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The correct way to difference Schrodinger’s equation([1,2] is to use Cayley's

formfor thefinite-difference representation of e~*#*, which is second-order accurate
and unitary:
_ 1— 2iHAt
—iHt 2

~ 19.2.35
‘ 1+ JiHAt ( )

In other words,
(1+ $iHAL) I = (1 — SiHAL) Y (19.2.36)

On replacing H by its finite-difference approximation in x, we have a complex
tridiagonal systemto solve. The method is stable, unitary, and second-order accurate
in space and time. In fact, it is simply the Crank-Nicholson method once again!
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19.3 Initial Value Problems in Multidimensions

The methods described in §19.1 and §19.2 for problemsin 1 + 1 dimension
(one space and onetime dimension) can easily be generalized to N + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100 x 100 mesh points requires at least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should aways first run your programs on very
small grids, e.g., 8 x 8, even though the resulting accuracy is so poor as to be
useless. When your program isal debugged and demonstrably stable, then you can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on alarger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up on larger grids; but old instabilities
never (in our experience) just go away.

Forced to livewith modest grid sizes, some peoplerecommend going to higher-
order methodsin an attempt to improveaccuracy. Thisisvery dangerous. Unlessthe
solution you are looking for is known to be smooth, and the high-order method you
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854 Chapter 19.  Partial Differential Equations

are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDES, perhaps alowing second-order
spatia differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDES, you introduce
spurious solutionsto the difference equations. This does not create a problemif they
all happen to decay exponentially; otherwiseyou aregoing to see dl hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

ou OF. OF,
- _V.-F=-— L=y 1931
ot ( or oy ) (19.3.2)
Use a spatia grid with
ZCj = X9 —|— ]A
19.3.2
y=yo + 1A ( )
We have chosen Ax = Ay = A for simplicity. Then the Lax scheme is
n+1 1 n n n n
Ui = Z(uj—i—l,l g+l Fuj )
At (19.3.3)
- ﬂ( ]n—‘rl,l - an—l,l + F;?H—l - F;,ll—l)

Note that as an abbreviated notation F;; and F;_; refer to F,, while F;; and
F,_1 refer to F,.
Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with
F, = vzu, Fy, =vyu (19.3.4)

Thisrequires an eigenmode with two dimensionsin space, though till only asimple
dependence on powers of & in time,

ull, = Eretheifelbuld (19.35)

Substituting in equation (19.3.3), we find

1
£ = i(cos ke + coskyA) — o sin ky A — ioyy sink, A (19.3.6)
where A A
Ve At v, AL
Az = —3— Qy = yT (19.3.7)
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19.3 Initial Value Problems in Multidimensions 855

The expression for |£|? can be manipulated into the form

1
€7 =1 — (sin® koA + sin® k, A) [5 — (a2 + agz;)]

1 (19.3.8)
- Z(COS kA — cos kyA)? — (v sin kA — a sin b, A)?

The last two terms are negative, and so the stability requirement |£]2 < 1 becomes

1
5~ (a2 +ap) >0 (19.39)
or

A

At — 2
= V2(02 + 02172

(19.3.10)

This is an example of the general result for the N-dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

A
At < (19.3.11)
VN |v|
is the Courant condition.
Diffusion Equation in Multidimensions
Let us consider the two-dimensiona diffusion equation,
Ju Pu  9%u
—=D|—+ = 19.3.12
ot (8x2 * 8y2> ( )

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obviousway. However, we have seen that diffusive problems are usualy
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

n n 1 n n n n
Wt =+ sa (2wt + 82uy, + 62ut! + 02us ) (19.3.13)
Here DA
t
a=—5 A=Az =Ay (19.3.14)
Souly =y —2ul +ul (19.3.15)

and similarly for 55“?,1- This is certainly a viable scheme; the problem arises in
solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility isto use a suitable sparse matrix technique (see §2.7 and §19.0).
Another possibility, which we generdly prefer, is a dightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate intime
and space, and unconditionaly stable, but the equations are easier to solve than
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856 Chapter 19.  Partial Differential Equations

(19.3.13). Called the alternating-direction implicit method (ADI), this embodies the
powerful concept of operator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size A¢/2.
In each substep, a different dimension is treated implicitly:

n+1/2 _ n l 2 n+1/2 2 n
i =g+ 5¢ (5xuj,z + o ul

(19.3.16)
ntl _ n+1y2 1 (62u??—1/2+62un+1)

=uj e yUj,i

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also caled time splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

ou
— = 19.3.17
5 = Lu ( )

where £ is some operator. While £ is not necessarily linear, suppose that it can at
least be written as a linear sum of m pieces, which act additively on w,

Lu=Liu+ Lou+---+ Lu (19.3.18)

Finally, supposethat for each of the pieces, you aready know a differencing scheme
for updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write these
updatings symbolicaly as
u"'H = Z/ll (u", At)
u™ T = Uy (u", At)
(19.3.19)

u T = U, (u", At)

Now, one form of operator splitting would be to get from n to n + 1 by the
following sequence of updatings:

un+(1/m) :ul(un’ At)

un+(2/m) :u2(un+(1/m)’ At)
(19.3.20)

un+1 — um(un—i—(m—l)/m’ At)
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19.4 Fourier and Cyclic Reduction Methods 857

For example, a combined advective-diffusion equation, such as

u 2
g—? = _Ug_x + D% (19.3.21)
might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The aternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a dightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let Z{; now denote an updating method that
includes algebraically all the pieces of the total operator £, but which is desirably
stable only for the £, piece; likewiseUs, . ..U,,. Then amethod of getting from
u™ to u"tt s

Y™ =y (u™, At/m)

uHI = Uy (Y™ At )
(193.22)

"t = Uy, (D™ AL /M)

Thetimestep for each fractional stepin (19.3.22) isnow only 1/m of thefull timestep,
because each partia operation acts with all the terms of the original operator.

Equation (19.3.22) isusually, though not always, stable asadifferencing scheme
for the operator L. Infact, asarule of thumb, it is often sufficient to have stablel/;’s
only for the operator pieces having the highest number of spatial derivatives— the
other U;’s can be unstable — to make the overall scheme stablel

It is at this point that we turn our atention from initia value problems to
boundary value problems. These will occupy us for the remainder of the chapter.
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19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary vaue problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A-u=b (19.4.1)

either once, for boundary value equationsthat are linear, or iteratively, for boundary
value equations that are nonlinear.
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