760 Chapter 17.  Two Point Boundary Value Problems

17.2 Shooting to a Fitting Point

The shooting method described in §17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initia solution can’t even get from x; to x5 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a sguare root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such casesitis
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usualy not feasible to integrate into
a singular point, if only because one has not usually expended the same analytic
effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from z; to 2, we integratefirst from x; to some point z  that
is between z, and z»; and second from x5 (in the opposite direction) to « ;.

If (as before) the number of boundary conditionsimposed at x; isn1, and the
number imposed at x5 is no, then there are ny freely specifiable starting values at
x1 and ny freely specifiable starting values a z». (If you are confused by this, go
back to §17.1.) We can therefore define an no-vector V() of starting parameters
at x1, and a prescription load1 (x1,v1,y) for mapping V() into ay that satisfies
the boundary conditions at x,

yi (1) Zyi($1;V(1)1,---,V(1)n2) i=1,....N (17.2.1)
Likewise we can define an n;-vector V(y) of starting parameters at 2, and a
prescription 1load2(x2,v2,y) for mapping V 2y into ay that satisfies the boundary
conditions at s,

yi (z2) zyi(xz;‘/(z)l,...,v(z)nl) i=1,....N (17.2.2)

We thus have atotal of IV freely adjustable parameters in the combination of
V(1) and V(). The N conditionsthat must be satisfied are that there be agreement
in NV components of y at «; between the values obtained integrating from one side
and from the other,

yl-(xf;V(l)) zyi(xf;V(z)) i=1,....N (17.2.3)
In some problems, the N matching conditions can be better described (physically,

mathematically, or numerically) by using N different functionsF;, i = 1... N, each
possibly depending on the N components y;. In those cases, (17.2.3) isreplaced by

F; [y(xf; V(l))] =F; [y(xf; V(2))] i=1,....,N (17.2.4)

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(G-80TEY-T2S-0 NESI) ONILNAINOD DIHILNIIOS 4O L8V FHL D NI S3dIOTY TvIIYINNN wouy abed sjdwes gam apIm PHOM



17.2 Shooting to a Fitting Point 761

In the program bel ow, the user-supplied function score (x£f,y,f) issupposed
to map an input N-vector y into an output N-vector F. In most cases, you can
dummy this function as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
asin§17.1. Comparing closely with the routine shoot of the previous section, you
should have no difficulty in understanding the following routine shootf. The main
differences in use are that you have to supply both 1oad1 and 1oad2. Also, in the
caling program you must supply initial guesses for vi1[1..n2] and v2[1..n1].
Once again a sample program illustrating shooting to afitting pointisgivenin §17.4.

#include "nrutil.h"
#define EPS 1.0e-6

extern int nn2,nvar; Variables that you must define and set in your main pro-
extern float x1,x2,xf; gram.

int kmax,kount; Communicates with odeint.
float *xp,**yp,dxsav;

void shootf(int n, float v[], float f[])
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar ODEs at
x1 (x2) are generated from then2 (n1) coefficients vl (v2), using the user-supplied routine
loadl (load2). The coefficients v1 and v2 should be stored in a single array v[1..n1+n2]
in the main program by statements of the form v1=v; and v2 = &v[n2];. The input param-
eter n = nl + n2 = nvar. The routine integrates the ODEs to xf using the Runge-Kutta
method with tolerance EPS, initial stepsize h1, and minimum stepsize hmin. At xf it calls the
user-supplied routine score to evaluate the nvar functions £1 and £2 that ought to match
at xf. The differences f are returned on output. newt uses a globally convergent Newton's
method to adjust the values of v until the functions £ are zero. The user-supplied routine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter 16).
The first set of global variables above receives its values from the main program so that shoot
can have the syntax required for it to be the argument vecfunc of newt. Set nn2 = n2 in
the main program.
{
void derivs(float x, float y[], float dydx[]);
void loadl(float x1, float vi[], float y[]l);
void load2(float x2, float v2[], float y[]);
void odeint(float ystart[], int nvar, float x1, float x2,
float eps, float hl, float hmin, int *nok, int *nbad,
void (*derivs) (float, float [], float [1),
void (*rkgs) (float [], float [], int, float *, float, float,
float [], float *, float *, void (*)(float, float [], float [])));
void rkgs(float y[], float dydx[], int n, float *x,
float htry, float eps, float yscall]l, float *hdid, float *hnext,
void (*derivs) (float, float [], float []1));
void score(float xf, float y[], float f[]);
int i,nbad,nok;
float h1l,hmin=0.0,*f1,*f2,x*y;

fi=vector(1,nvar);

f2=vector(1,nvar);

y=vector (1,nvar) ;

kmax=0;

h1=(x2-x1)/100.0;

loadl(x1l,v,y); Path from x1 to xf with best trial values v1.
odeint (y,nvar,x1,xf,EPS,hl,hmin, &nok,&nbad,derivs,rkqs) ;
score(xf,y,f1);

load2(x2,&v[nn2],y); Path from x2 to xf with best trial values v2.
odeint (y,nvar,x2,xf,EPS,hl,hmin, &nok,&nbad,derivs,rkqs) ;
score(xf,y,f2);

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM



762 Chapter 17.  Two Point Boundary Value Problems

for (i=1;i<=n;i++) flil=f1[i]-f2[i];
free_vector(y,1,nvar);
free_vector(f2,1,nvar);
free_vector(fi,1,nvar);

There are boundary value problems where even shooting to afitting point fails
— the integration interval has to be partitioned by severa fitting points with the
solution being matched at each such point. For more details see[1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§87.3.5-7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As atypical example,
we could replace a general first-order differential equation

d
ﬁ = g(z,y) (17.3.2)
with an algebraic equation relating function values at two points k, k — 1:
i — Y1 — (2k —2h-1) g [5(2k + 2h-1), 3 (e + yr—1)] =0 (17.3.2)

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involves N coupled first-order ODES
represented by FDEs on a mesh of M points, a solution consists of valuesfor N dependent
functions given at each of the M mesh points, or N x M variablesin al. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. Asthe
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) x (MN). Since M N can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples a most pars of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let usdevelopageneral set of algebraic equationsthat represent the ODEsby FDES. The
ODE problem is exactly identical to that expressed in equations (17.0.1)—(17.0.3) where we
had N coupledfirst-order equationsthat satisfy n, boundary conditionsat z; andns = N —ny
boundary conditions at z». We first define a mesh or grid by aset of £ = 1,2, ..., M points
at which we supply values for the independent variable x;. In particular, x; is the initial
boundary, and x» is the final boundary. We use the notation y,, to refer to the entire set of

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM



