Chapter 12. Fast Fourier Transform

12.0 Introduction

A very large class of important computational problems falls under the general
rubric of “Fourier transform methods’ or “spectral methods.” For some of these
problems, the Fourier transform is simply an efficient computational tool for
accomplishing certain common manipulations of data. In other cases, we have
problems for which the Fourier transform (or the related “ power spectrum”) isitself
of intrinsicinterest. These two kinds of problems share a common methodol ogy.

Largely for historical reasons the literature on Fourier and spectral methods has
been digointfromtheliteratureon “classical” numerical analysis. Nowadaysthereis
no justificationfor such asplit. Fourier methods are commonplacein research and we
shall not treat them as specialized or arcane. At the same time, we realize that many
computer users have had relatively less experience with this field than with, say,
differential equations or numerical integration. Therefore our summary of analytical
resultswill be more complete. Numerical algorithms, per se, beginin§12.2. Various
applications of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in the time domain, by the values of
some quantity  as afunction of timet, eg., h(t), or else in the frequency domain,
where the process is specified by giving its amplitude H (generally a complex
number indicating phase aso) as a function of frequency f, that is H(f), with
—o00 < f < oo. For many purposesit is useful to think of h(t) and H(f) as being
two different representations of the same function. One goes back and forth between
these two representations by means of the Fourier transform equations,

mﬁ:/mmmmmﬁ
o (12.0.1)
h(t) = / H(f)e > 5" df

If t ismeasured in seconds, then f in equation (12.0.1) isin cycles per second,
or Hertz (the unit of frequency). However, the equations work with other unitstoo.
If hisafunctionof positionx (in meters), H will beafunction of inversewavelength
(cycles per meter), and so on. If you aretrained as a physicist or mathematician, you
are probably more used to using angular frequency w, which is givenin radians per
sec. The relation between w and f, H(w) and H(f) is

w=2nf H(w)=[H(f) 0 /2x (12.0.2)
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and equation (12.0.1) looks like this

H(w) = / h h(t)e'dt
R (12.0.3)

h(t) = % /_ H(w)e ™ dw

We were raised on the w-convention, but we changed! There are fewer factors of
27 to remember if you use the f-convention, especially when we get to discretely
sampled data in §12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functionsis equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, function h(¢t) may happen to have one or more specia
symmetries It might be purely real or purely imaginary or it might be even,
h(t) = h(—t), or odd, h(t) = —h(—t). Inthe frequency domain, these symmetries
lead to relationships between H(f) and H(—f). The following table gives the
correspondence between symmetries in the two domains:

If... then. .
t)isred f) [H(N))*
t) isimaginary f) =—-[HI*
t) iseven f)= H( ) [i.e, H(f)iseven)
fy=—-H(f) [i.e, H(f)isodd]

) |sreal and even
f) isimaginary and odd
f) isimaginary and even
f) isrea and odd

t) isred and odd
t) isimaginary and even
t) isimaginary and odd

h(t) H(—
h(t) H(—
h(t) H(-
h(t) isodd H(-
h(t) isreal and even H(
h(t) H(
h(t) H(
h(t) H(

In subsequent sections we shall see how to use these symmetries to increase
computationa efficiency.

Here are some other elementary properties of the Fourier transform. (We'll use
the “<=-" symbol to indicate transform pairs.) If

h(t) <= H(f)

is such a pair, then other transform pairs are

h(at) <= |1—|H(i) “time scaling” (12.0.4)

a a
o] h( ) < H(bf) “frequency scaling” (12.0.5)
h(t —to) <= H(f) *™ft0  “timeshifting” (12.0.6)

h(t) e= 2ot — H(f — fo) “frequency shifting”  (12.0.7)
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498 Chapter 12.  Fast Fourier Transform

With two functions h(t) and g(t), and their corresponding Fourier transforms
H(f) and G(f), we can form two combinationsof special interest. The convolution
of the two functions, denoted g  h, is defined by

gxh= /_OO g(T)h(t —7) dt (12.0.8)

Notethat g * h isafunction in the time domain and that g « h = h * g. It turns out
that the function g * h is one member of a simple transform pair

gxh<= G(f)H(f) “Convolution Theorem” (12.0.9)

In other words, the Fourier transform of the convolution is just the product of the
individua Fourier transforms.
The correlation of two functions, denoted Corr(g, k), is defined by

Corr(g, h) = /OO g(t +t)h(r) dr (12.0.10)

— 00

The correlationisafunction of ¢, which iscalled thelag. It thereforeliesin thetime
domain, and it turns out to be one member of the transform pair:

Corr(g, h) < G(f)H*(f) “Correlation Theorem” (12.0.11)

[Moregenerally, thesecond member of thepairisG(f)H (—f), butwearerestricting
ourselvesto theusual caseinwhich g and h arereal functions, so wetaketheliberty of
setting H(—f) = H*(f).] Thisresult shows that multiplyingthe Fourier transform
of one function by the complex conjugate of the Fourier transform of the other gives
the Fourier transform of their correlation. The correlation of afunction withitself is
called itsautocorrelation. In this case (12.0.11) becomes the transform pair

Corr(g, g) < |G(f)| “Wiener-Khinchin Theorem” (12.0.12)

The total power in a signa is the same whether we compute it in the time
domain or in the frequency domain. Thisresult isknown as Parseval’s theorem:

Total Power = /OO \h())? dt = /OO \H(f)]? df (12.0.13)

— 00 —00

Frequently onewantsto know “how much power” is contained in the frequency
interval between f and f + df. In such circumstances one does not usually
distinguish between positive and negative f, but rather regards f as varying from O
(“zero frequency” or D.C.) to +oo. In such cases, one defines the one-sided power
spectral density (PSD) of the function h as

P(f)=|HN* +H(=FP 0= f<oo (12.0.14)

so that the total power isjust theintegral of P, (f) from f = 0to f = co. When the
function h(t) isreal, thenthetwotermsin (12.0.14) areequal, 0 P, (f) = 2 |H(f)|*.
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Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly spesking, are called two-sided power spectral densities, but some books
are not careful about stating whether one- or two-sided is to be assumed. We
will aways use the one-sided density given by equation (12.0.14). Figure 12.0.1
contrasts the two conventions.

If the function h(t) goes endlessly from —oo < ¢t < oo, then its total power
and power spectral density will, in generd, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function A(t), computing its PSD [that is, the PSD
of afunction that equals h(t) in the finite stretch but is zero everywhere elsg], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equa to the mean square amplitude of the signa A(t).

You might well worry about how the PSD-per-unit-time, which is a function
of frequency f, converges as one evaluates it using longer and longer stretches of
data. This interesting question is the content of the subject of “power spectrum
estimation,” and will be considered below in §13.4-513.7. A crude answer for
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500 Chapter 12.  Fast Fourier Transform

now is. The PSD-per-unit-time converges to finite values at all frequencies except
those where h(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especialy with experimental
data, we are amost never given a continuous function h(t) to work with, but are
given, rather, alist of measurements of h(t;) for adiscrete set of ¢;’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:
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demic Press).
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12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e, its value is
recorded) at evenly spaced intervalsintime. Let A denote thetime interval between
consecutive samples, so that the sequence of sampled valuesis

hp =h(nA)  n=...,—3,-2,-1,0,1,2,3,... (12.1.1)

The reciprocal of thetimeinterval A iscalled the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a specia frequency f., called the
Nyquist critical frequency, given by

1
fe= 5A (12.1.2)
If asinewave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval A. In this case the Nyquist critical frequency is
just the constant 1/2.
The Nyquist critical frequency isimportant for two related, but distinct, reasons.

Oneis good news, and the other bad news. First the good news. It isthe remarkable
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