
760 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

17.2 Shooting to a Fitting Point

The shooting method described in §17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get from x1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrate into
a singular point, if only because one has not usually expended the same analytic
effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from x1 to x2, we integrate first from x1 to some point xf that
is between x1 and x2; and second from x2 (in the opposite direction) to xf .

If (as before) the number of boundary conditions imposed at x1 is n1, and the
number imposed at x2 is n2, then there are n2 freely specifiable starting values at
x1 and n1 freely specifiable starting values at x2. (If you are confused by this, go
back to §17.1.) We can therefore define an n2-vector V(1) of starting parameters
at x1, and a prescription load1(x1,v1,y) for mapping V(1) into a y that satisfies
the boundary conditions at x1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2
) i = 1, . . . , N (17.2.1)

Likewise we can define an n1-vector V(2) of starting parameters at x2, and a
prescription load2(x2,v2,y) for mapping V(2) into a y that satisfies the boundary
conditions at x2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1
) i = 1, . . . , N (17.2.2)

We thus have a total of N freely adjustable parameters in the combination of
V(1) and V(2). The N conditions that must be satisfied are that there be agreement
in N components of y at xf between the values obtained integrating from one side
and from the other,

yi(xf ; V(1)) = yi(xf ; V(2)) i = 1, . . . , N (17.2.3)

In some problems, the N matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsFi, i = 1 . . .N , each
possibly depending on the N components yi. In those cases, (17.2.3) is replaced by

Fi[y(xf ; V(1))] = Fi[y(xf ; V(2))] i = 1, . . . , N (17.2.4)

17.2 Shooting to a Fitting Point 761

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

In the program below, the user-supplied function score(xf,y,f) is supposed
to map an input N -vector y into an output N -vector F. In most cases, you can
dummy this function as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in §17.1. Comparing closely with the routine shoot of the previous section, you
should have no difficulty in understanding the following routine shootf. The main
differences in use are that you have to supply both load1 and load2. Also, in the
calling program you must supply initial guesses for v1[1..n2] and v2[1..n1].
Once again a sample program illustrating shooting to a fitting point is given in §17.4.

#include "nrutil.h"
#define EPS 1.0e-6

extern int nn2,nvar; Variables that you must define and set in your main pro-
gram.extern float x1,x2,xf;

int kmax,kount; Communicates with odeint.
float *xp,**yp,dxsav;

void shootf(int n, float v[], float f[])
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar ODEs at
x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-supplied routine
load1 (load2). The coefficients v1 and v2 should be stored in a single array v[1..n1+n2]
in the main program by statements of the form v1=v; and v2 = &v[n2];. The input param-
eter n = n1 + n2 = nvar. The routine integrates the ODEs to xf using the Runge-Kutta
method with tolerance EPS, initial stepsize h1, and minimum stepsize hmin. At xf it calls the
user-supplied routine score to evaluate the nvar functions f1 and f2 that ought to match
at xf. The differences f are returned on output. newt uses a globally convergent Newton’s
method to adjust the values of v until the functions f are zero. The user-supplied routine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter 16).
The first set of global variables above receives its values from the main program so that shoot
can have the syntax required for it to be the argument vecfunc of newt. Set nn2 = n2 in
the main program.
{

void derivs(float x, float y[], float dydx[]);
void load1(float x1, float v1[], float y[]);
void load2(float x2, float v2[], float y[]);
void odeint(float ystart[], int nvar, float x1, float x2,

float eps, float h1, float hmin, int *nok, int *nbad,
void (*derivs)(float, float [], float []),
void (*rkqs)(float [], float [], int, float *, float, float,
float [], float *, float *, void (*)(float, float [], float [])));

void rkqs(float y[], float dydx[], int n, float *x,
float htry, float eps, float yscal[], float *hdid, float *hnext,
void (*derivs)(float, float [], float []));

void score(float xf, float y[], float f[]);
int i,nbad,nok;
float h1,hmin=0.0,*f1,*f2,*y;

f1=vector(1,nvar);
f2=vector(1,nvar);
y=vector(1,nvar);
kmax=0;
h1=(x2-x1)/100.0;
load1(x1,v,y); Path from x1 to xf with best trial values v1.
odeint(y,nvar,x1,xf,EPS,h1,hmin,&nok,&nbad,derivs,rkqs);
score(xf,y,f1);
load2(x2,&v[nn2],y); Path from x2 to xf with best trial values v2.
odeint(y,nvar,x2,xf,EPS,h1,hmin,&nok,&nbad,derivs,rkqs);
score(xf,y,f2);

762 Chapter 17. Two Point Boundary Value Problems

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (i=1;i<=n;i++) f[i]=f1[i]-f2[i];
free_vector(y,1,nvar);
free_vector(f2,1,nvar);
free_vector(f1,1,nvar);

}

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see [1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two points k, k − 1:

yk − yk−1 − (xk − xk−1) g
[

1
2 (xk + xk−1), 1

2 (yk + yk−1)
]

= 0 (17.3.2)

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh of M points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N ×M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ...,M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of

