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Noé, M. 1972, Annals of Mathematical Statistics, vol. 43, pp. 58–64. [5]

Kuiper, N.H. 1962, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,
ser. A., vol. 63, pp. 38–47. [6]

Stephens, M.A. 1965, Biometrika, vol. 52, pp. 309–321. [7]

Fisher, N.I., Lewis, T., and Embleton, B.J.J. 1987, Statistical Analysis of Spherical Data (New
York: Cambridge University Press). [8]

14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal with measures of association
for two distributions. The situation is this: Each data point has two or more
different quantities associated with it, and we want to know whether knowledge of
one quantity gives us any demonstrable advantage in predicting the value of another
quantity. In many cases, one variable will be an “independent” or “control” variable,
and another will be a “dependent” or “measured” variable. Then, we want to know if
the latter variable is in fact dependent on or associated with the former variable. If it
is, we want to have some quantitative measure of the strength of the association. One
often hears this loosely stated as the question of whether two variables are correlated
or uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in §14.5 and §14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with
different categories forming a loose hierarchy.

• A variable is called nominal if its values are the members of some
unordered set. For example, “state of residence” is a nominal variable
that (in the U.S.) takes on one of 50 values; in astrophysics, “type of
galaxy” is a nominal variable with the three values “spiral,” “elliptical,”
and “irregular.”

• A variable is termed ordinal if its values are the members of a discrete, but
ordered, set. Examples are: grade in school, planetary order from the Sun
(Mercury = 1, Venus = 2, . . .), number of offspring. There need not be
any concept of “equal metric distance” between the values of an ordinal
variable, only that they be intrinsically ordered.

• We will call a variable continuous if its values are real numbers, as
are times, distances, temperatures, etc. (Social scientists sometimes
distinguish between interval and ratio continuous variables, but we do not
find that distinction very compelling.)
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Figure 14.4.1. Example of a contingency table for two nominal variables, here sex and color. The
row and column marginals (totals) are shown. The variables are “nominal,” i.e., the order in which
their values are listed is arbitrary and does not affect the result of the contingency table analysis. If
the ordering of values has some intrinsic meaning, then the variables are “ordinal” or “continuous,” and
correlation techniques (§14.5-§14.6) can be utilized.

A continuous variable can always be made into an ordinal one by binning it
into ranges. If we choose to ignore the ordering of the bins, then we can turn it into
a nominal variable. Nominal variables constitute the lowest type of the hierarchy,
and therefore the most general. For example, a set of several continuous or ordinal
variables can be turned, if crudely, into a single nominal variable, by coarsely
binning each variable and then taking each distinct combination of bin assignments
as a single nominal value. When multidimensional data are sparse, this is often
the only sensible way to proceed.

The remainder of this section will deal with measures of association between
nominal variables. For any pair of nominal variables, the data can be displayed as
a contingency table, a table whose rows are labeled by the values of one nominal
variable, whose columns are labeled by the values of the other nominal variable,
and whose entries are nonnegative integers giving the number of observed events
for each combination of row and column (see Figure 14.4.1). The analysis of
association between nominal variables is thus called contingency table analysis or
crosstabulation analysis.

We will introduce two different approaches. The first approach, based on the
chi-square statistic, does a good job of characterizing the significance of association,
but is only so-so as a measure of the strength (principally because its numerical
values have no very direct interpretations). The second approach, based on the
information-theoretic concept of entropy, says nothing at all about the significance of
association (use chi-square for that!), but is capable of very elegantly characterizing
the strength of an association already known to be significant.
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Measures of Association Based on Chi-Square

Some notation first: Let Nij denote the number of events that occur with the
first variable x taking on its ith value, and the second variable y taking on its jth
value. Let N denote the total number of events, the sum of all the Nij’s. Let Ni·
denote the number of events for which the first variable x takes on its ith value
regardless of the value of y; N·j is the number of events with the jth value of y
regardless of x. So we have

Ni· =
∑
j

Nij N·j =
∑
i

Nij

N =
∑
i

Ni· =
∑
j

N·j
(14.4.1)

N·j and Ni· are sometimes called the row and column totals or marginals, but we
will use these terms cautiously since we can never keep straight which are the rows
and which are the columns!

The null hypothesis is that the two variables x and y have no association. In this
case, the probability of a particular value of x given a particular value of y should
be the same as the probability of that value of x regardless of y. Therefore, in the
null hypothesis, the expected number for any Nij , which we will denote nij , can be
calculated from only the row and column totals,

nij
N·j

=
Ni·
N

which implies nij =
Ni·N·j
N

(14.4.2)

Notice that if a column or row total is zero, then the expected number for all the
entries in that column or row is also zero; in that case, the never-occurring bin of
x or y should simply be removed from the analysis.

The chi-square statistic is now given by equation (14.3.1), which, in the present
case, is summed over all entries in the table,

χ2 =
∑
i,j

(Nij − nij)2

nij
(14.4.3)

The number of degrees of freedom is equal to the number of entries in the table
(product of its row size and column size) minus the number of constraints that have
arisen from our use of the data themselves to determine the nij . Each row total and
column total is a constraint, except that this overcounts by one, since the total of the
column totals and the total of the row totals both equal N , the total number of data
points. Therefore, if the table is of size I by J , the number of degrees of freedom is
IJ − I − J + 1. Equation (14.4.3), along with the chi-square probability function
(§6.2), now give the significance of an association between the variables x and y.

Suppose there is a significant association. How do we quantify its strength, so
that (e.g.) we can compare the strength of one association with another? The idea
here is to find some reparametrization of χ2 which maps it into some convenient
interval, like 0 to 1, where the result is not dependent on the quantity of data that we
happen to sample, but rather depends only on the underlying population from which
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the data were drawn. There are several different ways of doing this. Two of the
more common are called Cramer’s V and the contingency coefficient C.

The formula for Cramer’s V is

V =

√
χ2

N min (I − 1, J − 1)
(14.4.4)

where I and J are again the numbers of rows and columns, and N is the total
number of events. Cramer’s V has the pleasant property that it lies between zero
and one inclusive, equals zero when there is no association, and equals one only
when the association is perfect: All the events in any row lie in one unique column,
and vice versa. (In chess parlance, no two rooks, placed on a nonzero table entry,
can capture each other.)

In the case of I = J = 2, Cramer’s V is also referred to as the phi statistic.
The contingency coefficient C is defined as

C =

√
χ2

χ2 + N
(14.4.5)

It also lies between zero and one, but (as is apparent from the formula) it can never
achieve the upper limit. While it can be used to compare the strength of association
of two tables with the same I and J , its upper limit depends on I and J . Therefore
it can never be used to compare tables of different sizes.

The trouble with both Cramer’s V and the contingency coefficient C is that,
when they take on values in between their extremes, there is no very direct
interpretation of what that value means. For example, you are in Las Vegas, and a
friend tells you that there is a small, but significant, association between the color of
a croupier’s eyes and the occurrence of red and black on his roulette wheel. Cramer’s
V is about 0.028, your friend tells you. You know what the usual odds against you
are (because of the green zero and double zero on the wheel). Is this association
sufficient for you to make money? Don’t ask us!

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-30 A small number.

void cntab1(int **nn, int ni, int nj, float *chisq, float *df, float *prob,
float *cramrv, float *ccc)

Given a two-dimensional contingency table in the form of an integer array nn[1..ni][1..nj],
this routine returns the chi-square chisq, the number of degrees of freedom df, the significance
level prob (small values indicating a significant association), and two measures of association,
Cramer’s V (cramrv) and the contingency coefficient C (ccc).
{

float gammq(float a, float x);
int nnj,nni,j,i,minij;
float sum=0.0,expctd,*sumi,*sumj,temp;

sumi=vector(1,ni);
sumj=vector(1,nj);
nni=ni; Number of rows
nnj=nj; and columns.
for (i=1;i<=ni;i++) { Get the row totals.

sumi[i]=0.0;
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for (j=1;j<=nj;j++) {
sumi[i] += nn[i][j];
sum += nn[i][j];

}
if (sumi[i] == 0.0) --nni; Eliminate any zero rows by reducing the num-

ber.}
for (j=1;j<=nj;j++) { Get the column totals.

sumj[j]=0.0;
for (i=1;i<=ni;i++) sumj[j] += nn[i][j];
if (sumj[j] == 0.0) --nnj; Eliminate any zero columns.

}
*df=nni*nnj-nni-nnj+1; Corrected number of degrees of freedom.
*chisq=0.0;
for (i=1;i<=ni;i++) { Do the chi-square sum.

for (j=1;j<=nj;j++) {
expctd=sumj[j]*sumi[i]/sum;
temp=nn[i][j]-expctd;
*chisq += temp*temp/(expctd+TINY); Here TINY guarantees that any

eliminated row or column will
not contribute to the sum.

}
}
*prob=gammq(0.5*(*df),0.5*(*chisq)); Chi-square probability function.
minij = nni < nnj ? nni-1 : nnj-1;
*cramrv=sqrt(*chisq/(sum*minij));
*ccc=sqrt(*chisq/(*chisq+sum));
free_vector(sumj,1,nj);
free_vector(sumi,1,ni);

}

Measures of Association Based on Entropy

Consider the game of “twenty questions,” where by repeated yes/no questions
you try to eliminate all except one correct possibility for an unknown object. Better
yet, consider a generalization of the game, where you are allowed to ask multiple
choice questions as well as binary (yes/no) ones. The categories in your multiple
choice questions are supposed to be mutually exclusive and exhaustive (as are
“yes” and “no”).

The value to you of an answer increases with the number of possibilities that
it eliminates. More specifically, an answer that eliminates all except a fraction p of
the remaining possibilities can be assigned a value − lnp (a positive number, since
p < 1). The purpose of the logarithm is to make the value additive, since (e.g.) one
question that eliminates all but 1/6 of the possibilities is considered as good as two
questions that, in sequence, reduce the number by factors 1/2 and 1/3.

So that is the value of an answer; but what is the value of a question? If there
are I possible answers to the question (i = 1, . . . , I) and the fraction of possibilities
consistent with the ith answer is pi (with the sum of the pi’s equal to one), then the
value of the question is the expectation value of the value of the answer, denoted H ,

H = −
I∑
i=1

pi lnpi (14.4.6)

In evaluating (14.4.6), note that

lim
p→0

p lnp = 0 (14.4.7)
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The value H lies between 0 and ln I. It is zero only when one of the pi’s is one, all
the others zero: In this case, the question is valueless, since its answer is preordained.
H takes on its maximum value when all the pi’s are equal, in which case the question
is sure to eliminate all but a fraction 1/I of the remaining possibilities.

The value H is conventionally termed the entropy of the distribution given by
the pi’s, a terminology borrowed from statistical physics.

So far we have said nothing about the association of two variables; but suppose
we are deciding what question to ask next in the game and have to choose between
two candidates, or possibly want to ask both in one order or another. Suppose that
one question, x, has I possible answers, labeled by i, and that the other question,
y, as J possible answers, labeled by j. Then the possible outcomes of asking both
questions form a contingency table whose entriesNij , when normalized by dividing
by the total number of remaining possibilitiesN , give all the information about the
p’s. In particular, we can make contact with the notation (14.4.1) by identifying

pij =
Nij
N

pi· =
Ni·
N

(outcomes of question x alone)

p·j =
N·j
N

(outcomes of question y alone)

(14.4.8)

The entropies of the questions x and y are, respectively,

H(x) = −
∑
i

pi· ln pi· H(y) = −
∑
j

p·j lnp·j (14.4.9)

The entropy of the two questions together is

H(x, y) = −
∑
i,j

pij lnpij (14.4.10)

Now what is the entropy of the question y given x (that is, if x is asked first)?
It is the expectation value over the answers to x of the entropy of the restricted
y distribution that lies in a single column of the contingency table (corresponding
to the x answer):

H(y|x) = −
∑
i

pi·
∑
j

pij
pi·

ln
pij
pi·

= −
∑
i,j

pij ln
pij
pi·

(14.4.11)

Correspondingly, the entropy of x given y is

H(x|y) = −
∑
j

p·j
∑
i

pij
p·j

ln
pij
p·j

= −
∑
i,j

pij ln
pij
p·j

(14.4.12)

We can readily prove that the entropy of y given x is never more than the
entropy of y alone, i.e., that asking x first can only reduce the usefulness of asking
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y (in which case the two variables are associated!):

H(y|x) −H(y) = −
∑
i,j

pij ln
pij/pi·
p·j

=
∑
i,j

pij ln
p·jpi·
pij

≤
∑
i,j

pij

(
p·jpi·
pij

− 1

)
=
∑
i,j

pi·p·j −
∑
i,j

pij

= 1− 1 = 0

(14.4.13)

where the inequality follows from the fact

lnw ≤ w − 1 (14.4.14)

We now have everything we need to define a measure of the “dependency” of y
on x, that is to say a measure of association. This measure is sometimes called the
uncertainty coefficient of y. We will denote it as U(y|x),

U(y|x) ≡ H(y) −H(y|x)

H(y)
(14.4.15)

This measure lies between zero and one, with the value 0 indicating that x and y
have no association, the value 1 indicating that knowledge of x completely predicts
y. For in-between values, U(y|x) gives the fraction of y’s entropy H(y) that is
lost if x is already known (i.e., that is redundant with the information in x). In our
game of “twenty questions,” U(y|x) is the fractional loss in the utility of question
y if question x is to be asked first.

If we wish to view x as the dependent variable, y as the independent one, then
interchanging x and y we can of course define the dependency of x on y,

U(x|y) ≡ H(x)−H(x|y)
H(x)

(14.4.16)

If we want to treat x and y symmetrically, then the useful combination turns
out to be

U(x, y) ≡ 2

[
H(y) +H(x) −H(x, y)

H(x) + H(y)

]
(14.4.17)

If the two variables are completely independent, then H(x, y) = H(x) + H(y), so
(14.4.17) vanishes. If the two variables are completely dependent, then H(x) =
H(y) = H(x, y), so (14.4.16) equals unity. In fact, you can use the identities (easily
proved from equations 14.4.9–14.4.12)

H(x, y) = H(x) + H(y|x) = H(y) +H(x|y) (14.4.18)

to show that

U(x, y) =
H(x)U(x|y) + H(y)U(y|x)

H(x) + H(y)
(14.4.19)

i.e., that the symmetrical measure is just a weighted average of the two asymmetrical
measures (14.4.15) and (14.4.16), weighted by the entropy of each variable separately.

Here is a program for computing all the quantities discussed, H(x), H(y),
H(x|y), H(y|x), H(x, y), U(x|y), U(y|x), and U(x, y):



14.4 Contingency Table Analysis of Two Distributions 635

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-30 A small number.

void cntab2(int **nn, int ni, int nj, float *h, float *hx, float *hy,
float *hygx, float *hxgy, float *uygx, float *uxgy, float *uxy)

Given a two-dimensional contingency table in the form of an integer array nn[i][j], where i
labels the x variable and ranges from 1 to ni, j labels the y variable and ranges from 1 to nj,
this routine returns the entropy h of the whole table, the entropy hx of the x distribution, the
entropy hy of the y distribution, the entropy hygx of y given x, the entropy hxgy of x given y,
the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y (eq. 14.4.16),
and the symmetrical dependency uxy (eq. 14.4.17).
{

int i,j;
float sum=0.0,p,*sumi,*sumj;

sumi=vector(1,ni);
sumj=vector(1,nj);
for (i=1;i<=ni;i++) { Get the row totals.

sumi[i]=0.0;
for (j=1;j<=nj;j++) {

sumi[i] += nn[i][j];
sum += nn[i][j];

}
}
for (j=1;j<=nj;j++) { Get the column totals.

sumj[j]=0.0;
for (i=1;i<=ni;i++)

sumj[j] += nn[i][j];
}
*hx=0.0; Entropy of the x distribution,
for (i=1;i<=ni;i++)

if (sumi[i]) {
p=sumi[i]/sum;
*hx -= p*log(p);

}
*hy=0.0; and of the y distribution.
for (j=1;j<=nj;j++)

if (sumj[j]) {
p=sumj[j]/sum;
*hy -= p*log(p);

}
*h=0.0;
for (i=1;i<=ni;i++) Total entropy: loop over both x

for (j=1;j<=nj;j++) and y.
if (nn[i][j]) {

p=nn[i][j]/sum;
*h -= p*log(p);

}
*hygx=(*h)-(*hx); Uses equation (14.4.18),
*hxgy=(*h)-(*hy); as does this.
*uygx=(*hy-*hygx)/(*hy+TINY); Equation (14.4.15).
*uxgy=(*hx-*hxgy)/(*hx+TINY); Equation (14.4.16).
*uxy=2.0*(*hx+*hy-*h)/(*hx+*hy+TINY); Equation (14.4.17).
free_vector(sumj,1,nj);
free_vector(sumi,1,ni);

}
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14.5 Linear Correlation

We next turn to measures of association between variables that are ordinal
or continuous, rather than nominal. Most widely used is the linear correlation
coefficient. For pairs of quantities (xi, yi), i = 1, . . . , N , the linear correlation
coefficient r (also called the product-moment correlation coefficient, or Pearson’s
r) is given by the formula

r =

∑
i

(xi − x)(yi − y)√∑
i

(xi − x)2
√∑

i

(yi − y)2
(14.5.1)

where, as usual, x is the mean of the xi’s, y is the mean of the yi’s.
The value of r lies between −1 and 1, inclusive. It takes on a value of 1, termed

“complete positive correlation,” when the data points lie on a perfect straight line
with positive slope, with x and y increasing together. The value 1 holds independent
of the magnitude of the slope. If the data points lie on a perfect straight line with
negative slope, y decreasing as x increases, then r has the value −1; this is called
“complete negative correlation.” A value of r near zero indicates that the variables
x and y are uncorrelated.

When a correlation is known to be significant, r is one conventional way of
summarizing its strength. In fact, the value of r can be translated into a statement
about what residuals (root mean square deviations) are to be expected if the data are
fitted to a straight line by the least-squares method (see §15.2, especially equations
15.2.13 – 15.2.14). Unfortunately, r is a rather poor statistic for deciding whether
an observed correlation is statistically significant, and/or whether one observed
correlation is significantly stronger than another. The reason is that r is ignorant of
the individual distributions of x and y, so there is no universal way to compute its
distribution in the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis
is that x and y are uncorrelated, and if the distributions for x and y each have
enough convergent moments (“tails” die off sufficiently rapidly), and if N is large
(typically> 500), then r is distributed approximately normally, with a mean of zero
and a standard deviation of 1/

√
N . In that case, the (double-sided) significance of

the correlation, that is, the probability that |r| should be larger than its observed
value in the null hypothesis, is

erfc

(
|r|
√
N√

2

)
(14.5.2)

where erfc(x) is the complementary error function, equation (6.2.8), computed by
the routines erffc or erfcc of §6.2. A small value of (14.5.2) indicates that the


