
12.4 FFT in Two or More Dimensions 521

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

}
}

}

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements of fj into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10–10.

Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849–863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455–1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004–1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex function h(k1, k2) defined over the two-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can define its two-dimensional discrete
Fourier transform as a complex functionH(n1, n2), defined over the same grid,

H(n1, n2) ≡
N2−1∑
k2=0

N1−1∑
k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1) h(k1, k2)

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum over k2,
we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(n1, n2) = FFT-on-index-1 (FFT-on-index-2 [h(k1, k2)])

= FFT-on-index-2 (FFT-on-index-1 [h(k1, k2)])
(12.4.2)

522 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

For this to be practical, of course, both N1 and N2 should be some efficient length
for an FFT, usually a power of 2. Programming a two-dimensional FFT, using
(12.4.2) with a one-dimensional FFT routine, is a bit clumsier than it seems at first.
Because the one-dimensional routine requires that its input be in consecutive order
as a one-dimensional complex array, you find that you are endlessly copying things
out of the multidimensional input array and then copying things back into it. This
is not recommended technique. Rather, you should use a multidimensional FFT
routine, such as the one we give below.

The generalization of (12.4.1) to more than two dimensions, say to L-
dimensions, is evidently

H(n1, . . . , nL) ≡
NL−1∑
kL=0

· · ·
N1−1∑
k1=0

exp(2πikLnL/NL) × · · ·

× exp(2πik1n1/N1) h(k1, . . . , kL)

(12.4.3)

where n1 and k1 range from 0 to N1 − 1, . . . , nL and kL range from 0 to NL − 1.
How many calls to a one-dimensional FFT are in (12.4.3)? Quite a few! For each
value of k1, k2, . . . , kL−1 you FFT to transform the L index. Then for each value of
k1, k2, . . . , kL−2 and nL you FFT to transform the L − 1 index. And so on. It is
best to rely on someone else having done the bookkeeping for once and for all.

The inverse transforms of (12.4.1) or (12.4.3) are just what you would expect
them to be: Change the i’s in the exponentials to −i’s, and put an overall
factor of 1/(N1 × · · · × NL) in front of the whole thing. Most other features
of multidimensional FFTs are also analogous to features already discussed in the
one-dimensional case:

• Frequencies are arranged in wrap-around order in the transform, but now
for each separate dimension.

• The input data are also treated as if they were wrapped around. If they are
discontinuous across this periodic identification (in any dimension) then
the spectrum will have some excess power at high frequencies because
of the discontinuity. The fix, if you care, is to remove multidimensional
linear trends.

• If you are doing spatial filtering and are worried about wrap-around effects,
then you need to zero-pad all around the border of the multidimensional
array. However, be sure to notice how costly zero-padding is in multidi-
mensional transforms. If you use too thick a zero-pad, you are going to
waste a lot of storage, especially in 3 or more dimensions!

• Aliasing occurs as always if sufficient bandwidth limiting does not exist
along one or more of the dimensions of the transform.

The routine fourn that we furnish herewith is a descendant of one written by N.
M. Brenner. It requires as input (i) a scalar, telling the number of dimensions, e.g.,
2; (ii) a vector, telling the length of the array in each dimension, e.g., (32,64). Note
that these lengths must all be powers of 2, and are the numbers of complex values
in each direction; (iii) the usual scalar equal to ±1 indicating whether you want the
transform or its inverse; and, finally (iv) the array of data.

A few words about the data array: fourn accesses it as a one-dimensional
array of real numbers, that is, data[1..(2N1N2 . . .NL)], of length equal to twice

12.4 FFT in Two or More Dimensions 523

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

row of 2N2 float numbers

row 1

row 2

row N1/ 2

row N1/ 2 + 1

row N1/ 2 + 2

row N1

1
N1∆1

f1 = 0

f1 =

f1 =

f1 = −

1⁄2 N1 − 1
N1∆1

1
N1∆1

f1 = ± 1
2∆1

f1 = −
1⁄2 N1 − 1

N1∆1

data [1]

Re Im

data [2N1N2]

Figure 12.4.1. Storage arrangement of frequencies in the output H(f1, f2) of a two-dimensional FFT.
The input data is a two-dimensional N1 × N2 array h(t1, t2) (stored by rows of complex numbers).
The output is also stored by complex rows. Each row corresponds to a particular value of f1 , as shown
in the figure. Within each row, the arrangement of frequencies f2 is exactly as shown in Figure 12.2.2.
∆1 and ∆2 are the sampling intervals in the 1 and 2 directions, respectively. The total number of (real)
array elements is 2N1N2. The program fourn can also do more than two dimensions, and the storage
arrangement generalizes in the obvious way.

the product of the lengths of the L dimensions. It assumes that the array represents
an L-dimensional complex array, with individual components ordered as follows:
(i) each complex value occupies two sequential locations, real part followed by
imaginary; (ii) the first subscript changes least rapidly as one goes through the array;
the last subscript changes most rapidly (that is, “store by rows,” the C norm); (iii)
subscripts range from 1 to their maximum values (N1, N2, . . . , NL, respectively),
rather than from 0 toN1− 1, N2− 1, . . . , NL− 1. Almost all failures to get fourn
to work result from improper understanding of the above ordering of the data array,
so take care! (Figure 12.4.1 illustrates the format of the output array.)

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void fourn(float data[], unsigned long nn[], int ndim, int isign)
Replaces data by its ndim-dimensional discrete Fourier transform, if isign is input as 1.
nn[1..ndim] is an integer array containing the lengths of each dimension (number of complex
values), which MUST all be powers of 2. data is a real array of length twice the product of
these lengths, in which the data are stored as in a multidimensional complex array: real and
imaginary parts of each element are in consecutive locations, and the rightmost index of the
array increases most rapidly as one proceeds along data. For a two-dimensional array, this is
equivalent to storing the array by rows. If isign is input as −1, data is replaced by its inverse
transform times the product of the lengths of all dimensions.

524 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

{
int idim;
unsigned long i1,i2,i3,i2rev,i3rev,ip1,ip2,ip3,ifp1,ifp2;
unsigned long ibit,k1,k2,n,nprev,nrem,ntot;
float tempi,tempr;
double theta,wi,wpi,wpr,wr,wtemp; Double precision for trigonometric recur-

rences.
for (ntot=1,idim=1;idim<=ndim;idim++) Compute total number of complex val-

ues.ntot *= nn[idim];
nprev=1;
for (idim=ndim;idim>=1;idim--) { Main loop over the dimensions.

n=nn[idim];
nrem=ntot/(n*nprev);
ip1=nprev << 1;
ip2=ip1*n;
ip3=ip2*nrem;
i2rev=1;
for (i2=1;i2<=ip2;i2+=ip1) { This is the bit-reversal section of the

routine.if (i2 < i2rev) {
for (i1=i2;i1<=i2+ip1-2;i1+=2) {

for (i3=i1;i3<=ip3;i3+=ip2) {
i3rev=i2rev+i3-i2;
SWAP(data[i3],data[i3rev]);
SWAP(data[i3+1],data[i3rev+1]);

}
}

}
ibit=ip2 >> 1;
while (ibit >= ip1 && i2rev > ibit) {

i2rev -= ibit;
ibit >>= 1;

}
i2rev += ibit;

}
ifp1=ip1; Here begins the Danielson-Lanczos sec-

tion of the routine.while (ifp1 < ip2) {
ifp2=ifp1 << 1;
theta=isign*6.28318530717959/(ifp2/ip1); Initialize for the trig. recur-

rence.wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (i3=1;i3<=ifp1;i3+=ip1) {

for (i1=i3;i1<=i3+ip1-2;i1+=2) {
for (i2=i1;i2<=ip3;i2+=ifp2) {

k1=i2; Danielson-Lanczos formula:
k2=k1+ifp1;
tempr=(float)wr*data[k2]-(float)wi*data[k2+1];
tempi=(float)wr*data[k2+1]+(float)wi*data[k2];
data[k2]=data[k1]-tempr;
data[k2+1]=data[k1+1]-tempi;
data[k1] += tempr;
data[k1+1] += tempi;

}
}
wr=(wtemp=wr)*wpr-wi*wpi+wr; Trigonometric recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
ifp1=ifp2;

}
nprev *= n;

}
}

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 525

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. An image is usually represented as a two-dimensional array of pixel intensities,
real (and usually positive) numbers. One commonly desires to filter high, or low,
frequency spatial components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data “in place.” We
want a routine with functionality similar to the multidimensional FFT routinefourn
(§12.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of §12.3 leading to
the one-dimensional routine realft. (You might wish to review that material at
this point, particularly equation 12.3.5.)

It is convenient to think of the independent variables n1, . . . , nL in equation
(12.4.3) as representing an L-dimensional vector ~n in wave-number space, with
values on the lattice of integers. The transform H(n1, . . . , nL) is then denoted
H(~n).

It is easy to see that the transformH(~n) is periodic in each of its L dimensions.
Specifically, if ~P1, ~P2, ~P3, . . . denote the vectors (N1, 0, 0, . . .), (0, N2, 0, . . .),
(0, 0, N3, . . .), and so forth, then

H(~n± ~Pj) = H(~n) j = 1, . . . , L (12.5.1)

Equation (12.5.1) holds for any input data, real or complex. When the data is real,
we have the additional symmetry

H(−~n) = H(~n)* (12.5.2)

Equations (12.5.1) and (12.5.2) imply that the full transform can be trivially obtained
from the subset of lattice values ~n that have

0 ≤ n1 ≤ N1 − 1

0 ≤ n2 ≤ N2 − 1

· · ·

0 ≤ nL ≤
NL
2

(12.5.3)

