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*chi2=0.0; Calculate χ2.
if (mwt == 0) {

for (i=1;i<=ndata;i++)
*chi2 += SQR(y[i]-(*a)-(*b)*x[i]);

*q=1.0;
sigdat=sqrt((*chi2)/(ndata-2)); For unweighted data evaluate typi-

cal sig using chi2, and adjust
the standard deviations.

*siga *= sigdat;
*sigb *= sigdat;

} else {
for (i=1;i<=ndata;i++)

*chi2 += SQR((y[i]-(*a)-(*b)*x[i])/sig[i]);
*q=gammq(0.5*(ndata-2),0.5*(*chi2)); Equation (15.2.12).

}
}

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in the yi’s, but also in
the xi’s, then the task of fitting a straight-line model

y(x) = a+ bx (15.3.1)

is considerably harder. It is straightforward to write down the χ2 merit function for this case,

χ2(a, b) =

N∑
i=1

(yi − a− bxi)2

σ2
y i + b2σ2

x i

(15.3.2)

where σx i and σy i are, respectively, the x and y standard deviations for the ith point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallest χ2 between each data point and the line with
slope b, and also as the variance of the linear combination yi − a − bxi of two random
variables xi and yi,

Var(yi − a− bxi) = Var(yi) + b2Var(xi) = σ2
y i + b2σ2

x i ≡ 1/wi (15.3.3)

The sum of the square of N random variables, each normalized by its variance, is thus
χ2-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for
the slope ∂χ2/∂b = 0 nonlinear. However, the corresponding condition for the intercept,
∂χ2/∂a = 0, is still linear and yields

a =

[∑
i

wi(yi − bxi)
]/∑

i

wi (15.3.4)

where the wi’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional
function to minimize with respect to b, while using equation (15.3.4) at each stage to ensure
that the minimum with respect to b is also minimized with respect to a.
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∆χ2 = 1
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Figure 15.3.1. Standard errors for the parameters a and b. The point B can be found by varying the
slope b while simultaneously minimizing the intercept a. This gives the standard error σb, and also the
value s. The standard error σa can then be found by the geometric relation σ2

a = s2 + r2.

Because of the finite error bars on the xi’s, the minimum χ2 as a function of b will
be finite, though usually large, when b equals infinity (line of infinite slope). The angle
θ ≡ arctan b is thus more suitable as a parametrization of slope than b itself. The value of χ2

will then be periodic in θ with period π (not 2π!). If any data points have very small σy ’s
but moderate or large σx ’s, then it is also possible to have a maximum in χ2 near zero slope,
θ ≈ 0. In that case, there can sometimes be two χ2 minima, one at positive slope and the
other at negative. Only one of these is the correct global minimum. It is therefore important
to have a good starting guess for b (or θ). Our strategy, implemented below, is to scale the
yi’s so as to have variance equal to the xi’s, then to do a conventional (as in §15.2) linear fit
with weights derived from the (scaled) sum σ2

y i + σ2
x i. This yields a good starting guess for

b if the data are even plausibly related to a straight-line model.
Finding the standard errors σa and σb on the parameters a and b is more complicated.

We will see in §15.6 that, in appropriate circumstances, the standard errors in a and b are the
respective projections onto the a and b axes of the “confidence region boundary” where χ2

takes on a value one greater than its minimum, ∆χ2 = 1. In the linear case of §15.2, these
projections follow from the Taylor series expansion

∆χ2 ≈ 1

2

[
∂2χ2

∂a2
(∆a)2 +

∂2χ2

∂b2
(∆b)2

]
+
∂2χ2

∂a∂b
∆a∆b (15.3.5)

Because of the present nonlinearity in b, however, analytic formulas for the second derivatives
are quite unwieldy; more important, the lowest-order term frequently gives a poor approxima-
tion to ∆χ2. Our strategy is therefore to find the roots of ∆χ2 = 1 numerically, by adjusting
the value of the slope b away from the minimum. In the program below the general root finder
zbrent is used. It may occur that there are no roots at all — for example, if all error bars are
so large that all the data points are compatible with each other. It is important, therefore, to
make some effort at bracketing a putative root before refining it (cf. §9.1).

Because a is minimized at each stage of varying b, successful numerical root-finding
leads to a value of ∆a that minimizes χ2 for the value of ∆b that gives ∆χ2 = 1. This (see
Figure 15.3.1) directly gives the tangent projection of the confidence region onto the b axis,
and thus σb. It does not, however, give the tangent projection of the confidence region onto
the a axis. In the figure, we have found the point labeled B; to find σa we need to find the
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point A. Geometry to the rescue: To the extent that the confidence region is approximated
by an ellipse, then you can prove (see figure) that σ2

a = r2 + s2. The value of s is known
from having found the point B. The value of r follows from equations (15.3.2) and (15.3.3)
applied at the χ2 minimum (point O in the figure), giving

r2 = 1

/∑
i

wi (15.3.6)

Actually, since b can go through infinity, this whole procedure makes more sense in
(a, θ) space than in (a, b) space. That is in fact how the following program works. Since
it is conventional, however, to return standard errors for a and b, not a and θ, we finally
use the relation

σb = σθ/ cos2 θ (15.3.7)

We caution that if b and its standard error are both large, so that the confidence region actually
includes infinite slope, then the standard error σb is not very meaningful. The function chixy
is normally called only by the routine fitexy. However, if you want, you can yourself
explore the confidence region by making repeated calls to chixy (whose argument is an angle
θ, not a slope b), after a single initializing call to fitexy.

A final caution, repeated from §15.0, is that if the goodness-of-fit is not acceptable
(returned probability is too small), the standard errors σa and σb are surely not believable. In
dire circumstances, you might try scaling all your x and y error bars by a constant factor until
the probability is acceptable (0.5, say), to get more plausible values for σa and σb.

#include <math.h>
#include "nrutil.h"
#define POTN 1.571000
#define BIG 1.0e30
#define PI 3.14159265
#define ACC 1.0e-3

int nn; Global variables communicate with
chixy.float *xx,*yy,*sx,*sy,*ww,aa,offs;

void fitexy(float x[], float y[], int ndat, float sigx[], float sigy[],
float *a, float *b, float *siga, float *sigb, float *chi2, float *q)

Straight-line fit to input data x[1..ndat] and y[1..ndat]with errors in both x and y, the re-
spective standard deviations being the input quantities sigx[1..ndat] and sigy[1..ndat].
Output quantities are a and b such that y = a + bx minimizes χ2, whose value is returned
as chi2. The χ2 probability is returned as q, a small value indicating a poor fit (sometimes
indicating underestimated errors). Standard errors on a and b are returned as siga and sigb.
These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the data are
consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG, then the data
are consistent with all values of b.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
float brent(float ax, float bx, float cx,

float (*f)(float), float tol, float *xmin);
float chixy(float bang);
void fit(float x[], float y[], int ndata, float sig[], int mwt,

float *a, float *b, float *siga, float *sigb, float *chi2, float *q);
float gammq(float a, float x);
void mnbrak(float *ax, float *bx, float *cx, float *fa, float *fb,

float *fc, float (*func)(float));
float zbrent(float (*func)(float), float x1, float x2, float tol);
int j;
float swap,amx,amn,varx,vary,ang[7],ch[7],scale,bmn,bmx,d1,d2,r2,

dum1,dum2,dum3,dum4,dum5;

xx=vector(1,ndat);
yy=vector(1,ndat);
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sx=vector(1,ndat);
sy=vector(1,ndat);
ww=vector(1,ndat);
avevar(x,ndat,&dum1,&varx); Find the x and y variances, and scale

the data into the global variables
for communication with the func-
tion chixy.

avevar(y,ndat,&dum1,&vary);
scale=sqrt(varx/vary);
nn=ndat;
for (j=1;j<=ndat;j++) {

xx[j]=x[j];
yy[j]=y[j]*scale;
sx[j]=sigx[j];
sy[j]=sigy[j]*scale;
ww[j]=sqrt(SQR(sx[j])+SQR(sy[j])); Use both x and y weights in first

trial fit.}
fit(xx,yy,nn,ww,1,&dum1,b,&dum2,&dum3,&dum4,&dum5); Trial fit for b.
offs=ang[1]=0.0; Construct several angles for refer-

ence points, and make b an an-
gle.

ang[2]=atan(*b);
ang[4]=0.0;
ang[5]=ang[2];
ang[6]=POTN;
for (j=4;j<=6;j++) ch[j]=chixy(ang[j]);
mnbrak(&ang[1],&ang[2],&ang[3],&ch[1],&ch[2],&ch[3],chixy);
Bracket the χ2 minimum and then locate it with brent.
*chi2=brent(ang[1],ang[2],ang[3],chixy,ACC,b);
*chi2=chixy(*b);
*a=aa;
*q=gammq(0.5*(nn-2),*chi2*0.5); Compute χ2 probability.
for (r2=0.0,j=1;j<=nn;j++) r2 += ww[j]; Save the inverse sum of weights at

the minimum.r2=1.0/r2;
bmx=BIG; Now, find standard errors for b as

points where ∆χ2 = 1.bmn=BIG;
offs=(*chi2)+1.0;
for (j=1;j<=6;j++) { Go through saved values to bracket

the desired roots. Note period-
icity in slope angles.

if (ch[j] > offs) {
d1=fabs(ang[j]-(*b));
while (d1 >= PI) d1 -= PI;
d2=PI-d1;
if (ang[j] < *b) {

swap=d1;
d1=d2;
d2=swap;

}
if (d1 < bmx) bmx=d1;
if (d2 < bmn) bmn=d2;

}
}
if (bmx < BIG) { Call zbrent to find the roots.

bmx=zbrent(chixy,*b,*b+bmx,ACC)-(*b);
amx=aa-(*a);
bmn=zbrent(chixy,*b,*b-bmn,ACC)-(*b);
amn=aa-(*a);
*sigb=sqrt(0.5*(bmx*bmx+bmn*bmn))/(scale*SQR(cos(*b)));
*siga=sqrt(0.5*(amx*amx+amn*amn)+r2)/scale; Error in a has additional piece

r2.} else (*sigb)=(*siga)=BIG;
*a /= scale; Unscale the answers.
*b=tan(*b)/scale;
free_vector(ww,1,ndat);
free_vector(sy,1,ndat);
free_vector(sx,1,ndat);
free_vector(yy,1,ndat);
free_vector(xx,1,ndat);

}
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#include <math.h>
#include "nrutil.h"
#define BIG 1.0e30

extern int nn;
extern float *xx,*yy,*sx,*sy,*ww,aa,offs;

float chixy(float bang)
Captive function of fitexy, returns the value of (χ2 − offs) for the slope b=tan(bang).
Scaled data and offs are communicated via the global variables.
{

int j;
float ans,avex=0.0,avey=0.0,sumw=0.0,b;

b=tan(bang);
for (j=1;j<=nn;j++) {

ww[j] = SQR(b*sx[j])+SQR(sy[j]);
sumw += (ww[j] = (ww[j] < 1.0/BIG ? BIG : 1.0/ww[j]));
avex += ww[j]*xx[j];
avey += ww[j]*yy[j];

}
avex /= sumw;
avey /= sumw;
aa=avey-b*avex;
for (ans = -offs,j=1;j<=nn;j++)

ans += ww[j]*SQR(yy[j]-aa-b*xx[j]);
return ans;

}

Be aware that the literature on the seemingly straightforward subject of this section
is generally confusing and sometimes plain wrong. Deming’s [1] early treatment is sound,
but its reliance on Taylor expansions gives inaccurate error estimates. References [2-4] are
reliable, more recent, general treatments with critiques of earlier work. York [5] and Reed [6]
usefully discuss the simple case of a straight line as treated here, but the latter paper has
some errors, corrected in [7]. All this commotion has attracted the Bayesians [8-10], who
have still different points of view.

CITED REFERENCES AND FURTHER READING:

Deming, W.E. 1943, Statistical Adjustment of Data (New York: Wiley), reprinted 1964 (New York:
Dover). [1]

Jefferys, W.H. 1980, Astronomical Journal, vol. 85, pp. 177–181; see also vol. 95, p. 1299
(1988). [2]

Jefferys, W.H. 1981, Astronomical Journal, vol. 86, pp. 149–155; see also vol. 95, p. 1300
(1988). [3]

Lybanon, M. 1984, American Journal of Physics, vol. 52, pp. 22–26. [4]

York, D. 1966, Canadian Journal of Physics, vol. 44, pp. 1079–1086. [5]

Reed, B.C. 1989, American Journal of Physics, vol. 57, pp. 642–646; see also vol. 58, p. 189,
and vol. 58, p. 1209. [6]

Reed, B.C. 1992, American Journal of Physics, vol. 60, pp. 59–62. [7]

Zellner, A. 1971, An Introduction to Bayesian Inference in Econometrics (New York: Wiley);
reprinted 1987 (Malabar, FL: R. E. Krieger Pub. Co.). [8]

Gull, S.F. 1989, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer). [9]

Jaynes, E.T. 1991, in Maximum-Entropy and Bayesian Methods, Proc. 10th Int. Workshop,
W.T. Grandy, Jr., and L.H. Schick, eds. (Boston: Kluwer). [10]

Macdonald, J.R., and Thompson, W.J. 1992, American Journal of Physics, vol. 60, pp. 66–73.
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15.4 General Linear Least Squares

An immediate generalization of §15.2 is to fit a set of data points (xi, yi) to a
model that is not just a linear combination of 1 and x (namely a + bx), but rather a
linear combination of any M specified functions of x. For example, the functions
could be 1, x, x2, . . . , xM−1, in which case their general linear combination,

y(x) = a1 + a2x+ a3x
2 + · · ·+ aMx

M−1 (15.4.1)

is a polynomial of degree M − 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.

The general form of this kind of model is

y(x) =

M∑
k=1

akXk(x) (15.4.2)

where X1(x), . . . , XM (x) are arbitrary fixed functions of x, called the basis
functions.

Note that the functions Xk(x) can be wildly nonlinear functions of x. In this
discussion “linear” refers only to the model’s dependence on its parameters ak .

For these linear models we generalize the discussion of the previous section
by defining a merit function

χ2 =

N∑
i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2

(15.4.3)

As before, σi is the measurement error (standard deviation) of the ith data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of §15.1) be set to the constant value σ = 1.

Once again, we will pick as best parameters those that minimize χ2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whose N ×M components are constructed from the M
basis functions evaluated at the N abscissas xi, and from theN measurement errors
σi, by the prescription

Aij =
Xj(xi)

σi
(15.4.4)

The matrix A is called the design matrix of the fitting problem. Notice that in general
A has more rows than columns, N ≥M , since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector b of length N by

bi =
yi
σi

(15.4.5)

and denote the M vector whose components are the parameters to be fitted,
a1, . . . , aM , by a.


