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15.7 Robust Estimation

The concept of robustness has been mentioned in passing several times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in §14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in §15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized.” [1,2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for all data points, or else fractionally large departures for a small
number of data points. It is the latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much as equa-
tions (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typical” L-estimates will give you the general idea. They are (i) the median, and
(ii) Tukey’s trimean, defined as the weighted average of the first, second, and third
quartile points in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimates are estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by the Wilcoxon test of computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order
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Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A one-dimensional
distribution with a tail of outliers; statistical fluctuations in these outliers can preventaccurate determination
of the position of the central peak. (b) A distribution in two dimensions fitted to a straight line; non-robust
techniques such as least-squares fitting can have undesired sensitivity to outlying points.

correlation coefficient (14.6.1) are R-estimates in essence, if not always by formal
definition.

Some other kinds of robust techniques, coming from the fields of optimal control
and filtering rather than from the field of mathematical statistics, are mentioned at the
end of this section. Some examples where robust statistical methods are desirable
are shown in Figure 15.7.1.

Estimation of Parameters by Local M-Estimates

Suppose we know that our measurement errors are not normally distributed.
Then, in deriving a maximum-likelihood formula for the estimated parameters a in a
model y(x; a), we would write instead of equation (15.1.3)

P =

N∏
i=1

{exp [−ρ(yi, y {xi; a})] ∆y} (15.7.1)
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where the function ρ is the negative logarithm of the probability density. Taking the
logarithm of (15.7.1) analogously with (15.1.4), we find that we want to minimize
the expression

N∑
i=1

ρ(yi, y {xi; a}) (15.7.2)

Very often, it is the case that the function ρ depends not independently on its
two arguments, measured yi and predicted y(xi), but only on their difference, at least
if scaled by some weight factors σi which we are able to assign to each point. In this
case the M-estimate is said to be local, and we can replace (15.7.2) by the prescription

minimize over a
N∑
i=1

ρ

(
yi − y(xi; a)

σi

)
(15.7.3)

where the function ρ(z) is a function of a single variable z ≡ [yi − y(xi)]/σi.
If we now define the derivative of ρ(z) to be a function ψ(z),

ψ(z) ≡ dρ(z)

dz
(15.7.4)

then the generalization of (15.1.7) to the case of a general M-estimate is

0 =

N∑
i=1

1

σi
ψ

(
yi − y(xi)

σi

)(
∂y(xi; a)

∂ak

)
k = 1, . . . ,M (15.7.5)

If you compare (15.7.3) to (15.1.3), and (15.7.5) to (15.1.7), you see at once
that the specialization for normally distributed errors is

ρ(z) =
1

2
z2 ψ(z) = z (normal) (15.7.6)

If the errors are distributed as a double or two-sided exponential, namely

Prob {yi − y(xi)} ∼ exp

(
−
∣∣∣∣yi − y(xi)σi

∣∣∣∣) (15.7.7)

then, by contrast,

ρ(x) = |z| ψ(z) = sgn(z) (double exponential) (15.7.8)

Comparing to equation (15.7.3), we see that in this case the maximum likelihood
estimator is obtained by minimizing the mean absolute deviation, rather than the
mean square deviation. Here the tails of the distribution, although exponentially
decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive — therefore sometimes even more
realistic — tails is the Cauchy or Lorentzian distribution,

Prob {yi − y(xi)} ∼
1

1 +
1

2

(
yi − y(xi)

σi

)2 (15.7.9)
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This implies

ρ(z) = log

(
1 +

1

2
z2

)
ψ(z) =

z

1 + 1
2
z2

(Lorentzian) (15.7.10)

Notice that the ψ function occurs as a weighting function in the generalized
normal equations (15.7.5). For normally distributed errors, equation (15.7.6) says
that the more deviant the points, the greater the weight. By contrast, when tails are
somewhat more prominent, as in (15.7.7), then (15.7.8) says that all deviant points
get the same relative weight, with only the sign information used. Finally, when
the tails are even larger, (15.7.10) says the ψ increases with deviation, then starts
decreasing, so that very deviant points — the true outliers — are not counted at all
in the estimation of the parameters.

This general idea, that the weight given individual points should first increase
with deviation, then decrease, motivates some additional prescriptions for ψ which
do not especially correspond to standard, textbook probability distributions. Two
examples are

Andrew’s sine

ψ(z) =

{
sin(z/c)

0
|z| < cπ
|z| > cπ

(15.7.11)

If the measurement errors happen to be normal after all, with standard deviations σi,
then it can be shown that the optimal value for the constant c is c = 2.1.

Tukey’s biweight

ψ(z) =

{
z(1− z2/c2)2

0
|z| < c
|z| > c

(15.7.12)

where the optimal value of c for normal errors is c = 6.0.

Numerical Calculation of M-Estimates

To fit a model by means of an M-estimate, you first decide which M-estimate
you want, that is, which matching pair ρ, ψ you want to use. We rather like
(15.7.8) or (15.7.10).

You then have to make an unpleasant choice between two fairly difficult
problems. Either find the solution of the nonlinear set of M equations (15.7.5), or
else minimize the single function in M variables (15.7.3).

Notice that the function (15.7.8) has a discontinuous ψ, and a discontinuous
derivative for ρ. Such discontinuities frequently wreak havoc on both general
nonlinear equation solvers and general function minimizing routines. You might
now think of rejecting (15.7.8) in favor of (15.7.10), which is smoother. However,
you will find that the latter choice is also bad news for many general equation solving
or minimization routines: small changes in the fitted parameters can drive ψ(z)
off its peak into one or the other of its asymptotically small regimes. Therefore,
different terms in the equation spring into or out of action (almost as bad as analytic
discontinuities).

Don’t despair. If your computer budget (or, for personal computers, patience)
is up to it, this is an excellent application for the downhill simplex minimization
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algorithm exemplified in amoeba §10.4 or amebsa in §10.9. Those algorithms make
no assumptions about continuity; they just ooze downhill and will work for virtually
any sane choice of the function ρ.

It is very much to your (financial) advantage to find good starting values,
however. Often this is done by first fitting the model by the standard χ2 (nonrobust)
techniques, e.g., as described in §15.4 or §15.5. The fitted parameters thus obtained
are then used as starting values in amoeba, now using the robust choice of ρ and
minimizing the expression (15.7.3).

Fitting a Line by Minimizing Absolute Deviation

Occasionally there is a special case that happens to be much easier than is
suggested by the general strategy outlined above. The case of equations (15.7.7)–
(15.7.8), when the model is a simple straight line

y(x; a, b) = a+ bx (15.7.13)

and where the weights σi are all equal, happens to be such a case. The problem is
precisely the robust version of the problem posed in equation (15.2.1) above, namely
fit a straight line through a set of data points. The merit function to be minimized is

N∑
i=1

|yi − a− bxi| (15.7.14)

rather than the χ2 given by equation (15.2.2).
The key simplification is based on the following fact: The median cM of a set

of numbers ci is also that value which minimizes the sum of the absolute deviations∑
i

|ci − cM |

(Proof: Differentiate the above expression with respect to cM and set it to zero.)
It follows that, for fixed b, the value of a that minimizes (15.7.14) is

a = median {yi − bxi} (15.7.15)

Equation (15.7.5) for the parameter b is

0 =

N∑
i=1

xi sgn(yi − a− bxi) (15.7.16)

(where sgn(0) is to be interpreted as zero). If we replace a in this equation by the
implied function a(b) of (15.7.15), then we are left with an equation in a single
variable which can be solved by bracketing and bisection, as described in §9.1.
(In fact, it is dangerous to use any fancier method of root-finding, because of the
discontinuities in equation 15.7.16.)

Here is a routine that does all this. It calls select (§8.5) to find the median.
The bracketing and bisection are built in to the routine, as is the χ2 solution that
generates the initial guesses for a and b. Notice that the evaluation of the right-hand
side of (15.7.16) occurs in the function rofunc, with communication via global
(top-level) variables.
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#include <math.h>
#include "nrutil.h"
int ndatat;
float *xt,*yt,aa,abdevt;

void medfit(float x[], float y[], int ndata, float *a, float *b, float *abdev)
Fits y = a + bx by the criterion of least absolute deviations. The arrays x[1..ndata] and
y[1..ndata] are the input experimental points. The fitted parameters a and b are output,
along with abdev, which is the mean absolute deviation (in y) of the experimental points from
the fitted line. This routine uses the routine rofunc, with communication via global variables.
{

float rofunc(float b);
int j;
float bb,b1,b2,del,f,f1,f2,sigb,temp;
float sx=0.0,sy=0.0,sxy=0.0,sxx=0.0,chisq=0.0;

ndatat=ndata;
xt=x;
yt=y;
for (j=1;j<=ndata;j++) { As a first guess for a and b, we will find the least-

squares fitting line.sx += x[j];
sy += y[j];
sxy += x[j]*y[j];
sxx += x[j]*x[j];

}
del=ndata*sxx-sx*sx;
aa=(sxx*sy-sx*sxy)/del; Least-squares solutions.
bb=(ndata*sxy-sx*sy)/del;
for (j=1;j<=ndata;j++)

chisq += (temp=y[j]-(aa+bb*x[j]),temp*temp);
sigb=sqrt(chisq/del); The standard deviation will give some idea of how

big an iteration step to take.b1=bb;
f1=rofunc(b1);
b2=bb+SIGN(3.0*sigb,f1);
Guess bracket as 3-σ away, in the downhill direction known from f1.
f2=rofunc(b2);
if (b2 == b1) {

*a=aa;
*b=bb;
*abdev=abdevt/ndata;
return;

}
while (f1*f2 > 0.0) { Bracketing.

bb=b2+1.6*(b2-b1);
b1=b2;
f1=f2;
b2=bb;
f2=rofunc(b2);

}
sigb=0.01*sigb; Refine until error a negligible number of standard

deviations.while (fabs(b2-b1) > sigb) {
bb=b1+0.5*(b2-b1); Bisection.
if (bb == b1 || bb == b2) break;
f=rofunc(bb);
if (f*f1 >= 0.0) {

f1=f;
b1=bb;

} else {
f2=f;
b2=bb;

}
}
*a=aa;
*b=bb;
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*abdev=abdevt/ndata;
}

#include <math.h>
#include "nrutil.h"
#define EPS 1.0e-7

extern int ndatat; Defined in medfit.
extern float *xt,*yt,aa,abdevt;

float rofunc(float b)
Evaluates the right-hand side of equation (15.7.16) for a given value of b. Communication with
the routine medfit is through global variables.
{

float select(unsigned long k, unsigned long n, float arr[]);
int j;
float *arr,d,sum=0.0;

arr=vector(1,ndatat);
for (j=1;j<=ndatat;j++) arr[j]=yt[j]-b*xt[j];
if (ndatat & 1) {

aa=select((ndatat+1)>>1,ndatat,arr);
}
else {

j=ndatat >> 1;
aa=0.5*(select(j,ndatat,arr)+select(j+1,ndatat,arr));

}
abdevt=0.0;
for (j=1;j<=ndatat;j++) {

d=yt[j]-(b*xt[j]+aa);
abdevt += fabs(d);
if (yt[j] != 0.0) d /= fabs(yt[j]);
if (fabs(d) > EPS) sum += (d >= 0.0 ? xt[j] : -xt[j]);

}
free_vector(arr,1,ndatat);
return sum;

}

Other Robust Techniques

Sometimes you may have a priori knowledge about the probable values and
probable uncertainties of some parameters that you are trying to estimate from a data
set. In such cases you may want to perform a fit that takes this advance information
properly into account, neither completely freezing a parameter at a predetermined
value (as in lfit §15.4) nor completely leaving it to be determined by the data set.
The formalism for doing this is called “use of a priori covariances.”

A related problem occurs in signal processing and control theory, where it is
sometimes desired to “track” (i.e., maintain an estimate of) a time-varying signal in
the presence of noise. If the signal is known to be characterized by some number
of parameters that vary only slowly, then the formalism of Kalman filtering tells
how the incoming, raw measurements of the signal should be processed to produce
best parameter estimates as a function of time. For example, if the signal is a
frequency-modulated sine wave, then the slowly varying parameter might be the
instantaneous frequency. The Kalman filter for this case is called a phase-locked
loop and is implemented in the circuitry of good radio receivers [3,4].
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