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to near neighbors in its own hierarchy (square blocks along the main diagonal) and
near neighbors in other hierarchies (rectangular blocks off the diagonal).

The number of nonnegligible elements in a matrix like that in Figure 13.10.5
scales only as N , the linear size of the matrix; as a rough rule of thumb it is about
10N log10(1/ε), where ε is the truncation level, e.g., 10−6. For a 2000 by 2000
matrix, then, the matrix is sparse by a factor on the order of 30.

Various numerical schemes can be used to solve sparse linear systems of this
“hierarchically band diagonal” form. Beylkin, Coifman, and Rokhlin [1] make
the interesting observations that (1) the product of two such matrices is itself
hierarchically band diagonal (truncating, of course, newly generated elements that
are smaller than the predetermined threshold ε); and moreover that (2) the product
can be formed in order N operations.

Fast matrix multiplication makes it possible to find the matrix inverse by
Schultz’s (or Hotelling’s) method, see §2.5.

Other schemes are also possible for fast solution of hierarchically band diagonal
forms. For example, one can use the conjugate gradient method, implemented in
§2.7 as linbcg.
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13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives from numerical application of the sampling theorem (§12.1), normally considered to
be a purely analytic tool. Our discussion is identical to Rybicki [1].

For present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary function g(t) and the grid of sampling points tn = α + nh, where n
ranges over the integers and α is a constant that allows an arbitrary shift of the sampling
grid. We then write

g(t) =

∞∑
n=−∞

g(tn) sinc
π

h
(t− tn) + e(t) (13.11.1)

where sinc x ≡ sin x/x. The summation over the sampling points is called the sampling
representation of g(t), and e(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, that is, e(t) ≡ 0, if the Fourier transform of g(t),

G(ω) =

∫ ∞
−∞

g(t)eiωt dt (13.11.2)
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vanishes identically for |ω| ≥ π/h.
When can sampling representations be used to advantage for the approximate numerical

computation of functions? In order that the error term be small, the Fourier transform G(ω)
must be sufficiently small for |ω| ≥ π/h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the function g(t)
itself should be very small outside of a fairly limited range of values of t. Thus we are
led to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the
function g(t) and its Fourier transform G(ω) must rapidly approach zero for large values
of their respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi-
ple in quantum mechanics. There exist strict limits on how rapidly the simultaneous approach
to zero can be in both arguments. According to a theorem of Hardy [2], if g(t) = O(e−t

2

)

as |t| → ∞ and G(ω) = O(e−ω
2/4) as |ω| → ∞, then g(t) ≡ Ce−t

2

, where C is a
constant. This can be interpreted as saying that of all functions the Gaussian is the most
rapidly decaying in both t and ω, and in this sense is the “best” function to be expressed
numerically as a sampling representation.

Let us then write for the Gaussian g(t) = e−t
2

,

e−t
2

=

∞∑
n=−∞

e−t
2
n sinc

π

h
(t− tn) + e(t) (13.11.3)

The error e(t) depends on the parameters h and α as well as on t, but it is sufficient for
the present purposes to state the bound,

|e(t)| < e−(π/2h)2 (13.11.4)

which can be understood simply as the order of magnitude of the Fourier transform of the
Gaussian at the point where it “spills over” into the region |ω| > π/h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
N0 −N to N0 + N , where N0 is the integer nearest to −α/h, there is a further truncation
error. However, if N is chosen so that N > π/(2h2), the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we
shall continue to use it for (13.11.3) as well. The truncated summation gives a remarkably
accurate representation for the Gaussian even for moderate values of N . For example,
|e(t)| < 5× 10−5 for h = 1/2 and N = 7; |e(t)| < 2 × 10−10 for h = 1/3 and N = 15;
and |e(t)| < 7 × 10−18 for h = 1/4 and N = 25.

One may ask, what is the point of such a numerical representation for the Gaussian,
which can be computed so easily and quickly as an exponential? The answer is that many
transcendental functions can be expressed as an integral involving the Gaussian, and by
substituting (13.11.3) one can often find excellent approximations to the integrals as a sum
over elementary functions.

Let us consider as an example the function w(z) of the complex variable z = x + iy,
related to the complex error function by

w(z) = e−z
2

erfc(−iz) (13.11.5)

having the integral representation

w(z) =
1

πi

∫
C

e−t
2

dt

t− z (13.11.6)

where the contour C extends from −∞ to∞, passing below z (see, e.g., [3]). Many methods
exist for the evaluation of this function (e.g., [4]). Substituting the sampling representation
(13.11.3) into (13.11.6) and performing the resulting elementary contour integrals, we obtain

w(z) ≈ 1

πi

∞∑
n=−∞

he−t
2
n

1− (−1)ne−πi(α−z)/h

tn − z
(13.11.7)
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where we now omit the error term. One should note that there is no singularity as z → tm
for some n = m, but a special treatment of the mth term will be required in this case (for
example, by power series expansion).

An alternative form of equation (13.11.7) can be found by expressing the complex expo-
nential in (13.11.7) in terms of trigonometric functions and using the sampling representation
(13.11.3) with z replacing t. This yields

w(z) ≈ e−z
2

+
1

πi

∞∑
n=−∞

he−t
2
n

1− (−1)n cos π(α− z)/h

tn − z
(13.11.8)

This form is particularly useful in obtaining Re w(z) when |y| � 1. Note that in evaluating
(13.11.7) the exponential inside the summation is a constant and needs to be evaluated only
once; a similar comment holds for the cosine in (13.11.8).

There are a variety of formulas that can now be derived from either equation (13.11.7)
or (13.11.8) by choosing particular values of α. Eight interesting choices are: α = 0, x, iy,
or z, plus the values obtained by adding h/2 to each of these. Since the error bound (13.11.3)
assumed a real value of α, the choices involving a complex α are useful only if the imaginary
part of z is not too large. This is not the place to catalog all sixteen possible formulas, and we
give only two particular cases that show some of the important features.

First of all let α = 0 in equation (13.11.8), which yields,

w(z) ≈ e−z
2

+
1

πi

∞∑
n=−∞

he−(nh)2 1− (−1)n cos(πz/h)

nh− z (13.11.9)

This approximation is good over the entire z-plane. As stated previously, one has to treat the
case where one denominator becomes small by expansion in a power series. Formulas for
the case α = 0 were discussed briefly in [5]. They are similar, but not identical, to formulas
derived by Chiarella and Reichel [6], using the method of Goodwin [7].

Next, let α = z in (13.11.7), which yields

w(z) ≈ e−z
2

− 2

πi

∑
n odd

e−(z−nh)2

n
(13.11.10)

the sum being over all odd integers (positive and negative). Note that we have made the
substitution n → −n in the summation. This formula is simpler than (13.11.9) and contains
half the number of terms, but its error is worse if y is large. Equation (13.11.10) is the source
of the approximation formula (6.10.3) for Dawson’s integral, used in §6.10.
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