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as a distribution can be. Almost adways, the cause of too good a chi-square fit
is that the experimenter, in a “fit” of conservativism, has overestimated his or her
measurement errors. Very rarely, too good a chi-square signals actual fraud, data
that has been “fudged” to fit the model.

A rule of thumb is that a “typical” value of 2 for a “moderately” good fit is
X2 = v. Morepreciseisthe statement that the y? statistichas amean v and astandard
deviation v/2v, and, asymptotically for large v/, becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerationsrelated to 2 fitting are used to derive avaue
for o. If we assume that all measurements have the same standard deviation, o; = o,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constant o to al points, next fitting for the model parameters by minimizing x2,
and finally recomputing

N
0® = lyi —y(@)*/(N = M) (15.1.6)

=1

Obvioudly, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least alows some kind of error bar to be assigned
to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters ay,
we obtain equations that must hold at the chi-square minimum,

N

0:2(“}%“”) <8y(“;ééj’““')> k=1,...,M  (1517)

=1 g

Equation (15.1.7) is, in general, a set of M nonlinear equations for the M unknown
ay. Various of the procedures described subsequently in this chapter derive from
(15.1.7) and its specidizations.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 1-4.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set of N data points (x;, y;) to
a straight-line model

y(@) = y(z;a,b) = a+ b (15.2.1)
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662 Chapter 15.  Modeling of Data

This problem is often called linear regression, a terminology that originated, long
ago, in the socia sciences. We assume that the uncertainty o; associated with
each measurement y; is known, and that the x;’s (values of the dependent variable)
are known exactly.

To measure how well the model agrees with the data, we use the chi-square
merit function (15.1.5), which in this case is

X*(a,b) = i (%)2 (1522)

=1

If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations of a and b; if the errors are not normally
distributed, then the estimations are not maximum likelihood, but may still be useful
in a practical sense. In §15.7, we will treat the case where outlier points are so
numerous as to render the 2 merit function useless.

Equation (15.2.2) is minimized to determine a and b. At its minimum,
derivatives of x?(a,b) with respect to a, b vanish.

o——:—zzyl — b

0__:_QZM

(15.2.3)

These conditions can be rewritten in a convenient form if we define the following
sums;

N 1 N T N vi
= = = (15.2.4)
N 22 N -
With these definitions (15.2.3) becomes
aS +bS, =5y
(15.2.5)

Sy + bSps = Say

The solution of these two equations in two unknownsis calculated as

A =58, — (S,)?

840 Sy — SuSuy

- A

SSpy — S5,
A

(15.2.6)

b:

Equation (15.2.6) gives the solution for the best-fit model parameters o and b.

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(G-80TEY-T2S-0 NESI) ONILNAINOD DIHILNIIOS 4O L8V FHL D NI S3dIOTY TvIIYINNN wouy abed sjdwes gam apIm PHOM



15.2 Fitting Data to a Straight Line 663

We are not done, however. We must estimate the probable uncertainties in
the estimates of a and b, since obviously the measurement errors in the data must
introduce some uncertainty in the determination of those parameters. If the data
are independent, then each contributes its own bit of uncertainty to the parameters.
Consideration of propagation of errors shows that the variance a? in the value of
any function will be

N 2
0% = Z o? (gi_ ) (15.2.7)

For the straight line, the derivatives of a and b with respect to y; can be directly
evauated from the solution:

8& er — Sx €X;

%‘% Sxi"izi,r (15.2.8)
ayi oA
Summing over the points as in (15.2.7), we get
07 = Sua/A

”2_ 5/A (15.2.9)

which are the variances in the estimates of a and b, respectively. We will see in
§15.6 that an additional number is also needed to characterize properly the probable
uncertainty of the parameter estimation. That number is the covariance of a and b,
and (as we will see below) is given by

Cov(a,b) = —S, /A (15.2.10)

The coefficient of correlation between the uncertainty in « and the uncertainty
in b, which is a number between —1 and 1, follows from (15.2.10) (compare
equation 14.5.1),

—S,
Tab = /—SSII

A positive value of r,;, indicates that the errors in a and b are likely to have the
same sign, while a negative value indicates the errors are anticorrelated, likely to
have opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the
model. Absent thisestimate, we have not the dightest indication that the parameters
a and b in the model have any meaning at al! The probability @ that a vaue of
chi-square as poor as the value (15.2.2) should occur by chance is

(15.2.11)

0 = ganmq (N —2 X_2> (15.2.12)
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664 Chapter 15.  Modeling of Data

Here gammq is our routine for the incomplete gamma function Q(a, =), §6.2. If
Q is larger than, say, 0.1, then the goodness-of-fit is believable. If it is larger
than, say, 0.001, then the fit may be acceptable if the errors are nonnormal or have
been moderately underestimated. If @ is less than 0.001 then the model and/or
estimation procedure can rightly be called into question. In this latter case, turn
to §15.7 to proceed further.

If you do not know the individual measurement errors of the pointso;, and are
proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then
here is the procedure for estimating the probable uncertainties of the parameters a
and b: Set o; = 1 in al eguations through (15.2.6), and multiply o, and o3, as
obtained from equation (15.2.9), by the additiona factor \/x2/(N — 2), where x?
is computed by (15.2.2) using the fitted parameters a and b. As discussed above,
this procedure is equivalent to assuming a good fit, so you get no independent
goodness-of-fit probability Q.

In §14.5 we promised a relation between the linear correlation coefficient
r (equation 14.5.1) and a goodness-of-fit measure, x? (equation 15.2.2). For
unweighted data (al o; = 1), that relation is

2= (1 —7*)NVar (y1...yn) (15.2.13)
where
N
NVar (y1...yn) = > (4 —7)° (15.2.14)
1=1

For data with varying weights o;, the above equations remain valid if the sumsin
equation (14.5.1) are weighted by 1/072.

The following function, fit, carries out exactly the operations that we have
discussed. When the weights o are known in advance, the calculations exactly
correspond to the formulas above. However, when weights ¢ are unavailable,
the routine assumes equal values of o for each point and assumes a good fit, as
discussed in §15.1.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we
rewrite them as follows. Define

1 S,
RN A =1,2,....N 15.2.15
B=5 (‘T S) ' (15219
and
N
Su=S¢ (15.2.16)
=1

Then, as you can verify by direct substitution,

1 & tiyi
b=—)» = 15.2.17
St ; 05 ( )
o= 2= %b (15.2.18)

S
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15.2 Fitting Data to a Straight Line 665

1 52
2=_(1 z 15.2.19
Ua S ( + SS“;) ( )

1
2 - 15.2.20
Op S, ( )
Cov(a,b) = _Siit (15.2.21)
Fap = Cov(a, b) (15.2.22)
Oq0p

#include <math.h>
#include "nrutil.h"

void fit(float x[], float y[], int ndata, float sigl[], int mwt, float *a,

float *b, float *siga, float *sigb, float *chi2, float *q)
Given a set of data points x[1..ndatal,y[1..ndata] with individual standard deviations
sigl1..ndatal, fit them to a straight line y = a + bz by minimizing x2. Returned are
a,b and their respective probable uncertainties siga and sigb, the chi-square chi2, and the
goodness-of-fit probability q (that the fit would have x?2 this large or larger). If mwt=0 on
input, then the standard deviations are assumed to be unavailable: q is returned as 1.0 and
the normalization of chi2 is to unit standard deviation on all points.
{

float gammq(float a, float x);

int i;

float wt,t,sxoss,sx=0.0,sy=0.0,st2=0.0,ss,sigdat;

*b=0.0;
if (mwt) { Accumulate sums ...
ss=0.0;
for (i=1;i<=ndata;i++) { ...with weights
wt=1.0/SQR(siglil);
ss += wt;
sx += x[i]*wt;
sy += ylil*wt;
}
} else {

for (i=1;i<=ndata;i++) {
sx += x[i];

...or without weights.

sy += yl[il;
}
ss=ndata;
}
sxoss=sx/ss;
if (mwt) {
for (i=1;i<=ndata;i++) {
t=(x[i]-sxoss)/sigli];
st2 += tx*t;
*b += t*xy[i]/siglil;
}
} else {
for (i=1;i<=ndata;i++) {
t=x[i]-sxoss;
st2 += tx*t;
*b += t*y[i];
}
}
*b /= st2; Solve for a, b, o4, and oy.

*a=(sy-sx*(xb))/ss;
*siga=sqrt ((1.0+sx*sx/(ss*st2))/ss);
*sigb=sqrt(1.0/st2);
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666 Chapter 15.  Modeling of Data

*chi2=0.0; Calculate 2.
if (mwt == 0) {
for (i=1;i<=ndata;i++)
*chi2 += SQR(y[i]-(*a)-(¥b)*x[i]);

*q=1.0;
sigdat=sqrt ((*chi2)/(ndata-2)); For unweighted data evaluate typi-
*siga *= sigdat; cal sig using chi2, and adjust
*sigb *= sigdat; the standard deviations.

} else {

for (i=1;i<=ndata;i++)
*chi2 += SQR((y[i]l-(*a)-(xb)*x[i])/siglil);
*q=gammq (0.5 (ndata-2) ,0.5%(*chi2)); Equation (15.2.12).

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in the y;’s, but aso in
the x;’s, then the task of fitting a straight-line model

y(z) =a+bx (15.3.1)

is considerably harder. It is straightforward to write down the x? merit function for this case,

—a— bxz)
(a,b) Z; e (15.3.2)
where o, ; and o, ; are, respectively, the x and y standard deviations for the ith point. The
weighted sum of variances in the denominator of eguation (15.3.2) can be understood both
as the variance in the direction of the smallest x? between each data point and the line with
slope b, and also as the variance of the linear combination y; — a — bx; of two random
variables z; and y;,

Var(y; —a — ba;) = Var(y;) + b°Var(z;) = oy + b0, = 1/wi (15.3.3)
The sum of the square of N random variables, each normalized by its variance, is thus
x2-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for
the slope dx?/0b = 0 nonlinear. However, the corresponding condition for the intercept,
dx?/da = 0, is il linear and yields

i i

/ > ws (15.3.4)

where the w;’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional
function to minimize with respect to b, while using equation (15.3.4) at each stage to ensure
that the minimum with respect to b is also minimized with respect to a.
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