
734 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the secondn elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations [1]:

u′ = 998u+ 1998v

v′ = −999u− 1999v
(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)

By means of the transformation

u = 2y − z v = −y + z (16.6.3)

we find the solution

u = 2e−x − e−1000x

v = −e−x + e−1000x
(16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e−1000x term would require a stepsize h� 1/1000 for
the method to be stable (the reason for this is explained below). This is so even

16.6 Stiff Sets of Equations 735

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

x

y

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.

though the e−1000x term is completely negligible in determining the values of u and
v as soon as one is away from the origin (see Figure 16.6.1).

This is the generic disease of stiff equations: we are required to follow the
variation in the solution on the shortest length scale to maintain stability of the
integration, even though accuracy requirements allow a much larger stepsize.

To see how we might cure this problem, consider the single equation

y′ = −cy (16.6.5)

where c > 0 is a constant. The explicit (or forward) Euler scheme for integrating
this equation with stepsize h is

yn+1 = yn + hy′n = (1− ch)yn (16.6.6)

The method is called explicit because the new value yn+1 is given explicitly in
terms of the old value yn. Clearly the method is unstable if h > 2/c, for then
|yn| → ∞ as n → ∞.

The simplest cure is to resort to implicit differencing, where the right-hand side
is evaluated at the new y location. In this case, we get the backward Euler scheme:

yn+1 = yn + hy′n+1 (16.6.7)

or

yn+1 =
yn

1 + ch
(16.6.8)

The method is absolutely stable: even as h → ∞, yn+1 → 0, which is in fact the
correct solution of the differential equation. If we think of x as representing time,
then the implicit method converges to the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only
for linear systems, but even in the general case implicit methods give better stability.

736 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Of course, we give up accuracy in following the evolution towards equilibrium if
we use large stepsizes, but we maintain stability.

These considerations can easily be generalized to sets of linear equations with
constant coefficients:

y′ = −C · y (16.6.9)

where C is a positive definite matrix. Explicit differencing gives

yn+1 = (1− Ch) · yn (16.6.10)

Now a matrix An tends to zero as n → ∞ only if the largest eigenvalue of A
has magnitude less than unity. Thus yn is bounded as n → ∞ only if the largest
eigenvalue of 1 − Ch is less than 1, or in other words

h <
2

λmax
(16.6.11)

where λmax is the largest eigenvalue of C.
On the other hand, implicit differencing gives

yn+1 = yn + hy′n+1 (16.6.12)

or

yn+1 = (1 + Ch)−1 · yn (16.6.13)

If the eigenvalues of C are λ, then the eigenvalues of (1 + Ch)−1 are (1 + λh)−1,
which has magnitude less than one for all h. (Recall that all the eigenvalues
of a positive definite matrix are nonnegative.) Thus the method is stable for all
stepsizes h. The penalty we pay for this stability is that we are required to invert
a matrix at each step.

Not all equations are linear with constant coefficients, unfortunately! For
the system

y′ = f(y) (16.6.14)

implicit differencing gives

yn+1 = yn + hf(yn+1) (16.6.15)

In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

yn+1 = yn + h

[
f(yn) +

∂f
∂y

∣∣∣∣
y
n

· (yn+1 − yn)

]
(16.6.16)

Here ∂f/∂y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

yn+1 = yn + h

[
1− h ∂f

∂y

]−1

· f(yn) (16.6.17)

16.6 Stiff Sets of Equations 737

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix

1− h ∂f
∂y

(16.6.18)

to find yn+1. Solving implicit methods by linearization is called a “semi-implicit”
method, so equation (16.6.17) is the semi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similar to the case of
a constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoer method, in particular a semi-implicit
extrapolation method due to Bader and Deuflhard.

• Predictor-corrector methods, most of which are descendants of Gear’s
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly on x, f(y, x), can be handled by adding x to
the list of dependent variables so that the system to be solved is(

y
x

)′
=

(
f
1

)
(16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement for you, so the routines can handle right-hand sides of the form f(y, x)
without any special effort on your part.

We now mention an important point: It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vector yscal with which
the error is to be scaled. For example, to get constant fractional errors, simply set
yscal = |y|. You can get constant absolute errors relative to some maximum values
by setting yscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

738 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Rosenbrock Methods

These methods have the advantage of being relatively simple to understand and imple-
ment. For moderate accuracies (ε <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +

s∑
i=1

ciki (16.6.21)

where the corrections ki are found by solving s linear equations that generalize the structure
in (16.6.17):

(1− γhf ′) · ki = hf

(
y0 +

i−1∑
j=1

αijkj

)
+ hf ′ ·

i−1∑
j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix by f ′. The coefficients γ, ci, αij , and γij are fixed
constants independent of the problem. If γ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for k1, k2,

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” one y
and a lower-order estimate ŷ with different coefficients ĉi, i = 1, . . . , ŝ, where ŝ < s but the
ki are the same. The difference between y and ŷ leads to an estimate of the local truncation
error, which can then be used for stepsize control. Kaps and Rentrop showed that the smallest
value of s for which embedding is possible is s = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =
i−1∑
j=1

γijkj + γki (16.6.23)

The equations then take the form

(1/γh− f ′) · g1 = f(y0)

(1/γh− f ′) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh− f ′) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh− f ′) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h

(16.6.24)
In our implementation stiff of the Kaps-Rentrop algorithm, we have carried out the

replacement (16.6.19) explicitly in equations (16.6.24), so you need not concern yourself
about it. Simply provide a routine (called derivs in stiff) that returns f (called dydx) as a
function of x and y. Also supply a routine jacobn that returns f ′ (dfdy) and ∂f/∂x (dfdx)
as functions of x and y. If x does not occur explicitly on the right-hand side, then dfdx will
be zero. Usually the Jacobian matrix will be available to you by analytic differentiation of
the right-hand side f. If not, your routine will have to compute it by numerical differencing
with appropriate increments ∆y.

Kaps and Rentrop gave two different sets of parameters, which have slightly different
stability properties. Several other sets have been proposed. Our default choice is that of
Shampine [3], but we also give you one of the Kaps-Rentrop sets as an option. Some proposed
parameter sets require function evaluations outside the domain of integration; we prefer to
avoid that complication.

The calling sequence of stiff is exactly the same as the nonstiff routines given earlier
in this chapter. It is thus “plug-compatible” with them in the general ODE integrating routine

16.6 Stiff Sets of Equations 739

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

odeint. This compatibility requires, unfortunately, one slight anomaly: While the user-
supplied routine derivs is a dummy argument (which can therefore have any actual name),
the other user-supplied routine is not an argument and must be named (exactly) jacobn.

stiff begins by saving the initial values, in case the step has to be repeated because
the error tolerance is exceeded. The linear equations (16.6.24) are solved by first computing
the LU decomposition of the matrix 1/γh − f ′ using the routine ludcmp. Then the four
gi are found by back-substitution of the four different right-hand sides using lubksb. Note
that each step of the integration requires one call to jacobn and three calls to derivs (one
call to get dydx before calling stiff, and two calls inside stiff). The reason only three
calls are needed and not four is that the parameters have been chosen so that the last two
calls in equation (16.6.24) are done with the same arguments. Counting the evaluation of
the Jacobian matrix as roughly equivalent to N evaluations of the right-hand side f, we see
that the Kaps-Rentrop scheme involves aboutN + 3 function evaluations per step. Note that
if N is large and the Jacobian matrix is sparse, you should replace the LU decomposition
by a suitable sparse matrix procedure.

Stepsize control depends on the fact that

yexact = y + O(h5)

yexact = ŷ + O(h4)
(16.6.25)

Thus

|y− ŷ| = O(h4) (16.6.26)

Referring back to the steps leading from equation (16.2.4) to equation (16.2.10), we see
that the new stepsize should be chosen as in equation (16.2.10) but with the exponents 1/4
and 1/5 replaced by 1/3 and 1/4, respectively. Also, experience shows that it is wise to
prevent too large a stepsize change in one step, otherwise we will probably have to undo
the large change in the next step. We adopt 0.5 and 1.5 as the maximum allowed decrease
and increase of h in one step.

#include <math.h>
#include "nrutil.h"
#define SAFETY 0.9
#define GROW 1.5
#define PGROW -0.25
#define SHRNK 0.5
#define PSHRNK (-1.0/3.0)
#define ERRCON 0.1296
#define MAXTRY 40
Here NMAX is the maximum value of n; GROW and SHRNK are the largest and smallest factors
by which stepsize can change in one step; ERRCON equals (GROW/SAFETY) raised to the power
(1/PGROW) and handles the case when errmax ' 0.
#define GAM (1.0/2.0)
#define A21 2.0
#define A31 (48.0/25.0)
#define A32 (6.0/25.0)
#define C21 -8.0
#define C31 (372.0/25.0)
#define C32 (12.0/5.0)
#define C41 (-112.0/125.0)
#define C42 (-54.0/125.0)
#define C43 (-2.0/5.0)
#define B1 (19.0/9.0)
#define B2 (1.0/2.0)
#define B3 (25.0/108.0)
#define B4 (125.0/108.0)
#define E1 (17.0/54.0)
#define E2 (7.0/36.0)
#define E3 0.0
#define E4 (125.0/108.0)

740 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#define C1X (1.0/2.0)
#define C2X (-3.0/2.0)
#define C3X (121.0/50.0)
#define C4X (29.0/250.0)
#define A2X 1.0
#define A3X (3.0/5.0)

void stiff(float y[], float dydx[], int n, float *x, float htry, float eps,
float yscal[], float *hdid, float *hnext,
void (*derivs)(float, float [], float []))

Fourth-order Rosenbrock step for integrating stiff o.d.e.’s, with monitoring of local truncation
error to adjust stepsize. Input are the dependent variable vector y[1..n] and its derivative
dydx[1..n] at the starting value of the independent variable x. Also input are the stepsize to
be attempted htry, the required accuracy eps, and the vector yscal[1..n] against which
the error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize
that was actually accomplished, and hnext is the estimated next stepsize. derivs is a user-
supplied routine that computes the derivatives of the right-hand side with respect to x, while
jacobn (a fixed name) is a user-supplied routine that computes the Jacobi matrix of derivatives
of the right-hand side with respect to the components of y.
{

void jacobn(float x, float y[], float dfdx[], float **dfdy, int n);
void lubksb(float **a, int n, int *indx, float b[]);
void ludcmp(float **a, int n, int *indx, float *d);
int i,j,jtry,*indx;
float d,errmax,h,xsav,**a,*dfdx,**dfdy,*dysav,*err;
float *g1,*g2,*g3,*g4,*ysav;

indx=ivector(1,n);
a=matrix(1,n,1,n);
dfdx=vector(1,n);
dfdy=matrix(1,n,1,n);
dysav=vector(1,n);
err=vector(1,n);
g1=vector(1,n);
g2=vector(1,n);
g3=vector(1,n);
g4=vector(1,n);
ysav=vector(1,n);
xsav=(*x); Save initial values.
for (i=1;i<=n;i++) {

ysav[i]=y[i];
dysav[i]=dydx[i];

}
jacobn(xsav,ysav,dfdx,dfdy,n);
The user must supply this routine to return the n-by-n matrix dfdy and the vector dfdx.
h=htry; Set stepsize to the initial trial value.
for (jtry=1;jtry<=MAXTRY;jtry++) {

for (i=1;i<=n;i++) { Set up the matrix 1 − γhf′.
for (j=1;j<=n;j++) a[i][j] = -dfdy[i][j];
a[i][i] += 1.0/(GAM*h);

}
ludcmp(a,n,indx,&d); LU decomposition of the matrix.
for (i=1;i<=n;i++) Set up right-hand side for g1.

g1[i]=dysav[i]+h*C1X*dfdx[i];
lubksb(a,n,indx,g1); Solve for g1.
for (i=1;i<=n;i++) Compute intermediate values of y and x.

y[i]=ysav[i]+A21*g1[i];
*x=xsav+A2X*h;
(*derivs)(*x,y,dydx); Compute dydx at the intermediate values.
for (i=1;i<=n;i++) Set up right-hand side for g2.

g2[i]=dydx[i]+h*C2X*dfdx[i]+C21*g1[i]/h;
lubksb(a,n,indx,g2); Solve for g2.
for (i=1;i<=n;i++) Compute intermediate values of y and x.

y[i]=ysav[i]+A31*g1[i]+A32*g2[i];

16.6 Stiff Sets of Equations 741

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

*x=xsav+A3X*h;
(*derivs)(*x,y,dydx); Compute dydx at the intermediate values.
for (i=1;i<=n;i++) Set up right-hand side for g3.

g3[i]=dydx[i]+h*C3X*dfdx[i]+(C31*g1[i]+C32*g2[i])/h;
lubksb(a,n,indx,g3); Solve for g3.
for (i=1;i<=n;i++) Set up right-hand side for g4.

g4[i]=dydx[i]+h*C4X*dfdx[i]+(C41*g1[i]+C42*g2[i]+C43*g3[i])/h;
lubksb(a,n,indx,g4); Solve for g4.
for (i=1;i<=n;i++) { Get fourth-order estimate of y and error estimate.

y[i]=ysav[i]+B1*g1[i]+B2*g2[i]+B3*g3[i]+B4*g4[i];
err[i]=E1*g1[i]+E2*g2[i]+E3*g3[i]+E4*g4[i];

}
*x=xsav+h;
if (*x == xsav) nrerror("stepsize not significant in stiff");
errmax=0.0; Evaluate accuracy.
for (i=1;i<=n;i++) errmax=FMAX(errmax,fabs(err[i]/yscal[i]));
errmax /= eps; Scale relative to required tolerance.
if (errmax <= 1.0) { Step succeeded. Compute size of next step and re-

turn.*hdid=h;
*hnext=(errmax > ERRCON ? SAFETY*h*pow(errmax,PGROW) : GROW*h);
free_vector(ysav,1,n);
free_vector(g4,1,n);
free_vector(g3,1,n);
free_vector(g2,1,n);
free_vector(g1,1,n);
free_vector(err,1,n);
free_vector(dysav,1,n);
free_matrix(dfdy,1,n,1,n);
free_vector(dfdx,1,n);
free_matrix(a,1,n,1,n);
free_ivector(indx,1,n);
return;

} else { Truncation error too large, reduce stepsize.
*hnext=SAFETY*h*pow(errmax,PSHRNK);
h=(h >= 0.0 ? FMAX(*hnext,SHRNK*h) : FMIN(*hnext,SHRNK*h));

}
} Go back and re-try step.
nrerror("exceeded MAXTRY in stiff");

}

Here are the Kaps-Rentrop parameters, which can be substituted for those of Shampine
simply by replacing the #define statements:

#define GAM 0.231
#define A21 2.0
#define A31 4.52470820736
#define A32 4.16352878860
#define C21 -5.07167533877
#define C31 6.02015272865
#define C32 0.159750684673
#define C41 -1.856343618677
#define C42 -8.50538085819
#define C43 -2.08407513602
#define B1 3.95750374663
#define B2 4.62489238836
#define B3 0.617477263873
#define B4 1.282612945268
#define E1 -2.30215540292
#define E2 -3.07363448539
#define E3 0.873280801802
#define E4 1.282612945268
#define C1X GAM

742 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#define C2X -0.396296677520e-01
#define C3X 0.550778939579
#define C4X -0.553509845700e-01
#define A2X 0.462
#define A3X 0.880208333333

As an example of how stiff is used, one can solve the system

y′1 = −.013y1 − 1000y1y3

y′2 = −2500y2y3

y′3 = −.013y1 − 1000y1y3 − 2500y2y3

(16.6.27)

with initial conditions

y1(0) = 1, y2(0) = 1, y3(0) = 0 (16.6.28)

(This is test problem D4 in [4].) We integrate the system up to x = 50 with an initial stepsize
of h = 2.9 × 10−4 using odeint. The components of C in (16.6.20) are all set to unity.
The routines derivs and jacobn for this problem are given below. Even though the ratio
of largest to smallest decay constants for this problem is around 106, stiff succeeds in
integrating this set in only 29 steps with ε = 10−4. By contrast, the Runge-Kutta routine
rkqs requires 51,012 steps!

void jacobn(float x, float y[], float dfdx[], float **dfdy, int n)
{

int i;

for (i=1;i<=n;i++) dfdx[i]=0.0;
dfdy[1][1] = -0.013-1000.0*y[3];
dfdy[1][2]=0.0;
dfdy[1][3] = -1000.0*y[1];
dfdy[2][1]=0.0;
dfdy[2][2] = -2500.0*y[3];
dfdy[2][3] = -2500.0*y[2];
dfdy[3][1] = -0.013-1000.0*y[3];
dfdy[3][2] = -2500.0*y[3];
dfdy[3][3] = -1000.0*y[1]-2500.0*y[2];

}

void derivs(float x, float y[], float dydx[])
{

dydx[1] = -0.013*y[1]-1000.0*y[1]*y[3];
dydx[2] = -2500.0*y[2]*y[3];
dydx[3] = -0.013*y[1]-1000.0*y[1]*y[3]-2500.0*y[2]*y[3];

}

Semi-implicit Extrapolation Method

The Bulirsch-Stoer method, which discretizes the differential equation using the modified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
(

yn+1 + yn−1

2

)
(16.6.29)

16.6 Stiff Sets of Equations 743

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:[

1− h ∂f
∂y

]
· yn+1 =

[
1 + h

∂f
∂y

]
· yn−1 + 2h

[
f(yn) − ∂f

∂y
· yn
]

(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡ 1
2 (yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using ∆k ≡ yk+1−yk.
With h = H/m, start by calculating

∆0 =

[
1− h ∂f

∂y

]−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + 2

[
1− h ∂f

∂y

]−1

· [hf(yk)−∆k−1]

yk+1 = yk + ∆k

(16.6.33)

Finally compute

∆m =

[
1− h ∂f

∂y

]−1

· [hf(ym)−∆m−1]

ym = ym + ∆m

(16.6.34)

It is easy to incorporate the replacement (16.6.19) in the above formulas. The additional
terms in the Jacobian that come from ∂f/∂x all cancel out of the semi-implicit midpoint rule
(16.6.30). In the special first step (16.6.17), and in the corresponding equation (16.6.32), the
term hf becomes hf + h2∂f/∂x. The remaining equations are all unchanged.

This algorithm is implemented in the routine simpr:

#include "nrutil.h"

void simpr(float y[], float dydx[], float dfdx[], float **dfdy, int n,
float xs, float htot, int nstep, float yout[],
void (*derivs)(float, float [], float []))

Performs one step of semi-implicit midpoint rule. Input are the dependent variable y[1..n], its
derivative dydx[1..n], the derivative of the right-hand side with respect to x, dfdx[1..n],
and the Jacobian dfdy[1..n][1..n] at xs. Also input are htot, the total step to be taken,
and nstep, the number of substeps to be used. The output is returned as yout[1..n].
derivs is the user-supplied routine that calculates dydx.
{

void lubksb(float **a, int n, int *indx, float b[]);
void ludcmp(float **a, int n, int *indx, float *d);
int i,j,nn,*indx;
float d,h,x,**a,*del,*ytemp;

indx=ivector(1,n);
a=matrix(1,n,1,n);
del=vector(1,n);
ytemp=vector(1,n);
h=htot/nstep; Stepsize this trip.
for (i=1;i<=n;i++) { Set up the matrix 1 − hf′.

for (j=1;j<=n;j++) a[i][j] = -h*dfdy[i][j];

744 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

++a[i][i];
}
ludcmp(a,n,indx,&d); LU decomposition of the matrix.
for (i=1;i<=n;i++) Set up right-hand side for first step. Use yout

for temporary storage.yout[i]=h*(dydx[i]+h*dfdx[i]);
lubksb(a,n,indx,yout);
for (i=1;i<=n;i++) First step.

ytemp[i]=y[i]+(del[i]=yout[i]);
x=xs+h;
(*derivs)(x,ytemp,yout); Use yout for temporary storage of derivatives.
for (nn=2;nn<=nstep;nn++) { General step.

for (i=1;i<=n;i++) Set up right-hand side for general step.
yout[i]=h*yout[i]-del[i];

lubksb(a,n,indx,yout);
for (i=1;i<=n;i++)

ytemp[i] += (del[i] += 2.0*yout[i]);
x += h;
(*derivs)(x,ytemp,yout);

}
for (i=1;i<=n;i++) Set up right-hand side for last step.

yout[i]=h*yout[i]-del[i];
lubksb(a,n,indx,yout);
for (i=1;i<=n;i++) Take last step.

yout[i] += ytemp[i];
free_vector(ytemp,1,n);
free_vector(del,1,n);
free_matrix(a,1,n,1,n);
free_ivector(indx,1,n);

}

The routine simpr is intended to be used in a routine stifbs that is almost exactly the
same as bsstep. The only differences are:

• The stepsize sequence is

n = 2, 6, 10, 14, 22, 34, 50, . . . , (16.6.35)

where each member differs from its predecessor by the smallest multiple of 4 that
makes the ratio of successive terms be≤ 5

7
. The parameter KMAXX is taken to be 7.

• The work per unit step now includes the cost of Jacobian evaluations as well
as function evaluations. We count one Jacobian evaluation as equivalent to N
function evaluations, where N is the number of equations.
• Once again the user-supplied routine derivs is a dummy argument and so can have

any name. However, to maintain “plug-compatibility” with rkqs, bsstep and
stiff, the routine jacobn is not an argument and must have exactly this name. It
is called once per step to return f ′ (dfdy) and ∂f/∂x (dfdx) as functions ofx and y.

Here is the routine, with comments pointing out only the differences from bsstep:

#include <math.h>
#include "nrutil.h"
#define KMAXX 7
#define IMAXX (KMAXX+1)
#define SAFE1 0.25
#define SAFE2 0.7
#define REDMAX 1.0e-5
#define REDMIN 0.7
#define TINY 1.0e-30
#define SCALMX 0.1

float **d,*x;

void stifbs(float y[], float dydx[], int nv, float *xx, float htry, float eps,
float yscal[], float *hdid, float *hnext,
void (*derivs)(float, float [], float []))

16.6 Stiff Sets of Equations 745

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Semi-implicit extrapolation step for integrating stiff o.d.e.’s, with monitoring of local truncation
error to adjust stepsize. Input are the dependent variable vector y[1..n] and its derivative
dydx[1..n] at the starting value of the independent variable x. Also input are the stepsize to
be attempted htry, the required accuracy eps, and the vector yscal[1..n] against which
the error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize
that was actually accomplished, and hnext is the estimated next stepsize. derivs is a user-
supplied routine that computes the derivatives of the right-hand side with respect to x, while
jacobn (a fixed name) is a user-supplied routine that computes the Jacobi matrix of derivatives
of the right-hand side with respect to the components of y. Be sure to set htry on successive
steps to the value of hnext returned from the previous step, as is the case if the routine is
called by odeint.
{

void jacobn(float x, float y[], float dfdx[], float **dfdy, int n);
void simpr(float y[], float dydx[], float dfdx[], float **dfdy,

int n, float xs, float htot, int nstep, float yout[],
void (*derivs)(float, float [], float []));

void pzextr(int iest, float xest, float yest[], float yz[], float dy[],
int nv);

int i,iq,k,kk,km;
static int first=1,kmax,kopt,nvold = -1;
static float epsold = -1.0,xnew;
float eps1,errmax,fact,h,red,scale,work,wrkmin,xest;
float *dfdx,**dfdy,*err,*yerr,*ysav,*yseq;
static float a[IMAXX+1];
static float alf[KMAXX+1][KMAXX+1];
static int nseq[IMAXX+1]={0,2,6,10,14,22,34,50,70}; Sequence is different from

bsstep.int reduct,exitflag=0;

d=matrix(1,nv,1,KMAXX);
dfdx=vector(1,nv);
dfdy=matrix(1,nv,1,nv);
err=vector(1,KMAXX);
x=vector(1,KMAXX);
yerr=vector(1,nv);
ysav=vector(1,nv);
yseq=vector(1,nv);
if(eps != epsold || nv != nvold) { Reinitialize also if nv has changed.

*hnext = xnew = -1.0e29;
eps1=SAFE1*eps;
a[1]=nseq[1]+1;
for (k=1;k<=KMAXX;k++) a[k+1]=a[k]+nseq[k+1];
for (iq=2;iq<=KMAXX;iq++) {

for (k=1;k<iq;k++)
alf[k][iq]=pow(eps1,((a[k+1]-a[iq+1])/

((a[iq+1]-a[1]+1.0)*(2*k+1))));
}
epsold=eps;
nvold=nv; Save nv.
a[1] += nv; Add cost of Jacobian evaluations to work

coefficients.for (k=1;k<=KMAXX;k++) a[k+1]=a[k]+nseq[k+1];
for (kopt=2;kopt<KMAXX;kopt++)

if (a[kopt+1] > a[kopt]*alf[kopt-1][kopt]) break;
kmax=kopt;

}
h=htry;
for (i=1;i<=nv;i++) ysav[i]=y[i];
jacobn(*xx,y,dfdx,dfdy,nv); Evaluate Jacobian.
if (*xx != xnew || h != (*hnext)) {

first=1;
kopt=kmax;

}
reduct=0;
for (;;) {

for (k=1;k<=kmax;k++) {

746 Chapter 16. Integration of Ordinary Differential Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

xnew=(*xx)+h;
if (xnew == (*xx)) nrerror("step size underflow in stifbs");
simpr(ysav,dydx,dfdx,dfdy,nv,*xx,h,nseq[k],yseq,derivs);
Semi-implicit midpoint rule.
xest=SQR(h/nseq[k]); The rest of the routine is identical to

bsstep.pzextr(k,xest,yseq,y,yerr,nv);
if (k != 1) {

errmax=TINY;
for (i=1;i<=nv;i++) errmax=FMAX(errmax,fabs(yerr[i]/yscal[i]));
errmax /= eps;
km=k-1;
err[km]=pow(errmax/SAFE1,1.0/(2*km+1));

}
if (k != 1 && (k >= kopt-1 || first)) {

if (errmax < 1.0) {
exitflag=1;
break;

}
if (k == kmax || k == kopt+1) {

red=SAFE2/err[km];
break;

}
else if (k == kopt && alf[kopt-1][kopt] < err[km]) {

red=1.0/err[km];
break;

}
else if (kopt == kmax && alf[km][kmax-1] < err[km]) {

red=alf[km][kmax-1]*SAFE2/err[km];
break;

}
else if (alf[km][kopt] < err[km]) {

red=alf[km][kopt-1]/err[km];
break;

}
}

}
if (exitflag) break;
red=FMIN(red,REDMIN);
red=FMAX(red,REDMAX);
h *= red;
reduct=1;

}
*xx=xnew;
*hdid=h;
first=0;
wrkmin=1.0e35;
for (kk=1;kk<=km;kk++) {

fact=FMAX(err[kk],SCALMX);
work=fact*a[kk+1];
if (work < wrkmin) {

scale=fact;
wrkmin=work;
kopt=kk+1;

}
}
*hnext=h/scale;
if (kopt >= k && kopt != kmax && !reduct) {

fact=FMAX(scale/alf[kopt-1][kopt],SCALMX);
if (a[kopt+1]*fact <= wrkmin) {

*hnext=h/fact;
kopt++;

}
}
free_vector(yseq,1,nv);

16.7 Multistep, Multivalue, and Predictor-Corrector Methods 747

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

free_vector(ysav,1,nv);
free_vector(yerr,1,nv);
free_vector(x,1,KMAXX);
free_vector(err,1,KMAXX);
free_matrix(dfdy,1,nv,1,nv);
free_vector(dfdx,1,nv);
free_matrix(d,1,nv,1,KMAXX);

}

The routine stifbs is an excellent routine for all stiff problems, competitive with
the best Gear-type routines. stiff is comparable in execution time for moderate N and
ε <∼ 10−4. By the time ε ∼ 10−8, stifbs is roughly an order of magnitude faster. There
are further improvements that could be applied to stifbs to make it even more robust. For
example, very occasionally ludcmp in simpr will encounter a singular matrix. You could
arrange for the stepsize to be reduced, say by a factor of the current nseq[k]. There are
also certain stability restrictions on the stepsize that come into play on some problems. For
a discussion of how to implement these automatically, see [6].

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall). [1]

Kaps, P., and Rentrop, P. 1979, Numerische Mathematik, vol. 33, pp. 55–68. [2]

Shampine, L.F. 1982, ACM Transactions on Mathematical Software, vol. 8, pp. 93–113. [3]

Enright, W.H., and Pryce, J.D. 1987, ACM Transactions on Mathematical Software, vol. 13,
pp. 1–27. [4]

Bader, G., and Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 373–398. [5]

Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 399–422.

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

Deuflhard, P. 1987, “Uniqueness Theorems for Stiff ODE Initial Value Problems,” Preprint SC-
87-3 (Berlin: Konrad Zuse Zentrum für Informationstechnik). [6]

Enright, W.H., Hull, T.E., and Lindberg, B. 1975, BIT, vol. 15, pp. 10–48.

Wanner, G. 1988, in Numerical Analysis 1987, Pitman Research Notes in Mathematics, vol. 170,
D.F. Griffiths and G.A. Watson, eds. (Harlow, Essex, U.K.: Longman Scientific and Tech-
nical).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag).

16.7 Multistep, Multivalue, and
Predictor-Corrector Methods

The terms multistep and multivalue describe two different ways of implementing
essentially the same integration technique for ODEs. Predictor-corrector is a partic-
ular subcategrory of these methods — in fact, the most widely used. Accordingly,
the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problems in ODEs. For high-precision
applications, or applications where evaluations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for low precision, adaptive-stepsize
Runge-Kutta dominates. Predictor-corrector methods have been, we think, squeezed

