
444 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.10.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [5]

10.9 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famous traveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each of N cities in turn. (Other practical methods have also been
found.) The method has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires [3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples of combinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply the N -dimensional space of N
continuouslyvariable parameters. Rather, it is a discrete, but very large, configuration
space, like the set of possible orders of cities, or the set of possible allocations of
silicon “real estate” blocks to circuit elements. The number of elements in the
configuration space is factorially large, so that they cannot be explored exhaustively.
Furthermore, since the set is discrete, we are deprived of any notion of “continuing
downhill in a favorable direction.” The concept of “direction” may not have any
meaning in the configuration space.

Below, we will also discuss how to use simulated annealing methods for spaces
with continuous control parameters, like those of §§10.4–10.7. This application is
actually more complicated than the combinatorial one, since the familiar problem of
“long, narrow valleys” again asserts itself. Simulated annealing, as we will see, tries
“random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermody-
namics, specifically with the way that liquids freeze and crystallize, or metals cool
and anneal. At high temperatures, the molecules of a liquid move freely with respect
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that,
for slowly cooled systems, nature is able to find this minimum energy state. In fact, if
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the process is slow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

10.9 Simulated Annealing Methods 445

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Although the analogy is not perfect, there is a sense in which all of the
minimization algorithms thus far in this chapter correspond to rapid cooling or
quenching. In all cases, we have gone greedily for the quick, nearby solution: From
the starting point, go immediately downhill as far as you can go. This, as often
remarked above, leads to a local, but not necessarily a global, minimum. Nature’s
own minimization algorithm is based on quite a different procedure. The so-called
Boltzmann probability distribution,

Prob (E) ∼ exp(−E/kT) (10.9.1)

expresses the idea that a system in thermal equilibrium at temperature T has its
energy probabilistically distributed among all different energy states E. Even at
low temperature, there is a chance, albeit very small, of a system being in a high
energy state. Therefore, there is a corresponding chance for the system to get out of
a local energy minimum in favor of finding a better, more global, one. The quantity
k (Boltzmann’s constant) is a constant of nature that relates temperature to energy.
In other words, the system sometimes goes uphill as well as downhill; but the lower
the temperature, the less likely is any significant uphill excursion.

In 1953, Metropolis and coworkers [5] first incorporated these kinds of prin-
ciples into numerical calculations. Offered a succession of options, a simulated
thermodynamic system was assumed to change its configuration from energy E1 to
energy E2 with probability p = exp[−(E2 −E1)/kT]. Notice that ifE2 < E1, this
probability is greater than unity; in such cases the change is arbitrarily assigned a
probability p = 1, i.e., the system always took such an option. This general scheme,
of always taking a downhill step while sometimes taking an uphill step, has come
to be known as the Metropolis algorithm.

To make use of the Metropolis algorithm for other than thermodynamic systems,
one must provide the following elements:

1. A description of possible system configurations.
2. A generator of random changes in the configuration; these changes are the

“options” presented to the system.
3. An objective function E (analog of energy) whose minimization is the

goal of the procedure.
4. A control parameter T (analog of temperature) and an annealing schedule

which tells how it is lowered from high to low values, e.g., after how many random
changes in configuration is each downward step in T taken, and how large is that
step. The meaning of “high” and “low” in this context, and the assignment of a
schedule, may require physical insight and/or trial-and-error experiments.

Combinatorial Minimization: The Traveling Salesman

A concrete illustration is provided by the traveling salesman problem. The
proverbial seller visits N cities with given positions (xi, yi), returning finally to his
or her city of origin. Each city is to be visited only once, and the route is to be made as
short as possible. This problem belongs to a class known as NP-complete problems,
whose computation time for an exact solution increases withN as exp(const.×N),
becoming rapidly prohibitive in cost asN increases. The traveling salesman problem
also belongs to a class of minimization problems for which the objective functionE

446 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

has many local minima. In practical cases, it is often enough to be able to choose
from these a minimum which, even if not absolute, cannot be significantly improved
upon. The annealing method manages to achieve this, while limiting its calculations
to scale as a small power of N .

As a problem in simulated annealing, the traveling salesman problem is handled
as follows:

1. Configuration. The cities are numbered i = 1 . . .N and each has coordinates
(xi, yi). A configuration is a permutation of the number 1 . . .N , interpreted as the
order in which the cities are visited.

2. Rearrangements. An efficient set of moves has been suggested by Lin [6].
The moves consist of two types: (a) A section of path is removed and then replaced
with the same cities running in the opposite order; or (b) a section of path is removed
and then replaced in between two cities on another, randomly chosen, part of the path.

3. Objective Function. In the simplest form of the problem, E is taken just
as the total length of journey,

E = L ≡
N∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2 (10.9.2)

with the convention that point N + 1 is identified with point 1. To illustrate the
flexibility of the method, however, we can add the following additional wrinkle:
Suppose that the salesman has an irrational fear of flying over the Mississippi River.
In that case, we would assign each city a parameter µi, equal to +1 if it is east of the
Mississippi, −1 if it is west, and take the objective function to be

E =
N∑
i=1

[√
(xi − xi+1)2 + (yi − yi+1)2 + λ(µi − µi+1)2

]
(10.9.3)

A penalty 4λ is thereby assigned to any river crossing. The algorithm now finds
the shortest path that avoids crossings. The relative importance that it assigns to
length of path versus river crossings is determined by our choice of λ. Figure 10.9.1
shows the results obtained. Clearly, this technique can be generalized to include
many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of values of ∆E that
will be encountered from move to move. Choosing a starting value for the parameter
T which is considerably larger than the largest ∆E normally encountered, we
proceed downward in multiplicative steps each amounting to a 10 percent decrease
in T . We hold each new value of T constant for, say, 100N reconfigurations, or for
10N successful reconfigurations, whichever comes first. When efforts to reduce E
further become sufficiently discouraging, we stop.

The following traveling salesman program, using the Metropolis algorithm,
illustrates the main aspects of the simulated annealing technique for combinatorial
problems.

10.9 Simulated Annealing Methods 447

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

0 .5 1

0

.5

1

0 .5 1

0

.5

1

0 .5 1

0

.5

1

(a)

(b)

(c)

Figure 10.9.1. Traveling salesman problem solved by simulated annealing. The (nearly) shortest path
among 100 randomly positioned cities is shown in (a). The dotted line is a river, but there is no penalty in
crossing. In (b) the river-crossing penalty is made large, and the solution restricts itself to the minimum
number of crossings, two. In (c) the penalty has been made negative: the salesman is actually a smuggler
who crosses the river on the flimsiest excuse!

448 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include <stdio.h>
#include <math.h>
#define TFACTR 0.9 Annealing schedule: reduce t by this factor on each step.
#define ALEN(a,b,c,d) sqrt(((b)-(a))*((b)-(a))+((d)-(c))*((d)-(c)))

void anneal(float x[], float y[], int iorder[], int ncity)
This algorithm finds the shortest round-trip path to ncity cities whose coordinates are in the
arrays x[1..ncity],y[1..ncity]. The array iorder[1..ncity] specifies the order in
which the cities are visited. On input, the elements of iorder may be set to any permutation
of the numbers 1 to ncity. This routine will return the best alternative path it can find.
{

int irbit1(unsigned long *iseed);
int metrop(float de, float t);
float ran3(long *idum);
float revcst(float x[], float y[], int iorder[], int ncity, int n[]);
void reverse(int iorder[], int ncity, int n[]);
float trncst(float x[], float y[], int iorder[], int ncity, int n[]);
void trnspt(int iorder[], int ncity, int n[]);
int ans,nover,nlimit,i1,i2;
int i,j,k,nsucc,nn,idec;
static int n[7];
long idum;
unsigned long iseed;
float path,de,t;

nover=100*ncity; Maximum number of paths tried at any temperature.
nlimit=10*ncity; Maximum number of successful path changes before con-

tinuing.path=0.0;
t=0.5;
for (i=1;i<ncity;i++) { Calculate initial path length.

i1=iorder[i];
i2=iorder[i+1];
path += ALEN(x[i1],x[i2],y[i1],y[i2]);

}
i1=iorder[ncity]; Close the loop by tying path ends together.
i2=iorder[1];
path += ALEN(x[i1],x[i2],y[i1],y[i2]);
idum = -1;
iseed=111;
for (j=1;j<=100;j++) { Try up to 100 temperature steps.

nsucc=0;
for (k=1;k<=nover;k++) {

do {
n[1]=1+(int) (ncity*ran3(&idum)); Choose beginning of segment

..n[2]=1+(int) ((ncity-1)*ran3(&idum)); ..and end of segment.
if (n[2] >= n[1]) ++n[2];
nn=1+((n[1]-n[2]+ncity-1) % ncity); nn is the number of cities

not on the segment.} while (nn<3);
idec=irbit1(&iseed);
Decide whether to do a segment reversal or transport.
if (idec == 0) { Do a transport.

n[3]=n[2]+(int) (abs(nn-2)*ran3(&idum))+1;
n[3]=1+((n[3]-1) % ncity);
Transport to a location not on the path.
de=trncst(x,y,iorder,ncity,n); Calculate cost.
ans=metrop(de,t); Consult the oracle.
if (ans) {

++nsucc;
path += de;
trnspt(iorder,ncity,n); Carry out the transport.

}
} else { Do a path reversal.

de=revcst(x,y,iorder,ncity,n); Calculate cost.
ans=metrop(de,t); Consult the oracle.

10.9 Simulated Annealing Methods 449

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (ans) {
++nsucc;
path += de;
reverse(iorder,ncity,n); Carry out the reversal.

}
}
if (nsucc >= nlimit) break; Finish early if we have enough suc-

cessful changes.}
printf("\n %s %10.6f %s %12.6f \n","T =",t,

" Path Length =",path);
printf("Successful Moves: %6d\n",nsucc);
t *= TFACTR; Annealing schedule.
if (nsucc == 0) return; If no success, we are done.

}
}

#include <math.h>
#define ALEN(a,b,c,d) sqrt(((b)-(a))*((b)-(a))+((d)-(c))*((d)-(c)))

float revcst(float x[], float y[], int iorder[], int ncity, int n[])
This function returns the value of the cost function for a proposed path reversal. ncity is the
number of cities, and arrays x[1..ncity],y[1..ncity] give the coordinates of these cities.
iorder[1..ncity] holds the present itinerary. The first two values n[1] and n[2] of array
n give the starting and ending cities along the path segment which is to be reversed. On output,
de is the cost of making the reversal. The actual reversal is not performed by this routine.
{

float xx[5],yy[5],de;
int j,ii;

n[3]=1 + ((n[1]+ncity-2) % ncity); Find the city before n[1] ..
n[4]=1 + (n[2] % ncity); .. and the city after n[2].
for (j=1;j<=4;j++) {

ii=iorder[n[j]]; Find coordinates for the four cities in-
volved.xx[j]=x[ii];

yy[j]=y[ii];
}
de = -ALEN(xx[1],xx[3],yy[1],yy[3]); Calculate cost of disconnecting the seg-

ment at both ends and reconnecting
in the opposite order.

de -= ALEN(xx[2],xx[4],yy[2],yy[4]);
de += ALEN(xx[1],xx[4],yy[1],yy[4]);
de += ALEN(xx[2],xx[3],yy[2],yy[3]);
return de;

}

void reverse(int iorder[], int ncity, int n[])
This routine performs a path segment reversal. iorder[1..ncity] is an input array giving the
present itinerary. The vector n has as its first four elements the first and last cities n[1],n[2]
of the path segment to be reversed, and the two cities n[3] and n[4] that immediately
precede and follow this segment. n[3] and n[4] are found by function revcst. On output,
iorder[1..ncity] contains the segment from n[1] to n[2] in reversed order.
{

int nn,j,k,l,itmp;

nn=(1+((n[2]-n[1]+ncity) % ncity))/2; This many cities must be swapped to
effect the reversal.for (j=1;j<=nn;j++) {

k=1 + ((n[1]+j-2) % ncity); Start at the ends of the segment and
swap pairs of cities, moving toward
the center.

l=1 + ((n[2]-j+ncity) % ncity);
itmp=iorder[k];
iorder[k]=iorder[l];
iorder[l]=itmp;

}
}

450 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include <math.h>
#define ALEN(a,b,c,d) sqrt(((b)-(a))*((b)-(a))+((d)-(c))*((d)-(c)))

float trncst(float x[], float y[], int iorder[], int ncity, int n[])
This routine returns the value of the cost function for a proposed path segment transport. ncity
is the number of cities, and arrays x[1..ncity] and y[1..ncity] give the city coordinates.
iorder[1..ncity] is an array giving the present itinerary. The first three elements of array
n give the starting and ending cities of the path to be transported, and the point among the
remaining cities after which it is to be inserted. On output, de is the cost of the change. The
actual transport is not performed by this routine.
{

float xx[7],yy[7],de;
int j,ii;

n[4]=1 + (n[3] % ncity); Find the city following n[3]..
n[5]=1 + ((n[1]+ncity-2) % ncity); ..and the one preceding n[1]..
n[6]=1 + (n[2] % ncity); ..and the one following n[2].
for (j=1;j<=6;j++) {

ii=iorder[n[j]]; Determine coordinates for the six cities
involved.xx[j]=x[ii];

yy[j]=y[ii];
}
de = -ALEN(xx[2],xx[6],yy[2],yy[6]); Calculate the cost of disconnecting the

path segment from n[1] to n[2],
opening a space between n[3] and
n[4], connecting the segment in the
space, and connecting n[5] to n[6].

de -= ALEN(xx[1],xx[5],yy[1],yy[5]);
de -= ALEN(xx[3],xx[4],yy[3],yy[4]);
de += ALEN(xx[1],xx[3],yy[1],yy[3]);
de += ALEN(xx[2],xx[4],yy[2],yy[4]);
de += ALEN(xx[5],xx[6],yy[5],yy[6]);
return de;

}

#include "nrutil.h"

void trnspt(int iorder[], int ncity, int n[])
This routine does the actual path transport, once metrop has approved. iorder[1..ncity]
is an input array giving the present itinerary. The array n has as its six elements the beginning
n[1] and end n[2] of the path to be transported, the adjacent cities n[3] and n[4] between
which the path is to be placed, and the cities n[5] and n[6] that precede and follow the path.
n[4], n[5], and n[6] are calculated by function trncst. On output, iorder is modified to
reflect the movement of the path segment.
{

int m1,m2,m3,nn,j,jj,*jorder;

jorder=ivector(1,ncity);
m1=1 + ((n[2]-n[1]+ncity) % ncity); Find number of cities from n[1] to n[2]
m2=1 + ((n[5]-n[4]+ncity) % ncity); ...and the number from n[4] to n[5]
m3=1 + ((n[3]-n[6]+ncity) % ncity); ...and the number from n[6] to n[3].
nn=1;
for (j=1;j<=m1;j++) {

jj=1 + ((j+n[1]-2) % ncity); Copy the chosen segment.
jorder[nn++]=iorder[jj];

}
for (j=1;j<=m2;j++) { Then copy the segment from n[4] to

n[5].jj=1+((j+n[4]-2) % ncity);
jorder[nn++]=iorder[jj];

}
for (j=1;j<=m3;j++) { Finally, the segment from n[6] to n[3].

jj=1 + ((j+n[6]-2) % ncity);
jorder[nn++]=iorder[jj];

}
for (j=1;j<=ncity;j++) Copy jorder back into iorder.

iorder[j]=jorder[j];

10.9 Simulated Annealing Methods 451

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

free_ivector(jorder,1,ncity);
}

#include <math.h>

int metrop(float de, float t)
Metropolis algorithm. metrop returns a boolean variable that issues a verdict on whether
to accept a reconfiguration that leads to a change de in the objective function e. If de<0,
metrop = 1 (true), while if de>0, metrop is only true with probability exp(-de/t), where
t is a temperature determined by the annealing schedule.
{

float ran3(long *idum);
static long gljdum=1;

return de < 0.0 || ran3(&gljdum) < exp(-de/t);
}

Continuous Minimization by Simulated Annealing

The basic ideas of simulated annealing are also applicable to optimization
problems with continuous N -dimensional control spaces, e.g., finding the (ideally,
global) minimum of some function f(x), in the presence of many local minima,
where x is an N -dimensional vector. The four elements required by the Metropolis
procedure are now as follows: The value of f is the objective function. The
system state is the point x. The control parameter T is, as before, something like a
temperature, with an annealing schedule by which it is gradually reduced. And there
must be a generator of random changes in the configuration, that is, a procedure for
taking a random step from x to x + ∆x.

The last of these elements is the most problematical. The literature to date [7-10]

describes several different schemes for choosing ∆x, none of which, in our view,
inspire complete confidence. The problem is one of efficiency: A generator of
random changes is inefficient if, when local downhill moves exist, it nevertheless
almost always proposes an uphill move. A good generator, we think, should not
become inefficient in narrow valleys; nor should it become more and more inefficient
as convergence to a minimum is approached. Except possibly for [7], all of the
schemes that we have seen are inefficient in one or both of these situations.

Our own way of doing simulated annealing minimization on continuous control
spaces is to use a modification of the downhill simplex method (§10.4). This amounts
to replacing the single point x as a description of the system state by a simplex of
N + 1 points. The “moves” are the same as described in §10.4, namely reflections,
expansions, and contractions of the simplex. The implementation of the Metropolis
procedure is slightly subtle: We add a positive, logarithmically distributed random
variable, proportional to the temperature T , to the stored function value associated
with every vertex of the simplex, and we subtract a similar random variable from
the function value of every new point that is tried as a replacement point. Like the
ordinary Metropolis procedure, this method always accepts a true downhill step, but

452 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sometimes accepts an uphill one. In the limit T → 0, this algorithm reduces exactly
to the downhill simplex method and converges to a local minimum.

At a finite value of T , the simplex expands to a scale that approximates the size
of the region that can be reached at this temperature, and then executes a stochastic,
tumbling Brownian motion within that region, sampling new, approximately random,
points as it does so. The efficiency with which a region is explored is independent
of its narrowness (for an ellipsoidal valley, the ratio of its principal axes) and
orientation. If the temperature is reduced sufficiently slowly, it becomes highly
likely that the simplex will shrink into that region containing the lowest relative
minimum encountered.

As in all applications of simulated annealing, there can be quite a lot of
problem-dependent subtlety in the phrase “sufficiently slowly”; success or failure
is quite often determined by the choice of annealing schedule. Here are some
possibilities worth trying:

• Reduce T to (1 − ε)T after every m moves, where ε/m is determined
by experiment.

• Budget a total of K moves, and reduce T after every m moves to a value
T = T0(1− k/K)α, where k is the cumulative number of moves thus far,
and α is a constant, say 1, 2, or 4. The optimal value for α depends on the
statistical distribution of relative minima of various depths. Larger values
of α spend more iterations at lower temperature.

• After everymmoves, setT to β times f1−fb , whereβ is an experimentally
determined constant of order 1, f1 is the smallest function value currently
represented in the simplex, and fb is the best function ever encountered.
However, never reduce T by more than some fraction γ at a time.

Another strategic question is whether to do an occasional restart, where a vertex
of the simplex is discarded in favor of the “best-ever” point. (You must be sure that
the best-ever point is not currently in the simplex when you do this!) We have found
problems for which restarts — every time the temperature has decreased by a factor
of 3, say — are highly beneficial; we have found other problems for which restarts
have no positive, or a somewhat negative, effect.

You should compare the following routine, amebsa, with its counterpart amoeba
in §10.4. Note that the argument iter is used in a somewhat different manner.

#include <math.h>
#include "nrutil.h"
#define GET_PSUM \

for (n=1;n<=ndim;n++) {\
for (sum=0.0,m=1;m<=mpts;m++) sum += p[m][n];\
psum[n]=sum;}

extern long idum; Defined and initialized in main.
float tt; Communicates with amotsa.

void amebsa(float **p, float y[], int ndim, float pb[], float *yb, float ftol,
float (*funk)(float []), int *iter, float temptr)

Multidimensional minimization of the function funk(x) where x[1..ndim] is a vector in
ndim dimensions, by simulated annealing combined with the downhill simplex method of Nelder
and Mead. The input matrix p[1..ndim+1][1..ndim] has ndim+1 rows, each an ndim-
dimensional vector which is a vertex of the starting simplex. Also input are the following: the
vector y[1..ndim+1], whose components must be pre-initialized to the values of funk eval-
uated at the ndim+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be
achieved in the function value for an early return; iter, and temptr. The routine makes iter
function evaluations at an annealing temperature temptr, then returns. You should then de-

10.9 Simulated Annealing Methods 453

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

crease temptr according to your annealing schedule, reset iter, and call the routine again
(leaving other arguments unaltered between calls). If iter is returned with a positive value,
then early convergence and return occurred. If you initialize yb to a very large value on the first
call, then yb and pb[1..ndim] will subsequently return the best function value and point ever
encountered (even if it is no longer a point in the simplex).
{

float amotsa(float **p, float y[], float psum[], int ndim, float pb[],
float *yb, float (*funk)(float []), int ihi, float *yhi, float fac);

float ran1(long *idum);
int i,ihi,ilo,j,m,n,mpts=ndim+1;
float rtol,sum,swap,yhi,ylo,ynhi,ysave,yt,ytry,*psum;

psum=vector(1,ndim);
tt = -temptr;
GET_PSUM
for (;;) {

ilo=1; Determine which point is the highest (worst),
next-highest, and lowest (best).ihi=2;

ynhi=ylo=y[1]+tt*log(ran1(&idum)); Whenever we “look at” a vertex, it gets
a random thermal fluctuation.yhi=y[2]+tt*log(ran1(&idum));

if (ylo > yhi) {
ihi=1;
ilo=2;
ynhi=yhi;
yhi=ylo;
ylo=ynhi;

}
for (i=3;i<=mpts;i++) { Loop over the points in the simplex.

yt=y[i]+tt*log(ran1(&idum)); More thermal fluctuations.
if (yt <= ylo) {

ilo=i;
ylo=yt;

}
if (yt > yhi) {

ynhi=yhi;
ihi=i;
yhi=yt;

} else if (yt > ynhi) {
ynhi=yt;

}
}
rtol=2.0*fabs(yhi-ylo)/(fabs(yhi)+fabs(ylo));
Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol || *iter < 0) { If returning, put best point and value in

slot 1.swap=y[1];
y[1]=y[ilo];
y[ilo]=swap;
for (n=1;n<=ndim;n++) {

swap=p[1][n];
p[1][n]=p[ilo][n];
p[ilo][n]=swap;

}
break;

}
*iter -= 2;
Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.
ytry=amotsa(p,y,psum,ndim,pb,yb,funk,ihi,&yhi,-1.0);
if (ytry <= ylo) {

Gives a result better than the best point, so try an additional extrapolation by a
factor of 2.
ytry=amotsa(p,y,psum,ndim,pb,yb,funk,ihi,&yhi,2.0);

} else if (ytry >= ynhi) {
The reflected point is worse than the second-highest, so look for an intermediate

454 Chapter 10. Minimization or Maximization of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

lower point, i.e., do a one-dimensional contraction.
ysave=yhi;
ytry=amotsa(p,y,psum,ndim,pb,yb,funk,ihi,&yhi,0.5);
if (ytry >= ysave) { Can’t seem to get rid of that high point.

Better contract around the lowest
(best) point.

for (i=1;i<=mpts;i++) {
if (i != ilo) {

for (j=1;j<=ndim;j++) {
psum[j]=0.5*(p[i][j]+p[ilo][j]);
p[i][j]=psum[j];

}
y[i]=(*funk)(psum);

}
}
*iter -= ndim;
GET_PSUM Recompute psum.

}
} else ++(*iter); Correct the evaluation count.

}
free_vector(psum,1,ndim);

}

#include <math.h>
#include "nrutil.h"

extern long idum; Defined and initialized in main.
extern float tt; Defined in amebsa.

float amotsa(float **p, float y[], float psum[], int ndim, float pb[],
float *yb, float (*funk)(float []), int ihi, float *yhi, float fac)

Extrapolates by a factor fac through the face of the simplex across from the high point, tries
it, and replaces the high point if the new point is better.
{

float ran1(long *idum);
int j;
float fac1,fac2,yflu,ytry,*ptry;

ptry=vector(1,ndim);
fac1=(1.0-fac)/ndim;
fac2=fac1-fac;
for (j=1;j<=ndim;j++)

ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;
ytry=(*funk)(ptry);
if (ytry <= *yb) { Save the best-ever.

for (j=1;j<=ndim;j++) pb[j]=ptry[j];
*yb=ytry;

}
yflu=ytry-tt*log(ran1(&idum)); We added a thermal fluctuation to all the current

vertices, but we subtract it here, so as to give
the simplex a thermal Brownian motion: It
likes to accept any suggested change.

if (yflu < *yhi) {
y[ihi]=ytry;
*yhi=yflu;
for (j=1;j<=ndim;j++) {

psum[j] += ptry[j]-p[ihi][j];
p[ihi][j]=ptry[j];

}
}
free_vector(ptry,1,ndim);
return yflu;

}

There is not yet enough practical experience with the method of simulated
annealing to say definitively what its future place among optimization methods

10.9 Simulated Annealing Methods 455

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

will be. The method has several extremely attractive features, rather unique when
compared with other optimization techniques.

First, it is not “greedy,” in the sense that it is not easily fooled by the quick
payoff achieved by falling into unfavorable local minima. Provided that sufficiently
general reconfigurations are given, it wanders freely among local minima of depth
less than about T . As T is lowered, the number of such minima qualifying for
frequent visits is gradually reduced.

Second, configuration decisions tend to proceed in a logical order. Changes
that cause the greatest energy differences are sifted over when the control parameter
T is large. These decisions become more permanent as T is lowered, and attention
then shifts more to smaller refinements in the solution. For example, in the traveling
salesman problem with the Mississippi River twist, if λ is large, a decision to cross
the Mississippi only twice is made at high T , while the specific routes on each side
of the river are determined only at later stages.

The analogies to thermodynamics may be pursued to a greater extent than we
have done here. Quantities analogous to specific heat and entropy may be defined,
and these can be useful in monitoring the progress of the algorithm towards an
acceptable solution. Information on this subject is found in [1].

CITED REFERENCES AND FURTHER READING:

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. 1983, Science, vol. 220, pp. 671–680. [1]

Kirkpatrick, S. 1984, Journal of Statistical Physics, vol. 34, pp. 975–986. [2]

Vecchi, M.P. and Kirkpatrick, S. 1983, IEEE Transactions on Computer Aided Design, vol. CAD-
2, pp. 215–222. [3]

Otten, R.H.J.M., and van Ginneken, L.P.P.P. 1989, The Annealing Algorithm (Boston: Kluwer)
[contains many references to the literature]. [4]

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller A., and Teller, E. 1953, Journal of Chemical
Physics, vol. 21, pp. 1087–1092. [5]

Lin, S. 1965, Bell System Technical Journal, vol. 44, pp. 2245–2269. [6]

Vanderbilt, D., and Louie, S.G. 1984, Journal of Computational Physics, vol. 56, pp. 259–271. [7]

Bohachevsky, I.O., Johnson, M.E., and Stein, M.L. 1986, Technometrics, vol. 28, pp. 209–217. [8]

Corana, A., Marchesi, M., Martini, C., and Ridella, S. 1987, ACM Transactions on Mathematical
Software, vol. 13, pp. 262–280. [9]

Bélisle, C.J.P., Romeijn, H.E., and Smith, R.L. 1990, Technical Report 90–25, Department of
Industrial and Operations Engineering, University of Michigan, submitted to Mathematical
Programming. [10]

Christofides, N., Mingozzi, A., Toth, P., and Sandi, C. (eds.) 1979, Combinatorial Optimization
(London and New York: Wiley-Interscience) [not simulated annealing, but other topics and
algorithms].

