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15.6 Confidence Limits on Estimated Model
Parameters

Several timesalready inthischapter we have made statements about the standard
errors, or uncertainties, in a set of M estimated parameters a. We have given some
formulas for computing standard deviations or variances of individual parameters
(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covariances
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15;
equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning
of these quantitative uncertainties, and to give further information about how
guantitative confidence limits on fitted parameters can be estimated. The subject
can get somewhat technical, and even somewhat confusing, so we will try to make
precise statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptua scheme of an experiment that “measures’
a set of parameters. There is some underlying true set of parameters ay,, that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, whichwewill symbolizeas D . Thedataset D) isknownto the experimenter.
He or she fits the data to a model by x2 minimization or some other technique, and
obtains measured, i.e, fitted, values for the parameters, which we here denote ao).

Because measurement errors have a random component, D) is not a unique
realization of the true parameters a;, ... Rather, there are infinitely many other
realizations of the true parameters as “hypothetical data sets’ each of which could
have been the one measured, but happened not to be. Let us symbolize these
by D1y, D2),.... Each one, had it been realized, would have given a dightly
different set of fitted parameters, a1y, a(2), . . ., respectively. These parameter sets
a(;) therefore occur with some probability distribution in the A/-dimensional space
of all possible parameter setsa. The actual measured set ) is one member drawn
from this distribution.

Even more interesting than the probability distribution of a(;) would be the
distribution of the difference a(;) — aiue. This distribution differs from the former
oneby atrandationthat putsMother Nature' struevalueat theorigin. If we knew this
distribution, we would know everything that there isto know about the quantitative
uncertainties in our experimental measurement a).

So the name of the game is to find some way of estimating or approximating
the probability distributionof a;) — a;ue Without knowing a;,. and without having
available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter set a) is not the true one, let us consider
a fictitious world in which it was the true one. Since we hope that our measured
parameters are not too wrong, we hope that that fictitiousworld is not too different
from the actual world with parameters a;,... In particular, let us hope— no, let us
assume — that the shape of the probability distribution a;y — &g in the fictitious
worldisthesame, or very nearly the same, as the shape of the probability distribution
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Figure 15.6.1. A dtatistical universe of data sets from an underlying model. True parametersayue are
realized in a data set, from which fitted (observed) parametersa are obtained. If the experiment were
repeated many times, new data sets and new values of the fitted parameters would be obtained.

a(;) — ayrue iNtherea world. Noticethat we are not assuming that aoy and g, are
equal; they are certainly not. We are only assuming that the way in which random
errors enter the experiment and data analysis does not vary rapidly as a function of
arue, SO that a(gy can serve as a reasonable surrogate.

Now, often, the distribution of a(;) — ao) in the fictitious world is within our
power to calculate (see Figure 15.6.2). If we know something about the process
that generated our data, given an assumed set of parameters a ), then we can
usualy figure out how to simulate our own sets of “synthetic” redlizations of these
parameters as “ synthetic data sets.” The procedure isto draw random numbers from
appropriate distributions (cf. §7.2—§7.3) so as to mimic our best understanding of
the underlying process and measurement errorsin our apparatus. With such random
draws, we construct data sets with exactly the same numbers of measured points,
and precisdly the same values of all control (independent) variables, as our actual
data set D). Let uscall these simulated data sets D(S’l), D%), .... By construction
these are supposed to have exactly the same statistical relationship to a(g) as the
D;y's have to .. (For the case where you don’t know enough about what you
are measuring to do a credible job of smulating it, see below.)

Next, for each D(S’j), perform exactly the same procedure for estimation of
parameters, eg., x> minimization, as was performed on the actual data to get
the parameters a), giving simulated measured parameters af’l), aé), .... Each
simulated measured parameter set yields a point ag.) — 3(g). Simulate enough data
setsand enough derived simulated measured parameters, and you map out the desired
probability distribution in A dimensions.

In fact, the ability to do Monte Carlo simulations in this fashion has revo-
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Figure15.6.2. Monte Carlo simulation of an experiment. Thefitted parametersfrom an actual experiment
are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parametersis thus studied.

[utionized many fields of modern experimental science. Not only is one able to
characterize the errors of parameter estimation in a very precise way; one can aso
try out on the computer different methods of parameter estimation, or different data
reduction techniques, and seek to minimize the uncertainty of the result according
to any desired criteria. Offered the choice between mastery of a five-foot shelf of
analytical statistics booksand middling ability at performing statistica Monte Carlo
simulations, we would surely choose to have the latter skill.

Quick-and-Dirty Monte Carlo: The Bootstrap Method

Here is a powerful technique that can often be used when you don’'t know
enough about the underlying process, or the nature of your measurement errors,
to do a credible Monte Carlo simulation. Suppose that your data set consists of
N independent and identically distributed (or iid) “data points.” Each data point
probably consists of several numbers, e.g., one or more control variables (uniformly
distributed, say, in the range that you have decided to measure) and one or more
associated measured values (each distributed however Mother Nature chooses).
“lid” means that the sequential order of the data pointsis not of consequence to
the process that you are using to get the fitted parameters a. For example, a x?
sum like (15.5.5) does not care in what order the points are added. Even simpler
examples are the mean value of a measured quantity, or the mean of some function
of the measured quantities.

The bootstrap method [1] uses the actual data set D(%), withits IV datapoints, to
generate any number of synthetic data sets Df, ), D), - - -, dlso with N data points.
The procedureis simply to draw N data points at a time with replacement from the
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692 Chapter 15.  Modeling of Data

set D(Sb . Because of the replacement, you do not simply get back your original
data set each time. You get sets in which a random fraction of the original points,
typicaly ~ 1/e =~ 37%, are replaced by duplicated origind points. Now, exactly
as in the previous discussion, you subject these data sets to the same estimation
procedure as was performed on the actual data, giving a set of simulated measured
parameters afl), asz), ... These will be distributed around &) in close to the same
way that a() Is distributed around a;e.

Sounds like getting something for nothing, doesn’t it? In fact, it has taken more
than a decade for the bootstrap method to become accepted by statisticians. By now,
however, enough theorems have been proved to render the bootstrap reputable (see (2]
for references). The basicideabehind the bootstrapisthat the actual data set, viewed
as a probability distribution consisting of delta functions at the measured values, is
in most cases the best — or only — available estimator of the underlying probability
distribution. It takes courage, but one can often simply use that distribution as the
basis for Monte Carlo simulations.

Watch out for cases where the bootstrap’s “iid” assumption is violated. For
example, if you have made measurements at evenly spaced intervals of some control
variable, then you can usually get away with pretending that theseare“iid,” uniformly
distributed over the measured range. However, some estimators of a (e.g., ones
involving Fourier methods) might be particularly sensitiveto all the pointson agrid
being present. In that case, the bootstrap is going to give awrong distribution. Also
watch out for estimators that 1ook at anything like small-scal e clumpiness within the
N data points, or estimators that sort the data and look at sequentia differences.
Obviously the bootstrap will fail on these, too. (The theorems justifying the method
arestill true, but some of their technical assumptionsare violated by these examples.)

For a large class of problems, however, the bootstrap does yield easy, very
quick, Monte Carlo estimates of the errorsin an estimated parameter set.

Confidence Limits

Rather than present al details of the probability distribution of errors in
parameter estimation, it is common practice to summarize the distribution in the
form of confidence limits. The full probability distribution is a function defined
on the M -dimensional space of parameters a. A confidence region (or confidence
interval) isjust aregion of that M -dimensional space (hopefully asmall region) that
contains a certain (hopefully large) percentage of the total probability distribution.
You point to a confidence region and say, e.g., “thereis a 99 percent chance that the
true parameter values fall within this region around the measured value.”

It is worth emphasizing that you, the experimenter, get to pick both the
confidence level (99 percent in the above example), and the shape of the confidence
region. The only requirement is that your region does include the stated percentage
of probability. Certain percentages are, however, customary in scientific usage:
68.3 percent (the lowest confidence worthy of quoting), 90 percent, 95.4 percent, 99
percent, and 99.73 percent. Higher confidence levelsare conventionally “ninety-nine
point nine ... nine” As for shape, obviousy you want a region that is compact
and reasonably centered on your measurement ), since the whole purpose of a
confidence limit is to inspire confidence in that measured value. In one dimension,
the convention is to use a line segment centered on the measured value; in higher
dimensions, elipses or ellipsoids are most frequently used.
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15.6 Confidence Limits on Estimated Model Parameters 693
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Figure 15.6.3. Confidenceintervalsin 1 and 2 dimensions. The same fraction of measured points (here
68%) lies (i) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the ellipse.

You might suspect, correctly, that the numbers 68.3 percent, 95.4 percent,
and 99.73 percent, and the use of dlipsoids, have some connection with a normal
distribution. That istrue historically, but not always relevant nowadays. 1n general,
the probability distribution of the parameters will not be normal, and the above
numbers, used as levels of confidence, are purely matters of convention.

Figure 15.6.3 sketches a possible probability distribution for the case M = 2.
Shown are three different confidence regionswhich might usefully begiven, all at the
same confidence level. The two vertical lines enclose a band (horizontal inverval)
which representsthe 68 percent confidenceinterval for thevariablea; without regard
to the value of ay. Similarly the horizontal lines enclose a 68 percent confidence
interval for as. The elipse shows a 68 percent confidence interval for a; and as
jointly. Noticethat to enclose the same probability as the two bands, the ellipse must
necessarily extend outside of both of them (a point we will return to below).

Constant Chi-Square Boundaries as Confidence Limits

When the method used to estimate the parameters a,g) is chi-square minimiza
tion, as in the previous sections of this chapter, then there isa natural choice for the
shape of confidence intervals, whose use is almost universa. For the observed data
set Do), thevalue of x? isaminimum at a(. Call thisminimum value x2, . If
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694 Chapter 15.  Modeling of Data

Ax?= 6.63

:

Ax2= 271

Ax2= 1.00

Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted
minimum. The solid curves, with Ax? = 1.00,2.71,6.63 project onto one-dimensional intervals AA’,
BB’,CC'’. Theseintervals— not the ellipses themselves — contain 68.3%, 90%, and 99% of normally
distributed data. The ellipse that contains 68.3% of normally distributed data is shown dashed, and has
Ax? = 2.30. For additional numerical values, see accompanying table.

the vector a of parameter valuesis perturbed away fromag), then x? increases. The
region within which x? increases by no more than a set amount Ay? defines some
M-dimensional confidence region around ag). If Ax? is set to be alarge number,
thiswill be abig region; if it issmall, it will be small. Somewhere in between there
will be choices of Ax? that cause the region to contain, variously, 68 percent, 90
percent, etc. of probability distributionfor a's, as defined above. These regionsare
taken as the confidence regions for the parameters a o).

Very frequently one is interested not in the full M-dimensional confidence
region, but inindividual confidenceregionsfor some smaller number v of parameters.
For example, one might be interested in the confidence interval of each parameter
taken separately (the bands in Figure 15.6.3), in which case v = 1. In that case,
the natural confidence regionsin the v-dimensional subspace of the M -dimensional
parameter space are the projections of the M -dimensional regions defined by fixed
Ax? into the v-dimensional spaces of interest. In Figure 15.6.4, for thecase M = 2,
we show regions corresponding to several values of Ax?. The one-dimensional
confidence interva in a, corresponding to the region bounded by Ax? = 1 lies
between the lines A and A’.

Notice that the projection of the higher-dimensional region on the lower-
dimension space is used, not the intersection. The intersection would be the band
between Z and Z'. Itisnever used. It isshown in thefigure only for the purpose of
making this cautionary point, that it should not be confused with the projection.
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15.6 Confidence Limits on Estimated Model Parameters 695

Probability Distribution of Parameters in the Normal Case

You may be wondering why we have, in this section up to now, made no
connection at al with the error estimates that come out of the x? fitting procedure,
most notably the covariance matrix C;;. The reason is this. x? minimization
is a useful means for estimating parameters even if the measurement errors are
not normally distributed. While normally distributed errors are required if the x?
parameter estimate is to be a maximum likelihood estimator (§15.1), one is often
willing to give up that property in return for the relative convenience of the x?
procedure. Only in extreme cases, measurement error distributionswith very large
“tails,” is x? minimization abandoned in favor of more robust techniques, as will
be discussed in §15.7.

However, theformal covariance matrix that comes out of a2 minimization has
aclear quantitativeinterpretationonly if (or to the extent that) the measurement errors
actualy are normally distributed. In the case of nonnormal errors, you are“alowed”

o to fit for parameters by minimizing x?

e touseacontour of constant A y? astheboundary of your confidence region

e to use Monte Carlo simulation or detailed analytic calculation in deter-

mining which contour Ax? isthe correct one for your desired confidence
level

e to give the covariance matrix C;; as the “formal covariance matrix of

the fit.”
You are not allowed

e to use formulas that we now give for the case of norma errors, which

establish quantitative relationships anong Ax?, C;;, and the confidence
level.

Here are the key theorems that hold when (i) the measurement errors are
normally distributed, and either (ii) the mode is linear in its parameters or (iii) the
sample size is large enough that the uncertainties in the fitted parameters a do not
extend outside aregion in which the model could be replaced by a suitablelinearized
model. [Note that condition (iii) does not preclude your use of a nonlinear routine
like mqrfit to find the fitted parameters.)

Theorem A. 2, is distributed as a chi-square distribution with N — M
degrees of freedom, where N is the number of data pointsand M is the number of
fitted parameters. Thisisthe basic theorem that |etsyou eval uate the goodness-of -fit
of the model, as discussed above in §15.1. Welist it first to remind you that unless
the goodness-of -fit is credible, the whole estimation of parameters is suspect.

TheoremB.  If afj) is drawn from the universe of simulated data sets with
actual parameters ayq), then the probability distribution of éa = afj) — q) isthe
multivariate normal distribution

1
P(6a) day ...dap = const. X exp (—56& [a] - 6a> day...days

where [«] is the curvature matrix defined in equation (15.5.8).

Theorem C. If afj) is drawn from the universe of simulated data sets with
actual parameters a(g), then the quantity Ax? = x*(a(;)) — x*(a(0)) is distributed
as a chi-square distribution with M degrees of freedom. Here the x?’s are al
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696 Chapter 15.  Modeling of Data

evaluated using the fixed (actual) data set D). This theorem makes the connection
between particular values of Ay? and the fraction of the probability distribution
that they enclose as an M-dimensiona region, i.e.,, the confidence level of the
M-dimensional confidence region.

Theorem D.  Suppose that a@) is drawn from the universe of simulated data
sets (as above), that its first v components a4, . .., a, are held fixed, and that its
remaining M — v components are varied so as to minimize y2. Call this minimum
vaue x2. Then Ax2 = x2 — x2,,, is distributed as a chi-square distribution with
v degrees of freedom. If you consult Figure 15.6.4, you will see that this theorem
connects the projected Ax? region with a confidence level. Inthefigure, apoint that
isheld fixed in a, and allowed to vary in a; minimizing x? will seek out the ellipse
whose top or bottom edge is tangent to the line of constant a,, and is therefore the
line that projects it onto the smaller-dimensional space.

As a first example, let us consider the case v = 1, where we want to find
the confidence interval of a single parameter, say a;. Notice that the chi-square
distributionwith = 1 degree of freedomisthe same distributionasthat of the square
of asingle normally distributed quantity. Thus Ax2 < 1 occurs 68.3 percent of the
time (1-o for the normal distribution), Ax?2 < 4 occurs 95.4 percent of thetime (2-c
for the normal distribution), Ax? < 9 occurs 99.73 percent of the time (3-o for the
normal distribution), etc. In this manner you find the A2 that corresponds to your
desired confidence level. (Additional values are given in the accompanying table.)

Let $a be a change in the parameters whose first component is arbitrary, da;,
but the rest of whose components are chosen to minimize the Ax2. Then Theorem
D applies. The value of Ax? is given in general by

Ax? = 6a-[a] - 6a (15.6.1)

which follows from equation (15.5.8) applied at x2,, where 5, = 0. Since 6a
by hypothesis minimizes x2 in al but its first component, the second through M th
components of the normal equations (15.5.9) continue to hold. Therefore, the
solution of (15.5.9) is

0 0
sa=[a]"- | . | =[C]-] . (15.6.2)
0 0

where ¢ is one arbitrary constant that we get to adjust to make (15.6.1) give the
desired left-hand value. Plugging (15.6.2) into (15.6.1) and using the fact that [C]
and [«] are inverse matrices of one another, we get

c= 6@1/011 and AXZ = (6&1)2/011 (1563)

5(1,1 = :l:\/ AX% \V 011 (1564)

At last! A relation between the confidence interval +6a; and the forma
standard error o1 = +/C11. Not unreasonably, we find that the 68 percent confidence
interval is +o04, the 95 percent confidence interval is +204, €etc.

or
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15.6 Confidence Limits on Estimated Model Parameters 697

Ax? as aFunction of Confidence Level and Degrees of Freedom

124
» 1 2 3 4 5 6
683% | 1.00 230 353 472 580  7.04
90% 271 461 625 778 924 106
954% | 400 617 802 970 113 128
99% 663 921 113 133 151 168
99.73% | 900 118 142 163 182 201
99.99% | 151 184 211 235 257 278

These considerations hold not just for the individua parameters a;, but also
for any linear combination of them: If

M
b= cia;=c-a (15.6.5)
k=1

then the 68 percent confidence interval on b is

§b=++/c-[C] ¢ (15.6.6)

However, these simple, normal-sounding numerical relationships do not hold
inthecase v > 1[3]. In particular, Ax? = 1 is not the boundary, nor does it project
onto the boundary, of a 68.3 percent confidence region when v > 1. If you want
to calculate not confidence intervals in one parameter, but confidence elipses in
two parameters jointly, or elipsoids in three, or higher, then you must follow the
following prescription for implementing Theorems C and D above:

o Let v bethenumber of fitted parameters whose joint confidence regionyou
wishtodisplay, v <M. Call these parameters the” parameters of interest.”

e Let p bethe confidence limit desired, eg., p = 0.68 or p = 0.95.

e Find A (i.e., Ax?) such that the probability of a chi-square variable with
v degrees of freedom being lessthan A isp. For some useful values of p
and v, A isgivenin thetable. For other values, you can use the routine
gammq and a simple root-finding routine (e.g., bisection) to find A such
that gammq(v/2, A/2) = 1 — p.

e Take the M x M covariance matrix [C] = [a]~! of the chi-square fit.
Copy the intersection of the v rows and columns corresponding to the
parameters of interest into av x v matrix denoted [Ch.o;].

o Invertthematrix [Chp.o;]. (Inthe one-dimensional casethiswasjust taking
the reciproca of the element C1;.)

e Theequation for theeliptical boundary of your desired confidence region
in the v-dimensiona subspace of interest is

A =6a - [Cppoj) ' - 0@ (15.6.7)

where 6a’ is the v-dimensional vector of parameters of interest.
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a

ag

Figure 15.6.5. Relation of the confidence region ellipse Ax? = 1 to quantities computed by singular
value decomposition. The vectorsV ;) are unit vectors along the principal axes of the confidenceregion.
The semi-axes have lengths equal to the reciprocal of the singular values w;. If the axes are all scaled
by some constant factor o, Ax? is scaled by the factor o2.

If you are confused at this point, you may find it helpful to compare Figure
15.6.4 and the accompanying table, considering the case M = 2 with v = 1 and
v = 2. You should be able to verify the following statements: (i) The horizontal
band between C' and C’ contains 99 percent of the probability distribution, so it
is a confidence limit on a, aone at this level of confidence. (ii) Ditto the band
between B and B’ a the 90 percent confidence level. (iii) The dashed dlipse,
labeled by Ax? = 2.30, contains 68.3 percent of the probability distribution, so it is
a confidence region for a; and as jointly, at thislevel of confidence.

Confidence Limits from Singular Value Decomposition

When you have obtained your 2 fit by singular val ue decomposition (§15.4), the
information about thefit'sformal errors comes packaged in asomewhat different, but
generally more convenient, form. The columns of the matrix V are an orthonormal
set of M vectors that are the principal axes of the Ay? = congtant dlipsoids.
We denote the columns as V(1 ... V(5). The lengths of those axes are inversely
proportional to the corresponding singular values wy . . . wyy; see Figure 15.6.5. The
boundaries of the dlipsoids are thus given by

Ax? =wi(Vy-6a)° + -+ wi; (Vi - 6a)° (15.6.8)
which is the justification for writing equation (15.4.18) above. Keep in mind that
it is much easier to plot an elipsoid given a list of its vector principal axes, than
given its matrix quadratic form!

The formulafor the covariance matrix [C] in terms of the columnsV ;) is
Mo
[C1=>_ =V ®Va (15.6.9)
i=1

or, in components,
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M
1
Cip =Y —5ViiVii (15.6.10)
1=1

2
wy
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15.7 Robust Estimation

The concept of robustness has been mentioned in passing severa times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in §14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in §15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
genera, referring to a statistical estimator, it means “insensitive to small departures
from theidealized assumptions for which the estimator is optimized.” [1.2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for al data points, or else fractionally large departures for a small
number of data points. It isthe latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticianshave devel oped various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much as equa-
tions(15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usualy
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typica” L-estimates will give you the generd idea. They are (i) the median, and
(i) Tukey's trimean, defined as the weighted average of the first, second, and third
guartile pointsin a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimates are estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by the Wilcoxon test of computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order
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