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The splitting point b must be chosen large enough that the remaining integral over (b,∞) is
small. Successive terms in its asymptotic expansion are found by integrating by parts. The
integral over (a, b) can be done using dftint. You keep as many terms in the asymptotic
expansion as you can easily compute. See [6] for some examples of this idea. More
powerful methods, which work well for long-tailed functions but which do not use the FFT,
are described in [7-9].
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13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform (DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transform is invertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectors ei,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that, unlike sines and
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, or sparse to some high accuracy, when transformed into the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convolutions, become computationally fast, there is a large class of computations
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— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain [1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies [2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
called DAUB4, has only four coefficients, c0, . . . , c3. For the moment we specialize
to this case for ease of notation.

Consider the following transformation matrix acting on a column vector of
data to its right:



c0 c1 c2 c3
c3 −c2 c1 −c0

c0 c1 c2 c3
c3 −c2 c1 −c0

...
...

. . .
c0 c1 c2 c3
c3 −c2 c1 −c0

c2 c3 c0 c1
c1 −c0 c3 −c2


(13.10.1)

Here blank entries signify zeroes. Note the structure of this matrix. The first row
generates one component of the data convolved with the filter coefficients c0 . . . , c3.
Likewise the third, fifth, and other odd rows. If the even rows followed this pattern,
offset by one, then the matrix would be a circulant, that is, an ordinary convolution
that could be done by FFT methods. (Note how the last two rows wrap around
like convolutions with periodic boundary conditions.) Instead of convolving with
c0, . . . , c3, however, the even rows perform a different convolution, with coefficients
c3,−c2, c1,−c0. The action of the matrix, overall, is thus to perform two related
convolutions, then to decimate each of them by half (throw away half the values),
and interleave the remaining halves.

It is useful to think of the filter c0, . . . , c3 as being a smoothing filter, call it H ,
something like a moving average of four points. Then, because of the minus signs,
the filter c3,−c2, c1,−c0, call it G, is not a smoothing filter. (In signal processing
contexts,H andG are called quadrature mirror filters [3].) In fact, the c’s are chosen
so as to make G yield, insofar as possible, a zero response to a sufficiently smooth
data vector. This is done by requiring the sequence c3,−c2, c1,−c0 to have a certain
number of vanishing moments. When this is the case for p moments (starting with
the zeroth), a set of wavelets is said to satisfy an “approximation condition of order
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p.” This results in the output of H , decimated by half, accurately representing the
data’s “smooth” information. The output of G, also decimated, is referred to as
the data’s “detail” information [4].

For such a characterization to be useful, it must be possible to reconstruct the
original data vector of length N from its N/2 smooth or s-components and its N/2
detail or d-components. That is effected by requiring the matrix (13.10.1) to be
orthogonal, so that its inverse is just the transposed matrix



c0 c3 · · · c2 c1
c1 −c2 · · · c3 −c0
c2 c1 c0 c3
c3 −c0 c1 −c2

. . .
c2 c1 c0 c3
c3 −c0 c1 −c2

c2 c1 c0 c3
c3 −c0 c1 −c2


(13.10.2)

One sees immediately that matrix (13.10.2) is inverse to matrix (13.10.1) if and
only if these two equations hold,

c20 + c21 + c22 + c23 = 1

c2c0 + c3c1 = 0
(13.10.3)

If additionally we require the approximation condition of order p = 2, then two
additional relations are required,

c3 − c2 + c1 − c0 = 0

0c3 − 1c2 + 2c1 − 3c0 = 0
(13.10.4)

Equations (13.10.3) and (13.10.4) are 4 equations for the 4 unknowns c0, . . . , c3,
first recognized and solved by Daubechies. The unique solution (up to a left-right
reversal) is

c0 = (1 +
√

3)/4
√

2 c1 = (3 +
√

3)/4
√

2

c2 = (3 −
√

3)/4
√

2 c3 = (1 −
√

3)/4
√

2
(13.10.5)

In fact, DAUB4 is only the most compact of a sequence of wavelet sets: If we
had six coefficients instead of four, there would be three orthogonality requirements
in equation (13.10.3) (with offsets of zero, two, and four), and we could require
the vanishing of p = 3 moments in equation (13.10.4). In this case, DAUB6, the
solution coefficients can also be expressed in closed form,

c0 = (1 +
√

10 +
√

5 + 2
√

10)/16
√

2 c1 = (5 +
√

10 + 3
√

5 + 2
√

10)/16
√

2

c2 = (10− 2
√

10 + 2
√

5 + 2
√

10)/16
√

2 c3 = (10− 2
√

10− 2
√

5 + 2
√

10)/16
√

2

c4 = (5 +
√

10 − 3
√

5 + 2
√

10)/16
√

2 c5 = (1 +
√

10−
√

5 + 2
√

10)/16
√

2

(13.10.6)
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For higher p, up to 10, Daubechies [2] has tabulated the coefficients numerically. The
number of coefficients increases by two each time p is increased by one.

Discrete Wavelet Transform

We have not yet defined the discrete wavelet transform (DWT), but we are
almost there: The DWT consists of applying a wavelet coefficient matrix like
(13.10.1) hierarchically, first to the full data vector of lengthN , then to the “smooth”
vector of length N/2, then to the “smooth-smooth” vector of length N/4, and
so on until only a trivial number of “smooth-. . .-smooth” components (usually 2)
remain. The procedure is sometimes called a pyramidal algorithm [4], for obvious
reasons. The output of the DWT consists of these remaining components and all
the “detail” components that were accumulated along the way. A diagram should
make the procedure clear:



y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16



13.10.1−→



s1
d1

s2
d2

s3
d3

s4
d4

s5
d5

s6
d6

s7
d7

s8
d8



permute−→



s1
s2
s3
s4
s5
s6
s7
s8
d1

d2

d3

d4

d5

d6

d7

d8



13.10.1−→



S1

D1

S2

D2

S3

D3

S4

D4
d1

d2

d3

d4

d5

d6

d7

d8



permute−→



S1

S2

S3

S4
D1

D2

D3

D4
d1

d2

d3

d4

d5

d6

d7

d8



etc.−→



S1

S2
D1

D2
D1

D2

D3

D4
d1

d2

d3

d4

d5

d6

d7

d8


(13.10.7)

If the length of the data vector were a higher power of two, there would be
more stages of applying (13.10.1) (or any other wavelet coefficients) and permuting.
The endpoint will always be a vector with two S’s and a hierarchy of D’s, D’s,
d’s, etc. Notice that once d’s are generated, they simply propagate through to all
subsequent stages.

A value di of any level is termed a “wavelet coefficient” of the original data
vector; the final valuesS1,S2 should strictly be called “mother-function coefficients,”
although the term “wavelet coefficients” is often used loosely for both d’s and final
S’s. Since the full procedure is a composition of orthogonal linear operations, the
whole DWT is itself an orthogonal linear operator.

To invert the DWT, one simply reverses the procedure, starting with the smallest
level of the hierarchy and working (in equation 13.10.7) from right to left. The
inverse matrix (13.10.2) is of course used instead of the matrix (13.10.1).

As already noted, the matrices (13.10.1) and (13.10.2) embody periodic (“wrap-
around”) boundary conditions on the data vector. One normally accepts this as a
minor inconvenience: the last few wavelet coefficients at each level of the hierarchy
are affected by data from both ends of the data vector. By circularly shifting the
matrix (13.10.1) N/2 columns to the left, one can symmetrize the wrap-around;
but this does not eliminate it. It is in fact possible to eliminate the wrap-around
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completely by altering the coefficients in the first and last N rows of (13.10.1),
giving an orthogonal matrix that is purely band-diagonal [5]. This variant, beyond
our scope here, is useful when, e.g., the data varies by many orders of magnitude
from one end of the data vector to the other.

Here is a routine, wt1, that performs the pyramidal algorithm (or its inverse
if isign is negative) on some data vector a[1..n]. Successive applications of
the wavelet filter, and accompanying permutations, are done by an assumed routine
wtstep, which must be provided. (We give examples of several different wtstep
routines just below.)

void wt1(float a[], unsigned long n, int isign,
void (*wtstep)(float [], unsigned long, int))

One-dimensional discrete wavelet transform. This routine implements the pyramid algorithm,
replacing a[1..n] by its wavelet transform (for isign=1), or performing the inverse operation
(for isign=-1). Note that n MUST be an integer power of 2. The routine wtstep, whose
actual name must be supplied in calling this routine, is the underlying wavelet filter. Examples
of wtstep are daub4 and (preceded by pwtset) pwt.
{

unsigned long nn;

if (n < 4) return;
if (isign >= 0) { Wavelet transform.

for (nn=n;nn>=4;nn>>=1) (*wtstep)(a,nn,isign);
Start at largest hierarchy, and work towards smallest.

} else { Inverse wavelet transform.
for (nn=4;nn<=n;nn<<=1) (*wtstep)(a,nn,isign);
Start at smallest hierarchy, and work towards largest.

}
}

Here, as a specific instance of wtstep, is a routine for the DAUB4 wavelets:

#include "nrutil.h"
#define C0 0.4829629131445341
#define C1 0.8365163037378079
#define C2 0.2241438680420134
#define C3 -0.1294095225512604

void daub4(float a[], unsigned long n, int isign)
Applies the Daubechies 4-coefficient wavelet filter to data vector a[1..n] (for isign=1) or
applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.
{

float *wksp;
unsigned long nh,nh1,i,j;

if (n < 4) return;
wksp=vector(1,n);
nh1=(nh=n >> 1)+1;
if (isign >= 0) { Apply filter.

for (i=1,j=1;j<=n-3;j+=2,i++) {
wksp[i]=C0*a[j]+C1*a[j+1]+C2*a[j+2]+C3*a[j+3];
wksp[i+nh] = C3*a[j]-C2*a[j+1]+C1*a[j+2]-C0*a[j+3];

}
wksp[i]=C0*a[n-1]+C1*a[n]+C2*a[1]+C3*a[2];
wksp[i+nh] = C3*a[n-1]-C2*a[n]+C1*a[1]-C0*a[2];

} else { Apply transpose filter.
wksp[1]=C2*a[nh]+C1*a[n]+C0*a[1]+C3*a[nh1];
wksp[2] = C3*a[nh]-C0*a[n]+C1*a[1]-C2*a[nh1];
for (i=1,j=3;i<nh;i++) {
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wksp[j++]=C2*a[i]+C1*a[i+nh]+C0*a[i+1]+C3*a[i+nh1];
wksp[j++] = C3*a[i]-C0*a[i+nh]+C1*a[i+1]-C2*a[i+nh1];

}
}
for (i=1;i<=n;i++) a[i]=wksp[i];
free_vector(wksp,1,n);

}

For larger sets of wavelet coefficients, the wrap-around of the last rows or
columns is a programming inconvenience. An efficient implementation would
handle the wrap-arounds as special cases, outside of the main loop. Here, we will
content ourselves with a more general scheme involving some extra arithmetic at
run time. The following routine sets up any particular wavelet coefficients whose
values you happen to know.

typedef struct {
int ncof,ioff,joff;
float *cc,*cr;

} wavefilt;

wavefilt wfilt; Defining declaration of a structure.

void pwtset(int n)
Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12, and
20 coefficients, as selected by the input value n. Further wavelet filters can be included in the
obvious manner. This routine must be called (once) before the first use of pwt. (For the case
n=4, the specific routine daub4 is considerably faster than pwt.)
{

void nrerror(char error_text[]);
int k;
float sig = -1.0;
static float c4[5]={0.0,0.4829629131445341,0.8365163037378079,

0.2241438680420134,-0.1294095225512604};
static float c12[13]={0.0,0.111540743350, 0.494623890398, 0.751133908021,

0.315250351709,-0.226264693965,-0.129766867567,
0.097501605587, 0.027522865530,-0.031582039318,
0.000553842201, 0.004777257511,-0.001077301085};

static float c20[21]={0.0,0.026670057901, 0.188176800078, 0.527201188932,
0.688459039454, 0.281172343661,-0.249846424327,
-0.195946274377, 0.127369340336, 0.093057364604,
-0.071394147166,-0.029457536822, 0.033212674059,
0.003606553567,-0.010733175483, 0.001395351747,
0.001992405295,-0.000685856695,-0.000116466855,
0.000093588670,-0.000013264203};

static float c4r[5],c12r[13],c20r[21];

wfilt.ncof=n;
if (n == 4) {

wfilt.cc=c4;
wfilt.cr=c4r;

}
else if (n == 12) {

wfilt.cc=c12;
wfilt.cr=c12r;

}
else if (n == 20) {

wfilt.cc=c20;
wfilt.cr=c20r;

}
else nrerror("unimplemented value n in pwtset");
for (k=1;k<=n;k++) {
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wfilt.cr[wfilt.ncof+1-k]=sig*wfilt.cc[k];
sig = -sig;

}
wfilt.ioff = wfilt.joff = -(n >> 1);
These values center the “support” of the wavelets at each level. Alternatively, the “peaks”
of the wavelets can be approximately centered by the choices ioff=-2 and joff=-n+2.

}

Once pwtset has been called, the following routine can be used as a specific
instance of wtstep.

#include "nrutil.h"

typedef struct {
int ncof,ioff,joff;
float *cc,*cr;

} wavefilt;

extern wavefilt wfilt; Defined in pwtset.

void pwt(float a[], unsigned long n, int isign)
Partial wavelet transform: applies an arbitrary wavelet filter to data vectora[1..n] (for isign =
1) or applies its transpose (for isign = −1). Used hierarchically by routines wt1 and wtn.
The actual filter is determined by a preceding (and required) call to pwtset, which initializes
the structure wfilt.
{

float ai,ai1,*wksp;
unsigned long i,ii,j,jf,jr,k,n1,ni,nj,nh,nmod;

if (n < 4) return;
wksp=vector(1,n);
nmod=wfilt.ncof*n; A positive constant equal to zero mod n.
n1=n-1; Mask of all bits, since n a power of 2.
nh=n >> 1;
for (j=1;j<=n;j++) wksp[j]=0.0;
if (isign >= 0) { Apply filter.

for (ii=1,i=1;i<=n;i+=2,ii++) {
ni=i+nmod+wfilt.ioff; Pointer to be incremented and wrapped-around.
nj=i+nmod+wfilt.joff;
for (k=1;k<=wfilt.ncof;k++) {

jf=n1 & (ni+k); We use bitwise and to wrap-around the point-
ers.jr=n1 & (nj+k);

wksp[ii] += wfilt.cc[k]*a[jf+1];
wksp[ii+nh] += wfilt.cr[k]*a[jr+1];

}
}

} else { Apply transpose filter.
for (ii=1,i=1;i<=n;i+=2,ii++) {

ai=a[ii];
ai1=a[ii+nh];
ni=i+nmod+wfilt.ioff; See comments above.
nj=i+nmod+wfilt.joff;
for (k=1;k<=wfilt.ncof;k++) {

jf=(n1 & (ni+k))+1;
jr=(n1 & (nj+k))+1;
wksp[jf] += wfilt.cc[k]*ai;
wksp[jr] += wfilt.cr[k]*ai1;

}
}

}
for (j=1;j<=n;j++) a[j]=wksp[j]; Copy the results back from workspace.
free_vector(wksp,1,n);

}
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Figure 13.10.1. Wavelet functions, that is, single basis functions from the wavelet families DAUB4
and DAUB20. A complete, orthonormal wavelet basis consists of scalings and translations of either one
of these functions. DAUB4 has an infinite number of cusps; DAUB20 would show similar behavior
in a higher derivative.

What Do Wavelets Look Like?

We are now in a position actually to see some wavelets. To do so, we simply
run unit vectors through any of the above discrete wavelet transforms, with isign

negative so that the inverse transform is performed. Figure 13.10.1 shows the
DAUB4 wavelet that is the inverse DWT of a unit vector in the 5th component of a
vector of length 1024, and also the DAUB20 wavelet that is the inverse of the 22nd
component. (One needs to go to a later hierarchical level for DAUB20, to avoid a
wavelet with a wrapped-around tail.) Other unit vectors would give wavelets with
the same shapes, but different positions and scales.

One sees that both DAUB4 and DAUB20 have wavelets that are continuous.
DAUB20 wavelets also have higher continuous derivatives. DAUB4 has the peculiar
property that its derivative exists only almost everywhere. Examples of where it
fails to exist are the points p/2n, where p and n are integers; at such points, DAUB4
is left differentiable, but not right differentiable! This kind of discontinuity — at
least in some derivative — is a necessary feature of wavelets with compact support,
like the Daubechies series. For every increase in the number of wavelet coefficients
by two, the Daubechies wavelets gain about half a derivative of continuity. (But not
exactly half; the actual orders of regularity are irrational numbers!)

Note that the fact that wavelets are not smooth does not prevent their having
exact representations for some smooth functions,as demanded by their approximation
order p. The continuity of a wavelet is not the same as the continuity of functions
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Figure 13.10.2. More wavelets, here generated from the sum of two unit vectors, e10 + e58, which
are in different hierarchical levels of scale, and also at different spatial positions. DAUB4 wavelets (a)
are defined by a filter in coordinate space (equation 13.10.5), while Lemarie wavelets (b) are defined by
a filter most easily written in Fourier space (equation 13.10.14).

that a set of wavelets can represent. For example, DAUB4 can represent (piecewise)
linear functions of arbitrary slope: in the correct linear combinations, the cusps all
cancel out. Every increase of two in the number of coefficients allows one higher
order of polynomial to be exactly represented.

Figure 13.10.2 shows the result of performing the inverse DWT on the input
vector e10 + e58, again for the two different particular wavelets. Since 10 lies early
in the hierarchical range of 9 − 16, that wavelet lies on the left side of the picture.
Since 58 lies in a later (smaller-scale) hierarchy, it is a narrower wavelet; in the range
of 33–64 it is towards the end, so it lies on the right side of the picture. Note that
smaller-scale wavelets are taller, so as to have the same squared integral.

Wavelet Filters in the Fourier Domain

The Fourier transform of a set of filter coefficients cj is given by

H(ω) =
∑
j

cje
ijω (13.10.8)

Here H is a function periodic in 2π, and it has the same meaning as before: It is
the wavelet filter, now written in the Fourier domain. A very useful fact is that the
orthogonality conditions for the c’s (e.g., equation 13.10.3 above) collapse to two
simple relations in the Fourier domain,

1

2
|H(0)|2 = 1 (13.10.9)
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and
1

2

[
|H(ω)|2 + |H(ω + π)|2

]
= 1 (13.10.10)

Likewise the approximation condition of order p (e.g., equation 13.10.4 above)
has a simple formulation, requiring that H(ω) have a pth order zero at ω = π,
or (equivalently)

H(m)(π) = 0 m = 0, 1, . . . , p− 1 (13.10.11)

It is thus relatively straightforward to invent wavelet sets in the Fourier domain.
You simply invent a function H(ω) satisfying equations (13.10.9)–(13.10.11). To
find the actual cj ’s applicable to a data (or s-component) vector of length N , and
with periodic wrap-around as in matrices (13.10.1) and (13.10.2), you invert equation
(13.10.8) by the discrete Fourier transform

cj =
1

N

N−1∑
k=0

H(
2πk

N
)e−2πijk/N (13.10.12)

The quadrature mirror filter G (reversed cj’s with alternating signs), incidentally,
has the Fourier representation

G(ω) = e−iωH*(ω + π) (13.10.13)

where asterisk denotes complex conjugation.
In general the above procedure will not produce wavelet filters with compact

support. In other words, all N of the cj’s, j = 0, . . . , N − 1 will in general be
nonzero (though they may be rapidly decreasing in magnitude). The Daubechies
wavelets, or other wavelets with compact support, are specially chosen so thatH(ω)
is a trigonometric polynomial with only a small number of Fourier components,
guaranteeing that there will be only a small number of nonzero cj’s.

On the other hand, there is sometimes no particular reason to demand compact
support. Giving it up in fact allows the ready construction of relatively smoother
wavelets (higher values of p). Even without compact support, the convolutions
implicit in the matrix (13.10.1) can be done efficiently by FFT methods.

Lemarie’s wavelet (see [4]) has p = 4, does not have compact support, and is
defined by the choice of H(ω),

H(ω) =

[
2(1− u)4 315− 420u+ 126u2 − 4u3

315− 420v + 126v2 − 4v3

]1/2

(13.10.14)

where

u ≡ sin2 ω

2
v ≡ sin2 ω (13.10.15)

It is beyond our scope to explain where equation (13.10.14) comes from. An
informal description is that the quadrature mirror filterG(ω) deriving from equation
(13.10.14) has the property that it gives identically zero when applied to any function
whose odd-numbered samples are equal to the cubic spline interpolation of its
even-numbered samples. Since this class of functions includes many very smooth
members, it follows thatH(ω) does a good job of truly selecting a function’s smooth
information content. Sample Lemarie wavelets are shown in Figure 13.10.2.
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Figure 13.10.3. (a) Arbitrary test function, with cusp, sampled on a vector of length 1024. (b)
Absolute value of the 1024 wavelet coefficients produced by the discrete wavelet transform of (a). Note
log scale. The dotted curve plots the same amplitudes when sorted by decreasing size. One sees that
only 130 out of 1024 coefficients are larger than 10−4 (or larger than about 10−5 times the largest
coefficient, whose value is ∼ 10).

Truncated Wavelet Approximations

Most of the usefulness of wavelets rests on the fact that wavelet transforms
can usefully be severely truncated, that is, turned into sparse expansions. The
case of Fourier transforms is different: FFTs are ordinarily used without truncation,
to compute fast convolutions, for example. This works because the convolution
operator is particularly simple in the Fourier basis. There are not, however, any
standard mathematical operations that are especially simple in the wavelet basis.

To see how truncation works, consider the simple example shown in Figure
13.10.3. The upper panel shows an arbitrarily chosen test function, smooth except
for a square-root cusp, sampled onto a vector of length 210. The bottom panel
(solid curve) shows, on a log scale, the absolute value of the vector’s components
after it has been run through the DAUB4 discrete wavelet transform. One notes,
from right to left, the different levels of hierarchy, 513–1024, 257–512, 129–256,
etc. Within each level, the wavelet coefficients are non-negligible only very near the
location of the cusp, or very near the left and right boundaries of the hierarchical
range (edge effects).

The dotted curve in the lower panel of Figure 13.10.3 plots the same amplitudes
as the solid curve, but sorted into decreasing order of size. One can read off, for
example, that the 130th largest wavelet coefficient has an amplitude less than 10−5

of the largest coefficient, whose magnitude is ∼ 10 (power or square integral ratio
less than 10−10). Thus, the example function can be represented quite accurately
by only 130, rather than 1024, coefficients — the remaining ones being set to zero.
Note that this kind of truncation makes the vector sparse, but not shorter than 1024.
It is very important that vectors in wavelet space be truncated according to the
amplitude of the components, not their position in the vector. Keeping the first 256
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components of the vector (all levels of the hierarchy except the last two) would give
an extremely poor, and jagged, approximation to the function. When you compress
a function with wavelets, you have to record both the values and the positions of
the nonzero coefficients.

Generally, compact (and therefore unsmooth) wavelets are better for lower
accuracy approximation and for functions with discontinuities (like edges), while
smooth (and therefore noncompact) wavelets are better for achieving high numerical
accuracy. This makes compact wavelets a good choice for image compression, for
example, while it makes smooth wavelets best for fast solution of integral equations.

Wavelet Transform in Multidimensions

A wavelet transform of a d-dimensional array is most easily obtained by
transforming the array sequentially on its first index (for all values of its other indices),
then on its second, and so on. Each transformation corresponds to multiplication
by an orthogonal matrix. By matrix associativity, the result is independent of the
order in which the indices were transformed. The situation is exactly like that for
multidimensional FFTs. A routine for effecting the multidimensional DWT can thus
be modeled on a multidimensional FFT routine like fourn:

#include "nrutil.h"

void wtn(float a[], unsigned long nn[], int ndim, int isign,
void (*wtstep)(float [], unsigned long, int))

Replaces a by its ndim-dimensional discrete wavelet transform, if isign is input as 1. Here
nn[1..ndim] is an integer array containing the lengths of each dimension (number of real
values), which MUST all be powers of 2. a is a real array of length equal to the product of
these lengths, in which the data are stored as in a multidimensional real array. If isign is input
as −1, a is replaced by its inverse wavelet transform. The routine wtstep, whose actual name
must be supplied in calling this routine, is the underlying wavelet filter. Examples of wtstep
are daub4 and (preceded by pwtset) pwt.
{

unsigned long i1,i2,i3,k,n,nnew,nprev=1,nt,ntot=1;
int idim;
float *wksp;

for (idim=1;idim<=ndim;idim++) ntot *= nn[idim];
wksp=vector(1,ntot);
for (idim=1;idim<=ndim;idim++) { Main loop over the dimensions.

n=nn[idim];
nnew=n*nprev;
if (n > 4) {

for (i2=0;i2<ntot;i2+=nnew) {
for (i1=1;i1<=nprev;i1++) {

for (i3=i1+i2,k=1;k<=n;k++,i3+=nprev) wksp[k]=a[i3];
Copy the relevant row or column or etc. into workspace.
if (isign >= 0) { Do one-dimensional wavelet transform.

for(nt=n;nt>=4;nt >>= 1)
(*wtstep)(wksp,nt,isign);

} else { Or inverse transform.
for(nt=4;nt<=n;nt <<= 1)

(*wtstep)(wksp,nt,isign);
}

for (i3=i1+i2,k=1;k<=n;k++,i3+=nprev) a[i3]=wksp[k];
Copy back from workspace.

}
}
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}
nprev=nnew;

}
free_vector(wksp,1,ntot);

}

Here, as before, wtstep is an individual wavelet step, either daub4 or pwt.

Compression of Images

An immediate application of the multidimensional transform wtn is to image
compression. The overall procedure is to take the wavelet transform of a digitized
image, and then to “allocate bits” among the wavelet coefficients in some highly
nonuniform, optimized, manner. In general, large wavelet coefficients get quantized
accurately, while small coefficients are quantized coarsely with only a bit or two
— or else are truncated completely. If the resulting quantization levels are still
statistically nonuniform, they may then be further compressed by a technique like
Huffman coding (§20.4).

While a more detailed description of the “back end” of this process, namely the
quantization and coding of the image, is beyond our scope, it is quite straightforward
to demonstrate the “front-end” wavelet encoding with a simple truncation: We keep
(with full accuracy) all wavelet coefficients larger than some threshold, and we delete
(set to zero) all smaller wavelet coefficients. We can then adjust the threshold to
vary the fraction of preserved coefficients.

Figure 13.10.4 shows a sequence of images that differ in the number of wavelet
coefficients that have been kept. The original picture (a), which is an official IEEE
test image, has 256 by 256 pixels with an 8-bit grayscale. The two reproductions
following are reconstructed with 23% (b) and 5.5% (c) of the 65536 wavelet
coefficients. The latter image illustrates the kind of compromises made by the
truncated wavelet representation. High-contrast edges (the model’s right cheek and
hair highlights,e.g.) are maintained at a relatively high resolution, while low-contrast
areas (the model’s left eye and cheek, e.g.) are washed out into what amounts to
large constant pixels. Figure 13.10.4 (d) is the result of performing the identical
procedure with Fourier, instead of wavelet, transforms: The figure is reconstructed
from the 5.5% of 65536 real Fourier components having the largest magnitudes.
One sees that, since sines and cosines are nonlocal, the resolution is uniformly poor
across the picture; also, the deletion of any components produces a mottled “ringing”
everywhere. (Practical Fourier image compression schemes therefore break up an
image into small blocks of pixels, 16 × 16, say, and do rather elaborate smoothing
across block boundaries when the image is reconstructed.)

Fast Solution of Linear Systems

One of the most interesting, and promising, wavelet applications is linear
algebra. The basic idea [1] is to think of an integral operator (that is, a large matrix) as
a digital image. Suppose that the operator compresses well under a two-dimensional
wavelet transform, i.e., that a large fraction of its wavelet coefficients are so small
as to be negligible. Then any linear system involving the operator becomes a sparse
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Figure 13.10.4. (a) IEEE test image, 256×256pixels with 8-bit grayscale. (b) The image is transformed
into the wavelet basis; 77% of its wavelet components are set to zero (those of smallest magnitude); it
is then reconstructed from the remaining 23%. (c) Same as (b), but 94.5% of the wavelet components
are deleted. (d) Same as (c), but the Fourier transform is used instead of the wavelet transform. Wavelet
coefficients are better than the Fourier coefficients at preserving relevant details.

system in the wavelet basis. In other words, to solve

A · x = b (13.10.16)

we first wavelet-transform the operator A and the right-hand side b by

Ã ≡W · A ·WT , b̃ ≡W · b (13.10.17)

where W represents the one-dimensional wavelet transform, then solve

Ã · x̃ = b̃ (13.10.18)
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Figure 13.10.5. Wavelet transform of a 256× 256 matrix, represented graphically. The original matrix
has a discontinuous cusp along its diagonal, decaying smoothly away on both sides of the diagonal. In
wavelet basis, the matrix becomes sparse: Components larger than 10−3 are shown as black, components
larger than 10−6 as gray, and smaller-magnitude components are white. The matrix indices i and j
number from the lower left.

and finally transform to the answer by the inverse wavelet transform

x = WT · x̃ (13.10.19)

(Note that the routine wtn does the complete transformation of A into Ã.)
A typical integral operator that compresses well into wavelets has arbitrary (or

even nearly singular) elements near to its main diagonal, but becomes smooth away
from the diagonal. An example might be

Aij =

{
−1 if i = j
|i− j|−1/2 otherwise (13.10.20)

Figure 13.10.5 shows a graphical representation of the wavelet transform of this
matrix, where i and j range over 1 . . .256, using the DAUB12 wavelets. Elements
larger in magnitude than 10−3 times the maximum element are shown as black
pixels, while elements between 10−3 and 10−6 are shown in gray. White pixels are
< 10−6. The indices i and j each number from the lower left.

In the figure, one sees the hierarchical decomposition into power-of-two sized
blocks. At the edges or corners of the various blocks, one sees edge effects caused
by the wrap-around wavelet boundary conditions. Apart from edge effects, within
each block, the nonnegligible elements are concentrated along the block diagonals.
This is a statement that, for this type of linear operator, a wavelet is coupled mainly
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to near neighbors in its own hierarchy (square blocks along the main diagonal) and
near neighbors in other hierarchies (rectangular blocks off the diagonal).

The number of nonnegligible elements in a matrix like that in Figure 13.10.5
scales only as N , the linear size of the matrix; as a rough rule of thumb it is about
10N log10(1/ε), where ε is the truncation level, e.g., 10−6. For a 2000 by 2000
matrix, then, the matrix is sparse by a factor on the order of 30.

Various numerical schemes can be used to solve sparse linear systems of this
“hierarchically band diagonal” form. Beylkin, Coifman, and Rokhlin [1] make
the interesting observations that (1) the product of two such matrices is itself
hierarchically band diagonal (truncating, of course, newly generated elements that
are smaller than the predetermined threshold ε); and moreover that (2) the product
can be formed in order N operations.

Fast matrix multiplication makes it possible to find the matrix inverse by
Schultz’s (or Hotelling’s) method, see §2.5.

Other schemes are also possible for fast solution of hierarchically band diagonal
forms. For example, one can use the conjugate gradient method, implemented in
§2.7 as linbcg.
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13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives from numerical application of the sampling theorem (§12.1), normally considered to
be a purely analytic tool. Our discussion is identical to Rybicki [1].

For present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary function g(t) and the grid of sampling points tn = α + nh, where n
ranges over the integers and α is a constant that allows an arbitrary shift of the sampling
grid. We then write

g(t) =

∞∑
n=−∞

g(tn) sinc
π

h
(t− tn) + e(t) (13.11.1)

where sinc x ≡ sin x/x. The summation over the sampling points is called the sampling
representation of g(t), and e(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, that is, e(t) ≡ 0, if the Fourier transform of g(t),

G(ω) =

∫ ∞
−∞

g(t)eiωt dt (13.11.2)


