Chapter 13. Fourier and Spectral
Applications

13.0 Introduction

Fourier methods have revolutionized fields of science and engineering, from
radio astronomy to medical imaging, from seismology to spectroscopy. In this
chapter, we present some of the basic applications of Fourier and spectra methods
that have made these revolutions possible.

Say the word “Fourier” to a numericist, and the response, as if by Pavlovian
conditioning, will likely be “FFT.” Indeed, the wide application of Fourier methods
must be credited principally to the existence of the fast Fourier transform. Better
mousetraps stand aside: If you speed up any nontrivia agorithm by a factor of a
million or so, the world will beat a path towards finding useful applications for it.
The most direct applications of the FFT are to the convolution or deconvolution of
data (§13.1), correlation and autocorrelation (§13.2), optimal filtering (§13.3), power
spectrum estimation (§13.4), and the computation of Fourier integrals (§13.9).

Asimportant as they are, however, FFT methods are not the be-all and end-all
of spectral analysis. Section 13.5is a brief introduction to the field of time-domain
digital filters. In the spectral domain, one limitation of the FFT is that it aways
represents a function’s Fourier transform as a polynomia in z = exp(2wifA)
(cf. equation 12.1.7). Sometimes, processes have spectra whose shapes are not
well represented by this form. An aternative form, which allows the spectrum to
have polesin z, isused in the techniques of linear prediction (§13.6) and maximum
entropy spectral estimation (§13.7).

Another significant limitation of al FFT methodsisthat they require the input
data to be sampled at evenly spaced intervals. For irregularly or incompletely
sampled data, other (albeit slower) methods are available, as discussed in §13.8.

So-called wavelet methods inhabit a representation of function space that is
neither in the temporal, nor in the spectral, domain, but rather something in-between.
Section 13.10 is an introduction to this subject. Finally §13.11 is an excursion into
numerical use of the Fourier sampling theorem.
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13.1 Convolution and Deconvolution Using
the FFT

We have defined the convolution of two functions for the continuous case in
equation (12.0.8), and have given the convolution theorem as equation (12.0.9). The
theorem says that the Fourier transform of the convolution of two functionsis equal
to the product of their individual Fourier transforms. Now, we want to dea with
the discrete case. We will mention first the context in which convolutionis auseful
procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functionsr(¢) and s(¢), denoted r s, is mathematically
equal to their convolution in the opposite order, s « r. Nevertheess, in most
applicationsthe two functions have quite different meanings and characters. One of
the functions, say s, istypicaly asignal or data stream, which goes on indefinitely
in time (or in whatever the appropriate independent variable may be). The other
function r is a “response function,” typically a pesked function that fallsto zero in
both directions from its maximum. The effect of convolutionis to smear the signa
s(t) intime according to the recipe provided by the response function r(t), as shown
inFigure13.1.1. In particular, aspikeor delta-function of unit areain s which occurs
at some time ¢ is supposed to be smeared into the shape of the response function
itself, but trandlated from time O to time ¢y as r(t — to).

Inthe discrete case, thesignd s(t) is represented by its sampled values at equal
timeintervalss;. Theresponse functionisalso adiscrete set of numbersry, withthe
followinginterpretation: o tellswhat multipleof theinput signal in one channel (one
particular value of j) is copied into the identical output channel (same vaue of j);
r1 tellswhat multiple of input signal in channel ; is additionally copied into output
channel j + 1; r_; tellsthe multiplethat is copied into channel j — 1; and so on for
both positive and negative values of k inry. Figure 13.1.2 illustratesthe situation.

Example: a response function with g = 1 and all other r;’s equal to zero
isjust the identity filter: convolution of a signal with this response function gives
identically the signal. Another example is the response function with 14, = 1.5 and
all other r;’s equa to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite duration M:

M/2

(res)i= > sj—krh (13.1.1)
k=—M/2+1

If a discrete response function is nonzero only in somerange —M/2 < k < M/2,
where M is a sufficiently large even integer, then the response function is called a
finiteimpulseresponse (FIR), and itsdurationis M. (Noticethat we are defining M
as the number of nonzero values of r; these values span atimeinterval of M — 1
sampling times.) In most practical circumstances the case of finite M isthe case of
interest, either because the responsereally has afinite duration, or because we choose
to truncateit at some point and approximateit by afinite-duration response function.

The discrete convolution theoremis this: If asigna s; is periodic with period
N, so that it is completely determined by the N values sg,...,sy_1, then its
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