear.
This means that it always has a nonzero vector gradient. This, in turn, means that
we could always increase the objective function by running up the gradient until
we hit a boundary wall.

The boundary of any geometrical region has one less dimension than its interior.
Therefore, we can now run up the gradient projected into the boundary wall until we
reach an edge of that wall. We can then run up that edge, and so on, down through
whatever number of dimensions, until we finally arrive at a point, a vertex of the
original simplex. Since this point has all N of its coordinates defined, it must be
the solution of N simultaneous equalities drawn from the original set of equalities
and inequalities (10.8.2)–(10.8.5).

Points that are feasible vectors and that satisfy N of the original constraints
as equalities, are termed feasible basic vectors. If N > M , then a feasible basic
vector has at least N −M of its components equal to zero, since at least that many
of the constraints (10.8.2) will be needed to make up the total of N . Put the other
way, at most M components of a feasible basic vector are nonzero. In the example
(10.8.6)–(10.8.7), you can check that the solution as given satisfies as equalities the
last three constraints of (10.8.7) and the constraint x1 ≥ 0, for the required total of 4.

Put together the two preceding paragraphs and you have the Fundamental
Theorem of Linear Optimization: If an optimal feasible vector exists, then there is a
feasible basic vector that is optimal. (Didn’t we warn you about the terminological
thicket?)

The importance of the fundamental theorem is that it reduces the optimization
problem to a “combinatorial” problem, that of determining which N constraints
(out of the M + N constraints in 10.8.2–10.8.5) should be satisfied by the optimal
feasible vector. We have only to keep trying different combinations, and computing
the objective function for each trial, until we find the best.

Doing this blindly would take halfway to forever. The simplex method, first
published by Dantzig in 1948 (see [2]), is a way of organizing the procedure so that
(i) a series of combinations is tried for which the objective function increases at each
step, and (ii) the optimal feasible vector is reached after a number of iterations that
is almost always no larger than of orderM orN , whichever is larger. An interesting
mathematical sidelight is that this second property, although known empirically ever
since the simplex method was devised, was not proved to be true until the 1982 work
of Stephen Smale. (For a contemporary account, see [3].)

Simplex Method for a Restricted Normal Form

A linear programming problem is said to be in normal form if it has no
constraints in the form (10.8.3) or (10.8.4), but rather only equality constraints of the
form (10.8.5) and nonnegativity constraints of the form (10.8.2).

434 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

For our purposes it will be useful to consider an even more restricted set of
cases, with this additional property: Each equality constraint of the form (10.8.5)
must have at least one variable that has a positive coefficient and that appears
uniquely in that one constraint only. We can then choose one such variable in each
constraint equation, and solve that constraint equation for it. The variables thus
chosen are called left-hand variables or basic variables, and there are exactly M
(= m3) of them. The remainingN −M variables are called right-hand variables or
nonbasic variables. Obviously this restricted normal form can be achieved only in
the case M ≤ N , so that is the case that we will consider.

You may be thinking that our restricted normal form is so specialized that
it is unlikely to include the linear programming problem that you wish to solve.
Not at all! We will presently show how any linear programming problem can be
transformed into restricted normal form. Therefore bear with us and learn how to
apply the simplex method to a restricted normal form.

Here is an example of a problem in restricted normal form:

Maximize z = 2x2 − 4x3 (10.8.8)

with x1, x2, x3, and x4 all nonnegative and also with

x1 = 2− 6x2 + x3

x4 = 8 + 3x2 − 4x3

(10.8.9)

This example has N = 4, M = 2; the left-hand variables are x1 and x4; the
right-hand variables are x2 and x3. The objective function (10.8.8) is written so
as to depend only on right-hand variables; note, however, that this is not an actual
restriction on objective functions in restricted normal form, since any left-hand
variables appearing in the objective function could be eliminated algebraically by
use of (10.8.9) or its analogs.

For any problem in restricted normal form, we can instantly read off a feasible
basic vector (although not necessarily the optimal feasible basic vector). Simply set
all right-hand variables equal to zero, and equation (10.8.9) then gives the values of
the left-hand variables for which the constraints are satisfied. The idea of the simplex
method is to proceed by a series of exchanges. In each exchange, a right-hand
variable and a left-hand variable change places. At each stage we maintain a problem
in restricted normal form that is equivalent to the original problem.

It is notationally convenient to record the information content of equations
(10.8.8) and (10.8.9) in a so-called tableau, as follows:

x2 x3

z 0 2 −4

x1 2 −6 1

x4 8 3 −4 (10.8.10)

You should study (10.8.10) to be sure that you understand where each entry comes
from, and how to translate back and forth between the tableau and equation formats
of a problem in restricted normal form.

10.8 Linear Programming and the Simplex Method 435

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

The first step in the simplex method is to examine the top row of the tableau,
which we will call the “z-row.” Look at the entries in columns labeled by right-hand
variables (we will call these “right-columns”). We want to imagine in turn the effect
of increasing each right-hand variable from its present value of zero, while leaving
all the other right-hand variables at zero. Will the objective function increase or
decrease? The answer is given by the sign of the entry in the z-row. Since we want
to increase the objective function, only right columns having positive z-row entries
are of interest. In (10.8.10) there is only one such column, whose z-row entry is 2.

The second step is to examine the column entries below each z-row entry
that was selected by step one. We want to ask how much we can increase the
right-hand variable before one of the left-hand variables is driven negative, which is
not allowed. If the tableau element at the intersection of the right-hand column and
the left-hand variable’s row is positive, then it poses no restriction: the corresponding
left-hand variable will just be driven more and more positive. If all the entries in
any right-hand column are positive, then there is no bound on the objective function
and (having said so) we are done with the problem.

If one or more entries below a positive z-row entry are negative, then we have
to figure out which such entry first limits the increase of that column’s right-hand
variable. Evidently the limiting increase is given by dividing the element in the right-
hand column (which is called the pivot element) into the element in the “constant
column” (leftmost column) of the pivot element’s row. A value that is small in
magnitude is most restrictive. The increase in the objective function for this choice
of pivot element is then that value multiplied by the z-row entry of that column. We
repeat this procedure on all possible right-hand columns to find the pivot element
with the largest such increase. That completes our “choice of a pivot element.”

In the above example, the only positive z-row entry is 2. There is only one
negative entry below it, namely−6, so this is the pivot element. Its constant-column
entry is 2. This pivot will therefore allow x2 to be increased by 2÷|6|, which results
in an increase of the objective function by an amount (2 × 2) ÷ |6|.

The third step is to do the increase of the selected right-hand variable, thus
making it a left-hand variable; and simultaneously to modify the left-hand variables,
reducing the pivot-row element to zero and thus making it a right-hand variable. For
our above example let’s do this first by hand: We begin by solving the pivot-row
equation for the new left-hand variable x2 in favor of the old one x1, namely

x1 = 2− 6x2 + x3 → x2 = 1
3 −

1
6x1 + 1

6x3 (10.8.11)

We then substitute this into the old z-row,

z = 2x2 − 4x3 = 2
[

1
3
− 1

6
x1 + 1

6
x3

]
− 4x3 = 2

3
− 1

3
x1 − 11

3
x3 (10.8.12)

and into all other left-variable rows, in this case only x4,

x4 = 8 + 3
[

1
3
− 1

6
x1 + 1

6
x3

]
− 4x3 = 9− 1

2
x1 − 7

2
x3 (10.8.13)

436 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Equations (10.8.11)–(10.8.13) form the new tableau

x1 x3

z 2
3 −1

3 −11
3

x2
1
3 −1

6
1
6

x4 9 −1
2 −7

2 (10.8.14)

The fourth step is to go back and repeat the first step, looking for another possible
increase of the objective function. We do this as many times as possible, that is, until
all the right-hand entries in the z-row are negative, signaling that no further increase
is possible. In the present example, this already occurs in (10.8.14), so we are done.

The answer can now be read from the constant column of the final tableau. In
(10.8.14) we see that the objective function is maximized to a value of 2/3 for the
solution vector x2 = 1/3, x4 = 9, x1 = x3 = 0.

Now look back over the procedure that led from (10.8.10) to (10.8.14). You will
find that it could be summarized entirely in tableau format as a series of prescribed
elementary matrix operations:

• Locate the pivot element and save it.
• Save the whole pivot column.
• Replace each row, except the pivot row, by that linear combination of itself

and the pivot row which makes its pivot-column entry zero.
• Divide the pivot row by the negative of the pivot.
• Replace the pivot element by the reciprocal of its saved value.
• Replace the rest of the pivot column by its saved values divided by the

saved pivot element.
This is the sequence of operations actually performed by a linear programming
routine, such as the one that we will presently give.

You should now be able to solve almost any linear programming problem that
starts in restricted normal form. The only special case that might stump you is
if an entry in the constant column turns out to be zero at some stage, so that a
left-hand variable is zero at the same time as all the right-hand variables are zero.
This is called a degenerate feasible vector. To proceed, you may need to exchange
the degenerate left-hand variable for one of the right-hand variables, perhaps even
making several such exchanges.

Writing the General Problem in Restricted Normal Form

Here is a pleasant surprise. There exist a couple of clever tricks that render
trivial the task of translating a general linear programming problem into restricted
normal form!

First, we need to get rid of the inequalities of the form (10.8.3) or (10.8.4), for
example, the first three constraints in (10.8.7). We do this by adding to the problem
so-called slack variables which, when their nonnegativity is required, convert the
inequalities to equalities. We will denote slack variables as yi . There will be
m1 + m2 of them. Once they are introduced, you treat them on an equal footing
with the original variables xi; then, at the very end, you simply ignore them.

10.8 Linear Programming and the Simplex Method 437

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

For example, introducing slack variables leaves (10.8.6) unchanged but turns
(10.8.7) into

x1 + 2x3 + y1 = 740

2x2 − 7x4 + y2 = 0

x2 − x3 + 2x4 − y3 = 1
2

x1 + x2 + x3 + x4 = 9

(10.8.15)

(Notice how the sign of the coefficient of the slack variable is determined by which
sense of inequality it is replacing.)

Second, we need to insure that there is a set of M left-hand vectors, so that we
can set up a starting tableau in restricted normal form. (In other words, we need to
find a “feasible basic starting vector.”) The trick is again to invent new variables!
There are M of these, and they are called artificial variables; we denote them by zi.
You put exactly one artificial variable into each constraint equation on the following
model for the example (10.8.15):

z1 = 740− x1 − 2x3 − y1

z2 = −2x2 + 7x4 − y2

z3 = 1
2
− x2 + x3 − 2x4 + y3

z4 = 9− x1 − x2 − x3 − x4

(10.8.16)

Our example is now in restricted normal form.
Now you may object that (10.8.16) is not the same problem as (10.8.15) or

(10.8.7) unless all the zi’s are zero. Right you are! There is some subtlety here!
We must proceed to solve our problem in two phases. First phase: We replace our
objective function (10.8.6) by a so-called auxiliary objective function

z′ ≡ −z1 − z2 − z3 − z4 = −(749 1
2 − 2x1 − 4x2 − 2x3 + 4x4 − y1 − y2 + y3)

(10.8.17)
(where the last equality follows from using 10.8.16). We now perform the simplex
method on the auxiliary objective function (10.8.17) with the constraints (10.8.16).
Obviously the auxiliary objective function will be maximized for nonnegative zi’s if
all the zi’s are zero. We therefore expect the simplex method in this first phase to
produce a set of left-hand variables drawn from the xi’s and yi’s only, with all the
zi’s being right-hand variables. Aha! We then cross out the zi’s, leaving a problem
involving only xi’s and yi’s in restricted normal form. In other words, the first phase
produces an initial feasible basic vector. Second phase: Solve the problem produced
by the first phase, using the original objective function, not the auxiliary.

And what if the first phase doesn’t produce zero values for all the zi’s? That
signals that there is no initial feasible basic vector, i.e., that the constraints given to
us are inconsistent among themselves. Report that fact, and you are done.

Here is how to translate into tableau format the information needed for both the
first and second phases of the overall method. As before, the underlying problem

438 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

to be solved is as posed in equations (10.8.6)–(10.8.7).

x1 x2 x3 x4 y1 y2 y3

z 0 1 1 3 −1
2 0 0 0

z1 740 −1 0 −2 0 −1 0 0

z2 0 0 −2 0 7 0 −1 0

z3
1
2

0 −1 1 −2 0 0 1

z4 9 −1 −1 −1 −1 0 0 0

z′ −749 1
2 2 4 2 −4 1 1 −1

(10.8.18)

This is not as daunting as it may, at first sight, appear. The table entries inside
the box of double lines are no more than the coefficients of the original problem
(10.8.6)–(10.8.7) organized into a tabular form. In fact, these entries, along with
the values of N , M , m1, m2, and m3, are the only input that is needed by the
simplex method routine below. The columns under the slack variables yi simply
record whether each of theM constraints is of the form≤,≥, or =; this is redundant
information with the values m1, m2, m3, as long as we are sure to enter the rows of
the tableau in the correct respective order. The coefficients of the auxiliary objective
function (bottom row) are just the negatives of the column sums of the rows above,
so these are easily calculated automatically.

The output from a simplex routine will be (i) a flag telling whether a finite
solution, no solution,or an unbounded solution was found,and (ii) an updated tableau.
The output tableau that derives from (10.8.18), given to two significant figures, is

x1 y2 y3 · · ·
z 17.03 −.95 −.05 −1.05 · · ·
x2 3.33 −.35 −.15 .35 · · ·
x3 4.73 −.55 .05 −.45 · · ·
x4 .95 −.10 .10 .10 · · ·
y1 730.55 .10 −.10 .90 · · ·

(10.8.19)

A little counting of the xi’s and yi’s will convince you that there are M + 1
rows (including the z-row) in both the input and the output tableaux, but that only
N + 1−m3 columns of the output tableau (including the constant column) contain
any useful information, the other columns belonging to now-discarded artificial
variables. In the output, the first numerical column contains the solution vector,
along with the maximum value of the objective function. Where a slack variable (yi)
appears on the left, the corresponding value is the amount by which its inequality
is safely satisfied. Variables that are not left-hand variables in the output tableau
have zero values. Slack variables with zero values represent constraints that are
satisfied as equalities.

10.8 Linear Programming and the Simplex Method 439

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Routine Implementing the Simplex Method

The following routine is based algorithmically on the implementation of Kuenzi,
Tzschach, and Zehnder [4]. Aside from input values of M , N , m1, m2, m3, the
principal input to the routine is a two-dimensional array a containing the portion of
the tableau (10.8.18) that is contained between the double lines. This input occupies
the M + 1 rows and N + 1 columns of a[1..m+1][1..n+1]. Note, however, that
reference is made internally to row M + 2 of a (used for the auxiliary objective
function, just as in 10.8.18). Therefore the variable declared as float **a, must
point to allocated memory allowing references in the subrange

a[i][k], i = 1 . . .m+2, k = 1 . . .n+1 (10.8.20)

You will suffer endless agonies if you fail to understand this simple point. Also do
not neglect to order the rows of a in the same order as equations (10.8.1), (10.8.3),
(10.8.4), and (10.8.5), that is, objective function, ≤-constraints, ≥-constraints,
=-constraints.

On output, the tableau a is indexed by two returned arrays of integers. iposv[j]
contains, for j= 1 . . .M , the number iwhose original variable xi is now represented
by row j+1 of a. These are thus the left-hand variables in the solution. (The first row
of a is of course the z-row.) A value i > N indicates that the variable is a yi rather
than an xi, xN+j ≡ yj . Likewise, izrov[j] contains, for j= 1 . . .N , the number i
whose original variable xi is now a right-hand variable, represented by column j+1

of a. These variables are all zero in the solution. The meaning of i > N is the same
as above, except that i > N +m1 +m2 denotes an artificial or slack variable which
was used only internally and should now be entirely ignored.

The flag icase is set to zero if a finite solution is found, +1 if the objective
function is unbounded, −1 if no solution satisfies the given constraints.

The routine treats the case of degenerate feasible vectors, so don’t worry about
them. You may also wish to admire the fact that the routine does not require storage
for the columns of the tableau (10.8.18) that are to the right of the double line; it
keeps track of slack variables by more efficient bookkeeping.

Please note that, as given, the routine is only “semi-sophisticated” in its tests
for convergence. While the routine properly implements tests for inequality with
zero as tests against some small parameter EPS, it does not adjust this parameter to
reflect the scale of the input data. This is adequate for many problems, where the
input data do not differ from unity by too many orders of magnitude. If, however,
you encounter endless cycling, then you should modify EPS in the routines simplx
and simp2. Permuting your variables can also help. Finally, consult [5].

#include "nrutil.h"
#define EPS 1.0e-6
Here EPS is the absolute precision, which should be adjusted to the scale of your variables.
#define FREEALL free_ivector(l3,1,m);free_ivector(l2,1,m);\

free_ivector(l1,1,n+1);

void simplx(float **a, int m, int n, int m1, int m2, int m3, int *icase,
int izrov[], int iposv[])

Simplex method for linear programming. Input parameters a, m, n, mp, np, m1, m2, and m3,
and output parameters a, icase, izrov, and iposv are described above.
{

440 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

void simp1(float **a, int mm, int ll[], int nll, int iabf, int *kp,
float *bmax);

void simp2(float **a, int n, int l2[], int nl2, int *ip, int kp, float *q1);
void simp3(float **a, int i1, int k1, int ip, int kp);
int i,ip,ir,is,k,kh,kp,m12,nl1,nl2;
int *l1,*l2,*l3;
float q1,bmax;

if (m != (m1+m2+m3)) nrerror("Bad input constraint counts in simplx");
l1=ivector(1,n+1);
l2=ivector(1,m);
l3=ivector(1,m);
nl1=n; Initially make all variables right-hand.
for (k=1;k<=n;k++) l1[k]=izrov[k]=k; Initialize index lists.
nl2=m; Make all artificial variables left-hand,
for (i=1;i<=m;i++) { and initialize those lists.

if (a[i+1][1] < 0.0) nrerror("Bad input tableau in simplx");
Constants bi must be nonnegative.
l2[i]=i;
iposv[i]=n+i;

}
for (i=1;i<=m2;i++) l3[i]=1; Used later, but initialized here.
ir=0;
This flag setting means we are in phase two, i.e have a feasible starting solution. Go to
phase two if origin is a feasible solution.
if (m2+m3) {

ir=1;
Flag meaning that we must start out in phase one.
for (k=1;k<=(n+1);k++) { Compute the auxiliary objective func-

tion.q1=0.0;
for (i=m1+1;i<=m;i++) q1 += a[i+1][k];
a[m+2][k] = -q1;

}
do {

simp1(a,m+1,l1,nl1,0,&kp,&bmax); Find max. coeff. of auxiliary objec-
tive fn.if (bmax <= EPS && a[m+2][1] < -EPS) {

*icase = -1;
Auxiliary objective function is still negative and can’t be improved, hence no
feasible solution exists.
FREEALL return;

} else if (bmax <= EPS && a[m+2][1] <= EPS) {
m12=m1+m2+1;
Auxiliary objective function is zero and can’t be improved. This signals that
we have a feasible starting vector. Clean out the artificial variables by goto one
and then move on to phase two.
for (ip=m12;ip<=m;ip++) {

if (iposv[ip] == (ip+n)) {
simp1(a,ip,l1,nl1,1,&kp,&bmax);
if (bmax > 0.0)

goto one;
}

}
ir=0; Set flag indicating we have reached

phase two.--m12;
for (i=m1+1;i<=m12;i++)

if (l3[i-m1] == 1)
for (k=1;k<=n+1;k++)

a[i+1][k] = -a[i+1][k];
break; Go to phase two.

}
simp2(a,n,l2,nl2,&ip,kp,&q1); Locate a pivot element (phase one).
if (ip == 0) { Maximum of auxiliary objective func-

tion is unbounded, so no feasi-
ble solution exists.

*icase = -1;
FREEALL return;

10.8 Linear Programming and the Simplex Method 441

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

}
one: simp3(a,m+1,n,ip,kp); Exchange a left- and a right-hand

variable (phase one), then up-
date lists.

if (iposv[ip] >= (n+m1+m2+1)) {
for (k=1;k<=nl1;k++)

if (l1[k] == kp) break;
--nl1;
for (is=k;is<=nl1;is++) l1[is]=l1[is+1];
++a[m+2][kp+1];
for (i=1;i<=m+2;i++) a[i][kp+1] = -a[i][kp+1];

} else {
if (iposv[ip] >= (n+m1+1)) {

kh=iposv[ip]-m1-n;
if (l3[kh]) {

l3[kh]=0;
++a[m+2][kp+1];
for (i=1;i<=m+2;i++)

a[i][kp+1] = -a[i][kp+1];
}

}
}
is=izrov[kp];
izrov[kp]=iposv[ip];
iposv[ip]=is;

} while (ir); If still in phase one, go back to the
do.}

End of phase one code for finding an initial feasible solution. Now, in phase two, optimize
it.
for (;;) {

simp1(a,0,l1,nl1,0,&kp,&bmax); Test the z-row for doneness.
if (bmax <= 0.0) { Done. Solution found. Return with

the good news.*icase=0;
FREEALL return;

}
simp2(a,n,l2,nl2,&ip,kp,&q1); Locate a pivot element (phase two).
if (ip == 0) { Objective function is unbounded. Re-

port and return.*icase=1;
FREEALL return;

}
simp3(a,m,n,ip,kp); Exchange a left- and a right-hand

variable (phase two),is=izrov[kp];
izrov[kp]=iposv[ip];
iposv[ip]=is;

} and return for another iteration.
}

The preceding routine makes use of the following utility functions.

#include <math.h>

void simp1(float **a, int mm, int ll[], int nll, int iabf, int *kp,
float *bmax)

Determines the maximum of those elements whose index is contained in the supplied list ll,
either with or without taking the absolute value, as flagged by iabf.
{

int k;
float test;

*kp=ll[1];
*bmax=a[mm+1][*kp+1];
for (k=2;k<=nll;k++) {

if (iabf == 0)
test=a[mm+1][ll[k]+1]-(*bmax);

else

442 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

test=fabs(a[mm+1][ll[k]+1])-fabs(*bmax);
if (test > 0.0) {

*bmax=a[mm+1][ll[k]+1];
*kp=ll[k];

}
}

}

#define EPS 1.0e-6

void simp2(float **a, int n, int l2[], int nl2, int *ip, int kp, float *q1)
Locate a pivot element, taking degeneracy into account.
{

int k,ii,i;
float qp,q0,q;

*ip=0;
for (i=1;i<=nl2;i++)

if (a[l2[i]+1][kp+1] < -EPS) break; Any possible pivots?
if (i>nl2) return;
*q1 = -a[l2[i]+1][1]/a[l2[i]+1][kp+1];
*ip=l2[i];
for (i=i+1;i<=nl2;i++) {

ii=l2[i];
if (a[ii+1][kp+1] < -EPS) {

q = -a[ii+1][1]/a[ii+1][kp+1];
if (q < *q1) {

*ip=ii;
*q1=q;

} else if (q == *q1) { We have a degeneracy.
for (k=1;k<=n;k++) {

qp = -a[*ip+1][k+1]/a[*ip+1][kp+1];
q0 = -a[ii+1][k+1]/a[ii+1][kp+1];
if (q0 != qp) break;

}
if (q0 < qp) *ip=ii;

}
}

}
}

void simp3(float **a, int i1, int k1, int ip, int kp)
Matrix operations to exchange a left-hand and right-hand variable (see text).
{

int kk,ii;
float piv;

piv=1.0/a[ip+1][kp+1];
for (ii=1;ii<=i1+1;ii++)

if (ii-1 != ip) {
a[ii][kp+1] *= piv;
for (kk=1;kk<=k1+1;kk++)

if (kk-1 != kp)
a[ii][kk] -= a[ip+1][kk]*a[ii][kp+1];

}

10.8 Linear Programming and the Simplex Method 443

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (kk=1;kk<=k1+1;kk++)
if (kk-1 != kp) a[ip+1][kk] *= -piv;

a[ip+1][kp+1]=piv;
}

Other Topics Briefly Mentioned

Every linear programming problem in normal form with N variables and M
constraints has a corresponding dual problem with M variables and N constraints.
The tableau of the dual problem is, in essence, the transpose of the tableau of the
original (sometimes called primal) problem. It is possible to go from a solution
of the dual to a solution of the primal. This can occasionally be computationally
useful, but generally it is no big deal.

The revised simplex method is exactly equivalent to the simplex method in its
choice of which left-hand and right-hand variables are exchanged. Its computational
effort is not significantly less than that of the simplex method. It does differ in
the organization of its storage, requiring only a matrix of size M ×M , rather than
M × N , in its intermediate stages. If you have a lot of constraints, and memory
size is one of them, then you should look into it.

The primal-dual algorithm and the composite simplex algorithm are two dif-
ferent methods for avoiding the two phases of the usual simplex method: Progress
is made simultaneously towards finding a feasible solution and finding an optimal
solution. There seems to be no clearcut evidence that these methods are superior
to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraints are
replaced by expressions nonlinear in the variables are called nonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is called quadratic programming. Optimization prob-
lems where the variables take on only integer values are called integer programming
problems, a special case of discrete optimization generally. The next section looks
at a particular kind of discrete optimization problem.

CITED REFERENCES AND FURTHER READING:

Bland, R.G. 1981, Scientific American, vol. 244 (June), pp. 126–144. [1]

Dantzig, G.B. 1963, Linear Programming and Extensions (Princeton, NJ: Princeton University
Press). [2]

Kolata, G. 1982, Science, vol. 217, p. 39. [3]

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), Chapters 7–8.

Cooper, L., and Steinberg, D. 1970, Introduction to Methods of Optimization (Philadelphia: Saun-
ders).

Gass, S.T. 1969, Linear Programming, 3rd ed. (New York: McGraw-Hill).

Murty, K.G. 1976, Linear and Combinatorial Programming (New York: Wiley).

Land, A.H., and Powell, S. 1973, Fortran Codes for Mathematical Programming (London: Wiley-
Interscience).

Kuenzi, H.P., Tzschach, H.G., and Zehnder, C.A. 1971, Numerical Methods of Mathematical
Optimization (New York: Academic Press). [4]

444 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.10.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [5]

10.9 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famous traveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each of N cities in turn. (Other practical methods have also been
found.) The method has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires [3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples of combinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply the N -dimensional space of N
continuouslyvariable parameters. Rather, it is a discrete, but very large, configuration
space, like the set of possible orders of cities, or the set of possible allocations of
silicon “real estate” blocks to circuit elements. The number of elements in the
configuration space is factorially large, so that they cannot be explored exhaustively.
Furthermore, since the set is discrete, we are deprived of any notion of “continuing
downhill in a favorable direction.” The concept of “direction” may not have any
meaning in the configuration space.

Below, we will also discuss how to use simulated annealing methods for spaces
with continuous control parameters, like those of §§10.4–10.7. This application is
actually more complicated than the combinatorial one, since the familiar problem of
“long, narrow valleys” again asserts itself. Simulated annealing, as we will see, tries
“random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermody-
namics, specifically with the way that liquids freeze and crystallize, or metals cool
and anneal. At high temperatures, the molecules of a liquid move freely with respect
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that,
for slowly cooled systems, nature is able to find this minimum energy state. In fact, if
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the process is slow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

