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The correct way to difference Schrödinger’s equation [1,2] is to use Cayley’s
form for the finite-difference representation of e−iHt, which is second-order accurate
and unitary:

e−iHt '
1− 1

2 iH∆t

1 + 1
2 iH∆t

(19.2.35)

In other words, (
1 + 1

2
iH∆t

)
ψn+1
j =

(
1− 1

2
iH∆t

)
ψnj (19.2.36)

On replacing H by its finite-difference approximation in x, we have a complex
tridiagonal system to solve. The method is stable, unitary, and second-order accurate
in space and time. In fact, it is simply the Crank-Nicholson method once again!

CITED REFERENCES AND FURTHER READING:
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Academic Press), Chapter 2.
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19.3 Initial Value Problems in Multidimensions

The methods described in §19.1 and §19.2 for problems in 1 + 1 dimension
(one space and one time dimension) can easily be generalized toN + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100 × 100 mesh points requires at least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programs on very
small grids, e.g., 8 × 8, even though the resulting accuracy is so poor as to be
useless. When your program is all debugged and demonstrably stable, then you can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up on larger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improve accuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you
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are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDEs, you introduce
spurious solutions to the difference equations. This does not create a problem if they
all happen to decay exponentially; otherwise you are going to see all hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

∂u

∂t
= −∇ · F = −

(
∂Fx
∂x

+
∂Fy
∂y

)
(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆
(19.3.2)

We have chosen ∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is

un+1
j,l =

1

4
(unj+1,l + unj−1,l + unj,l+1 + unj,l−1)

− ∆t

2∆
(F nj+1,l − F nj−1,l + F nj,l+1 − F nj,l−1)

(19.3.3)

Note that as an abbreviated notation Fj+1 and Fj−1 refer to Fx, while Fl+1 and
Fl−1 refer to Fy.

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers of ξ in time,

unj,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆)− iαx sin kx∆− iαy sin ky∆ (19.3.6)

where

αx =
vx∆t

∆
, αy =

vy∆t

∆
(19.3.7)
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The expression for |ξ|2 can be manipulated into the form

|ξ|2 = 1− (sin2 kx∆ + sin2 ky∆)

[
1

2
− (α2

x + α2
y)

]
− 1

4
(cos kx∆− cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement |ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or

∆t ≤ ∆√
2(v2

x + v2
y)1/2

(19.3.10)

This is an example of the general result for the N -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
(
δ2
xu

n+1
j,l + δ2

xu
n
j,l + δ2

yu
n+1
j,l + δ2

yu
n
j,l

)
(19.3.13)

Here

α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2
xu

n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly for δ2
yu

n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see §2.7 and §19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than
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(19.3.13). Called the alternating-direction implicit method (ADI), this embodies the
powerful concept of operator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size ∆t/2.
In each substep, a different dimension is treated implicitly:

u
n+1/2
j,l = unj,l +

1

2
α
(
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

)
un+1
j,l = u

n+1/2
j,l +

1

2
α
(
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

) (19.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also called time splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

where L is some operator. While L is not necessarily linear, suppose that it can at
least be written as a linear sum of m pieces, which act additively on u,

Lu = L1u+ L2u+ · · ·+ Lmu (19.3.18)

Finally, suppose that for each of the pieces, you already know a differencing scheme
for updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(un,∆t)

un+1 = U2(un,∆t)

· · ·

un+1 = Um(un,∆t)

(19.3.19)

Now, one form of operator splitting would be to get from n to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(un,∆t)

un+(2/m) = U2(un+(1/m),∆t)

· · ·

un+1 = Um(un+(m−1)/m,∆t)

(19.3.20)
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For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v∂u

∂x
+D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let U1 now denote an updating method that
includes algebraically all the pieces of the total operator L, but which is desirably
stable only for the L1 piece; likewise U2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(un,∆t/m)

un+2/m = U2(un+1/m,∆t/m)

· · ·

un+1 = Um(un+(m−1)/m,∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is now only 1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stableUi’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui’s can be unstable — to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.


