
W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 16. Integration of Ordinary
Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x)− q(x)z(x)

(16.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of N coupled first-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)

dx
= fi(x, y1, . . . , yN ), i = 1, . . . , N (16.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions

707



708 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

on the values of the functions yi in (16.0.3). In general they can be satisfied at
discrete specified points, but do not hold between those points, i.e., are not preserved
automatically by the differential equations. Boundary conditions can be as simple as
requiring that certain variables have certain numerical values, or as complicated as
a set of nonlinear algebraic equations among the variables.

Usually, it is the nature of the boundary conditions that determines which
numerical methods will be feasible. Boundary conditions divide into two broad
categories.

• In initial value problems all the yi are given at some starting value xs, and
it is desired to find the yi’s at some final point xf , or at some discrete list
of points (for example, at tabulated intervals).

• In two-point boundary value problems, on the other hand, boundary
conditions are specified at more than one x. Typically, some of the
conditions will be specified at xs and the remainder at xf .

This chapter will consider exclusively the initial value problem, deferring two-
point boundary value problems, which are generally more difficult, to Chapter 17.

The underlying idea of any routine for solving the initial value problem is
always this: Rewrite the dy’s and dx’s in (16.0.3) as finite steps ∆y and ∆x, and
multiply the equations by ∆x. This gives algebraic formulas for the change in the
functions when the independent variable x is “stepped” by one “stepsize” ∆x. In
the limit of making the stepsize very small, a good approximation to the underlying
differential equation is achieved. Literal implementation of this procedure results
in Euler’s method (16.1.1, below), which is, however, not recommended for any
practical use. Euler’s method is conceptually important, however; one way or
another, practical methods all come down to this same idea: Add small increments
to your functions corresponding to derivatives (right-hand sides of the equations)
multiplied by stepsizes.

In this chapter we consider three major types of practical numerical methods
for solving initial value problems for ODEs:

• Runge-Kutta methods
• Richardson extrapolation and its particular implementation as the Bulirsch-

Stoer method
• predictor-corrector methods.
A brief description of each of these types follows.
1. Runge-Kutta methods propagate a solution over an interval by combining

the information from several Euler-style steps (each involving one evaluation of the
right-hand f’s), and then using the information obtained to match a Taylor series
expansion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a computed
result to the value that would have been obtained if the stepsize had been very
much smaller than it actually was. In particular, extrapolation to zero stepsize is
the desired goal. The first practical ODE integrator that implemented this idea was
developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods.

3. Predictor-corrector methods store the solution along the way, and use
those results to extrapolate the solution one step advanced; they then correct the
extrapolation using derivative information at the new point. These are best for
very smooth functions.



16.0 Introduction 709

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Runge-Kutta is what you use when (i) you don’t know any better, or (ii) you
have an intransigent problem where Bulirsch-Stoer is failing, or (iii) you have a trivial
problem where computational efficiency is of no concern. Runge-Kutta succeeds
virtually always; but it is not usually fastest, except when evaluating fi is cheap and
moderate accuracy (<∼ 10−5) is required. Predictor-corrector methods, since they
use past information, are somewhat more difficult to start up, but, for many smooth
problems, they are computationally more efficient than Runge-Kutta. In recent years
Bulirsch-Stoer has been replacing predictor-corrector in many applications, but it
is too soon to say that predictor-corrector is dominated in all cases. However, it
appears that only rather sophisticated predictor-corrector routines are competitive.
Accordingly, we have chosen not to give an implementation of predictor-corrector
in this book. We discuss predictor-corrector further in §16.7, so that you can use
a canned routine should you encounter a suitable problem. In our experience, the
relatively simple Runge-Kutta and Bulirsch-Stoer routines we give are adequate
for most problems.

Each of the three types of methods can be organized to monitor internal
consistency. This allows numerical errors which are inevitably introduced into
the solution to be controlled by automatic, (adaptive) changing of the fundamental
stepsize. We always recommend that adaptive stepsize control be implemented,
and we will do so below.

In general, all three types of methods can be applied to any initial value
problem. Each comes with its own set of debits and credits that must be understood
before it is used.

We have organized the routines in this chapter into three nested levels. The
lowest or “nitty-gritty” level is the piece we call the algorithm routine. This
implements the basic formulas of the method, starts with dependent variables yi at
x, and calculates new values of the dependent variables at the value x + h. The
algorithm routine also yields up some information about the quality of the solution
after the step. The routine is dumb, however, and it is unable to make any adaptive
decision about whether the solution is of acceptable quality or not.

That quality-control decision we encode in a stepper routine. The stepper
routine calls the algorithm routine. It may reject the result, set a smaller stepsize, and
call the algorithm routine again, until compatibility with a predetermined accuracy
criterion has been achieved. The stepper’s fundamental task is to take the largest
stepsize consistent with specified performance. Only when this is accomplished does
the true power of an algorithm come to light.

Above the stepper is the driver routine, which starts and stops the integration,
stores intermediate results, and generally acts as an interface with the user. There is
nothing at all canonical about our driver routines. You should consider them to be
examples, and you can customize them for your particular application.

Of the routines that follow, rk4, rkck, mmid, stoerm, and simpr are algorithm
routines; rkqs, bsstep, stiff, and stifbs are steppers; rkdumb and odeint

are drivers.
Section 16.6 of this chapter treats the subject of stiff equations, relevant both to

ordinary differential equations and also to partial differential equations (Chapter 19).



710 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall).

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 7.

Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).

Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New
York: Academic Press).

16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn to xn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(
xn + 1

2h, yn + 1
2k1

)
yn+1 = yn + k2 +O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(hn+1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic


