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standard tridiagonal algorithm. Givenu™, onesolves(19.5.36) for u™+1/2, substitutes
on the right-hand side of (19.5.37), and then solves for u™*!. The key question
is how to choose the iteration parameter r, the analog of a choice of timestep for
an initial value problem.

As usud, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice of r, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. Thisisin fact true if we
choose the same parameter r for every iteration step. However, it is possible to
choose a different r for each step. If thisis done optimally, then ADI is generally
more efficient than SOR. We refer you to the literature[1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (eg., 20 x 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of §2.7 are useful for solving a set
of difference equations directly. For production solution of large eliptic problems,
however, multigrid is now almost aways the method of choice.
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19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods werefirst introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized on N grid pointsin O(N) operations.
The “rapid” direct dliptic solvers discussed in §19.4 solve special kinds of dliptic
equationsin O(N log N) operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve genera
elliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves all eliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief
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872 Chapter 19.  Partial Differential Equations

introduction to the subject here. In particular, we will give two sample multigrid
routines, one linear and one nonlinear. By following these prototypes and by
perusing the references [1-4], you should be able to develop routines to solve your
own problems.

Therearetwo related, but distinct, approachesto theuse of multigridtechniques.
Thefirst, termed “the multigrid method,” isameans for speeding up the convergence
of a traditional relaxation method, as defined by you on a grid of pre-specified
fineness. In thiscase, you need define your problem (e.g., evaluate its source terms)
only on this grid. Other, coarser, grids defined by the method can be viewed as
temporary computationa adjuncts.

The second approach, termed (perhaps confusingly) “the full multigrid (FMG)
method,” requires you to be able to define your problem on grids of various sizes
(generally by discretizing the same underlying PDE into different-sized sets of finite-
difference equations). In this approach, the method obtains successive solutionson
finer and finer grids. You can stop the solution either at a pre-specified fineness, or
you can monitor the truncation error due to the discretization, quitting only when
it is tolerably small.

Inthissection wewill first discussthe“multigrid method,” then use the concepts
developed to introduce the FMG method. The latter algorithm is the one that we
implement in the accompanying programs.

From One-Grid, through Two-Grid, to Multigrid

The key idea of the multigrid method can be understood by considering the
simplest case of a two-grid method. Suppose we are trying to solve the linear
eliptic problem

Lu=f (19.6.1)

where £ issome linear elipticoperator and f isthe sourceterm. Discretize equation
(19.6.1) on a uniform grid with mesh size h. Write the resulting set of linear
algebraic equations as

Lpup = fn (19.6.2)

Let uy, denote some approximate solution to equation (19.6.2). We will use the
symbol w;, to denote the exact solution to the difference equations (19.6.2). Then
the error in u; or the correction is

Vp = Up — ﬂh (19.6.3)
The residual or defect is
dn = Lpup — fn (19.6.4)

(Beware: some authors define residual as minusthe defect, and thereisnot universal
agreement about which of these two quantities 19.6.4 defines.) Since £, is linear,
the error satisfies

,Ch’Uh = —dh (19.6.5)
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19.6 Multigrid Methods for Boundary Value Problems 873

At this point we need to make an approximation to £y, in order to find v;,. The
classical iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at
each stage, an approximate solution of the equation

Lyon = —dp, (19.6.6)

where £, is a“simpler” operator than £;,. For example, L), isthe diagona part of
Ly, for Jacobi iteration, or the lower triangle for Gauss-Seidd iteration. The next
approximation is generated by

ne

ah Y =y, + U, (19.6.7)

Now consider, as an dternative, a completely different type of approximation
for L, one in which we “coarsify” rather than “simplify.” That is, we form some
appropriate approximation Ly of L5, on a coarser grid with mesh size H (we will
alwaystake H = 2h, but other choices are possible). The residual eguation (19.6.5)
is now approximated by

,CH’UH = —dH (19.6.8)

Since L has smaller dimension, this equation will be easier to solve than equation
(19.6.5). To define the defect d; on the coarse grid, we need a restriction operator
R that restricts d;, to the coarse grid:

dg = Rdp (19.6.9)

The restriction operator is aso called the fine-to-coarse operator or the injection
operator. Once we have a solution vy to equation (19.6.8), we need a prolongation
operator P that prolongates or interpolates the correction to the fine grid:

U = Py (19.6.10)

The prolongation operator is also caled the coarse-to-fine operator or the inter-
polation operator. Both R and P are chosen to be linear operators. Finally the
approximation wy can be updated:

ne

up®™ = up, + vp, (19.6.11)
One step of this coarse-grid correction scheme is thus:

Coarse-Grid Correction

Compute the defect on the fine grid from (19.6.4).

Restrict the defect by (19.6.9).

Solve (19.6.8) exactly on the coarse grid for the correction.
Interpolate the correction to the fine grid by (19.6.10).
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874 Chapter 19.  Partial Differential Equations

e Compute the next approximation by (19.6.11).

Let’scontrast the advantages and di sadvantages of rel axation and the coarse-grid
correction scheme. Consider theerror v;, expandedinto adiscrete Fourier series. Call
the components in the lower half of the frequency spectrum the smooth components
and the high-frequency components the nonsmooth components. We have seen that
rel axation becomes very dowly convergent inthelimit h — 0, i.e,, when therearea
large number of mesh points. The reason turns out to be that the smooth components
are only slightly reduced in amplitude on each iteration. However, many relaxation
methods reduce the amplitude of the nonsmooth components by large factors on
each iteration: They are good smoothing operators.

For the two-grid iteration, on the other hand, components of the error with
wavelengths < 2H are not even representable on the coarse grid and so cannot be
reduced to zero on thisgrid. Butit isexactly these high-frequency components that
can be reduced by relaxation on the fine grid! This leads us to combine the ideas
of relaxation and coarse-grid correction:

Two-Grid Iteration

e Pre-smoothing: Compute u;, by applying v1 > 0 steps of a relaxation

method to wuy,.

e Coarse-grid correction: As above, using u,, to give u;".

o Post-smoothing: Computeu ;™ by applying v, > 0 steps of therelaxation

method to @)™,

It is only a short step from the above two-grid method to a multigrid method.
Instead of solving the coarse-grid defect equation (19.6.8) exactly, we can get
an approximate solution of it by introducing an even coarser grid and using the
two-grid iteration method. If the convergence factor of the two-grid method is
small enough, we will need only a few steps of thisiteration to get a good enough
approximate solution. We denote the number of such iterations by ~. Obvioudy
we can apply this idea recursively down to some coarsest grid. There the solution
isfound easily, for example by direct matrix inversion or by iterating the relaxation
scheme to convergence.

One iteration of a multigrid method, from finest grid to coarser grids and back
to finest grid again, is called a cycle. The exact structure of a cycle depends on
the value of ~, the number of two-grid iterations at each intermediate stage. The
casey = 1 iscalled aV-cycle whiley = 2 iscalled aW-cycle (see Figure 19.6.1).
These are the most important cases in practice.

Note that once more than two grids are involved, the pre-smoothing steps after
the first one on the finest grid need an initial approximation for the error v. This
should be taken to be zero.

Smoothing, Restriction, and Prolongation Operators

The most popular smoothing method, and the one you should try first, is
Gauss-Seiddl, sinceit usualy leadsto agood convergencerate. If we order the mesh
points from 1 to NN, then the Gauss-Seidel scheme is

N
ui:_(;Lijuj_fi)Lin i=1,...,N (19.6.12)

JFi
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19.6 Multigrid Methods for Boundary Value Problems 875

s ©
2-grid

y=1

Figure 19.6.1.  Structure of multigrid cycles. S denotes smoothing, while E denotes exact solution
on the coarsest grid. Each descending line \ denotesrestriction (R) and each ascending line / denotes
prolongation (P). The finest grid is at the top level of each diagram. For the V-cycles (y = 1) theE
step is replaced by one 2-grid iteration each time the number of grid levels is increased by one. For the
We-cycles (y = 2), each E step gets replaced by two 2-grid iterations.

where new values of u are used on theright-hand side as they become available. The
exact form of the Gauss-Seidel method depends on the ordering chosen for the mesh
points. For typical second-order dliptic equationslike our model problem equation
(19.0.3), as differenced in equation (19.0.8), it is usualy best to use red-black
ordering, making one pass through the mesh updating the “even” points (likethe red
squares of a checkerboard) and another pass updating the “odd” points (the black
squares). When quantities are more strongly coupled along one dimension than
another, one should relax a whole line aong that dimension simultaneously. Line
relaxation for nearest-neighbor coupling involves solving a tridiagonal system, and
so isdtill efficient. Relaxing odd and even lines on successive passes is called zebra
relaxation and is usually preferred over ssimple line relaxation.

Note that SOR should not be used as a smoothing operator. The overrelaxation
destroys the high-frequency smoothing that is so crucial for the multigrid method.

A succint notation for the prolongation and restriction operatorsisto givetheir
symbol. The symbol of P is found by considering v to be 1 at some mesh point
(z,vy), zero elsewhere, and then asking for the values of Pvy. The most popular
prolongation operator is simple bilinear interpolation. It gives nonzero values at

the9 points (z, y), (x + h,y), ..., (x — h,y — h), wherethevaluesare1, 1,..., 1.
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876 Chapter 19.  Partial Differential Equations

Its symbol is therefore

1

—
PN SN

N— |

(19.6.13)

N = N

PN SN
| I

The symbol of R isdefined by considering vy, to be defined everywhere on the
fine grid, and then asking what is Rvy, a (z,y) as alinear combination of these
values. The simplest possiblechoicefor R is straight injection, which means simply
filling each coarse-grid point with the value from the corresponding fine-grid point.
Its symbol is “[1].” However, difficulties can arise in practice with this choice. It
turnsout that asafe choicefor R isto makeit the adjoint operator to P. To definethe
adjoint, define the scalar product of two grid functions«;, and vy, for mesh size h as

(up|vp)n = h? Z up(x, y)op(z, y) (19.6.14)

z,y

Then the adjoint of P, denoted PT, is defined by
(ur|PTon) i = (Pus|vn)n (19.6.15)

Now take P to bebilinear interpolation, and chooseuy; = 1 a («, y), zero el sewhere.
Set Pt = R in (19.6.15) and H = 2h. You will find that

(Row) (z,y) = $Vn(@,Y) + §0n(z + h,y) + t5vn(@ + b,y +h) +--- (19.6.16)
(z,9) 1 ) 16

so that the symbol of R is

(19.6.17)

;|>—\ ool ;|>—\
00| x| 0ol
;|>—I ool ;|>—I

Note the simplerule; The symbol of R is i the transpose of the matrix defining the
symbol of P, equation (19.6.13). Thisruleisgeneral whenever R = PT and H = 2h.

Theparticular choice of R in(19.6.17) iscalled full weighting. Another popular
choice for R is half weighting, “halfway” between full weighting and straight
injection. Its symbol is

(19.6.18)

O o= O
00— N[ o=
O o= O

A similar notation can be used to describe the difference operator L. For
example, the standard differencing of the model problem, equation (19.0.6), is
represented by the five-point difference star

10
—4 1 (19.6.19)
10
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19.6 Multigrid Methods for Boundary Value Problems 877

If you are confronted with a new problem and you are not sure what P and R
choices are likely to work well, here is a safe rule: Suppose m,, is the order of the
interpolation P (i.e., it interpolates polynomial s of degreem,, — 1 exactly). Suppose
m,. istheorder of R, and that R is the adjoint of some P (not necessarily the P you
intend to use). Then if m is the order of the differential operator £y, you should
setisfy the inequality m, + m, > m. For example, bilinear interpolation and its
adjoint, full weighting, for Poisson’s equation satisfy m,, + m, =4 > m = 2.

Of course the P and R operators should enforce the boundary conditions for
your problem. The easiest way to do thisis to rewrite the difference equation to
have homogeneous boundary conditions by modifying the source term if necessary
(cf. §19.4). Enforcing homogeneous boundary conditions smply requires the P
operator to produce zeros at the appropriate boundary points. The corresponding
R is then found by R = PT.

Full Multigrid Algorithm

So far we have described multigrid as an iterative scheme, where one starts
with some initial guess on the finest grid and carries out enough cycles (V-cycles,
W-cycles,. . .) to achieve convergence. Thisis the simplest way to use multigrid:
Simply apply enough cycles until some appropriate convergence criterion is met.
However, efficiency can beimproved by using the Full Multigrid Algorithm (FMG),
also known as nested iteration.

Instead of starting with an arbitrary approximation on the finest grid (e.g.,
up, = 0), the first approximation is obtained by interpolating from a coarse-grid
solution:

up = Pug (19.6.20)

The coarse-grid solutionitself isfound by asimilar FMG process from even coarser
grids. At the coarsest level, you start with the exact solution. Rather than proceed as
in Figure 19.6.1, then, FMG getstoits solution by a series of increasingly tall “N’s,”
each taller one probing a finer grid (see Figure 19.6.2).

Note that P in (19.6.20) need not be the same P used in the multigrid cycles.
It should be at least of the same order as the discretization £, but sometimes a
higher-order operator leads to greater efficiency.

It turns out that you usually need one or at most two multigrid cycles at each
level before proceeding down to the next finer grid. While there is theoretical
guidance on the required number of cycles (e.g., [2]), you can easily determine it
empirically. Fix the finest level and study the solution values as you increase the
number of cycles per level. The asymptotic value of the solutionisthe exact solution
of the difference equations. The difference between this exact solution and the
solution for a small number of cyclesis the iteration error. Now fix the number of
cyclesto belarge, and vary thenumber of levels, i.e., thesmallest value of 4 used. In
thisway you can estimate the truncation error for agiven h. In your final production
code, there is no point in using more cycles than you need to get the iteration error
down to the size of the truncation error.

The simple multigrid iteration (cycle) needs the right-hand side f only at the
finest level. FMG needs f at al levels. If the boundary conditionsare homogeneous,
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878 Chapter 19.  Partial Differential Equations

4-grid
y=1

Figure 19.6.2.  Structure of cycles for the full multigrid (FMG) method. This method starts on the
coarsest grid, interpolates, and then refines (by “V’s"), the solution onto grids of increasing fineness.

you can use fir = Rfy,. This prescription is not aways safe for inhomogeneous
boundary conditions. Inthat case it is better to discretize f on each coarse grid.

Notethat the FM G a gorithm producesthe solutionon al levels. It can therefore
be combined with techniques like Richardson extrapolation.

We now give a routine mglin that implements the Full Multigrid Algorithm
for alinear equation, the model problem (19.0.6). It uses red-black Gauss-Seidel as
the smoothing operator, bilinear interpolation for P, and half-weighting for R. To
change the routine to handle another linear problem, all you need do is modify the
functions relax, resid, and slvsml appropriately. A feature of the routineis the
dynamical alocation of storage for variables defined on the various grids.

#include "nrutil.h"

#define NPRE 1 Number of relaxation sweeps before . ..
#define NPOST 1 ... and after the coarse-grid correction is com-
#define NGMAX 15 puted.

void mglin(double **u, int n, int ncycle)
Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem (19.0.6).
Oninputul1l..n] [1..n] contains the right-hand side p, while on output it returns the solution.
The dimension n must be of the form 27 + 1 for some integer j. (j is actually the number of
grid levels used in the solution, called ng below.) ncycle is the number of V-cycles to be
used at each level.
{

void addint(double **uf, double **uc, double **res, int nf);

void copy(double **aout, double **ain, int n);

void fill0(double **u, int n);

void interp(double **uf, double **uc, int nf);

void relax(double **u, double **rhs, int n);

void resid(double **res, double **u, double **rhs, int n);

void rstrct(double **uc, double **uf, int nc);

void slvsml(double **u, double **rhs);
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19.6 Multigrid Methods for Boundary Value Problems 879

unsigned int j,jcycle,jj,jpost,jpre,nf,ng=0,ngrid,nn;
double **ires[NGMAX+1],**irho [NGMAX+1] ,**irhs[NGMAX+1],**iu[NGMAX+1];

nn=n;
while (nn >>= 1) ng++;

if (n != 1+(1L << ng)) nrerror("n-1 must be a power of 2 in mglin.");
if (ng > NGMAX) nrerror("increase NGMAX in mglin.");

nn=n/2+1;

ngrid=ng-1;

irho[ngrid]=dmatrix(1,nn,1,nn); Allocate storage for r.h.s. on grid ng — 1,

rstrct(irho[ngrid] ,u,nn); and fill it by restricting from the fine grid.

while (nn > 3) { Similarly allocate storage and fill r.h.s. on all
nn=nn/2+1; coarse grids.
irho[--ngrid]=dmatrix(1,nn,1,nn);
rstrct(irho[ngrid],irho[ngrid+1],nn);

}

nn=3;

iu[1]=dmatrix(1,nn,1,nn);

irhs[1]=dmatrix(1,nn,1,nn);

slvsml(iu[1],irho[1]);

free_dmatrix(irho[1],1,nn,1,nn);

ngrid=ng;

for (j=2;j<=ngrid;j++) {
nn=2*nn-1;
iu[jl=dmatrix(1,nn,1,nn);
irhs[jl=dmatrix(1,nn,1,nn);
ires[jl=dmatrix(1,nn,1,nn);
interp(iuljl,iulj-1],nn);
Interpolate from coarse grid to next finer grid.

Initial solution on coarsest grid.

Nested iteration loop.

copy(irhs[jl,(j !'= ngrid ? irho[j] : u),nn); Set up r.h.s.
for (jcycle=1;jcycle<=ncycle;jcycle++) { V-cycle loop.
nf=nn;
for (jj=j;jj>=2;jj--) { Downward stoke of the V.

for (jpre=1;jpre<=NPRE;jpre++) Pre-smoothing.
relax(iuljjl,irhs[jjl,nf);

resid(ires[jjl,iuljjl,irhs[jj],nf);

nf=nf/2+1;

rstrct(irhs[jj-1],ires[jj]l,nf);

Restriction of the residual is the next r.h.s.

£i110(iuljj-11,nf); Zero for initial guess in next

} relaxation.
slvsml(iul[1],irhs[1]); Bottom of V: solve on coars-
nf=3; est grid.

for (jj=2;jj<=j;jj++) { Upward stroke of V.

nf=2*nf-1;
addint(iuljjl,iuljj-11,ires[jjl,nf);
Use res for temporary storage inside addint.
for (jpost=1;jpost<=NPOST; jpost++) Post-smoothing.
relax(iuljjl,irhs[jjl,nf);
}
}
}
copy (u,iu[ngrid] ,n);
for (mn=n,j=ng;j>=2;j--,nn=nn/2+1) {
free_dmatrix(ires[j]l,1,nn,1,nn);
free_dmatrix(irhs[j],1,nn,1,nn);
free_dmatrix(iuljl,1,nn,1,nn);
if (j !'= ng) free_dmatrix(irho[j],1,nn,1,nn);

Return solution in u.

}
free_dmatrix(irhs[1],1,3,1,3);
free_dmatrix(iu[1],1,3,1,3);
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880 Chapter 19.  Partial Differential Equations

void rstrct(double **uc, double **uf, int nc)

Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input in
uf [1..2*nc-1] [1..2#*nc-1], the coarse-grid solution is returned in uc[1..nc][1..nc].
{

int ic,iif,jc,jf,ncc=2*nc-1;

for (jf=3,jc=2;jc<nc;jc++,jf+=2) { Interior points.
for (iif=3,ic=2;ic<nc;ic++,iif+=2) {
uclic] [jcl=0.5*uf [iif] [j£]+0.125* (uf [iif+1] [jE]+uf[iif-1] [j£]
+uf [1if] [jE+1]+uf [1i£] [j£-11);

}

}

for (jec=1,ic=1;ic<=nc;ic++,jc+=2) { Boundary points.
uclic] [1]=uf [jc] [1];
uc[ic] [nc]=uf[jc] [nccl;

}

for (jc=1,ic=1;ic<=nc;ic++,jc+=2) {
uc[1] [ic]l=uf [1] [jc];
uc[nc] [ic]=uf [ncc] [jcl;

void interp(double **uf, double **uc, int nf)

Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The coarse-
grid solution is input as uc[1..nc] [1. .nc], where nc = nf/2 + 1. The fine-grid solution is
returned in uf [1..nf] [1..nf].

{
int ic,iif,jc,jf,nc;
nc=nf/2+1;
for (jc=1,jf=1;jc<=nc;jc++,jf+=2) Do elements that are copies.
for (ic=1;ic<=nc;ic++) uf[2*ic-1] [jfl=uclic] [jcl;
for (jf=1;jf<=nf;jf+=2) Do odd-numbered columns, interpolat-
for (iif=2;iif<nf;iif+=2) ing vertically.
uf [iif] [j£]1=0.5% (uf [iif+1] [jE]+uf [iif-1] [j£]);
for (jf=2;jf<nf;jf+=2) Do even-numbered columns, interpolat-
for (iif=1;iif <= nf;iif++) ing horizontally.
uf [iif] [j£]1=0.5% (uf [iif] [jf+1]+uf [iif] [j£-1]);
}

void addint (double **uf, double **uc, double **res, int nf)
Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The
coarse-grid solution is input asuc[1. .nc] [1..nc], where nc = nf/2+1. The fine-grid solu-
tion is returned in uf [1..nf]1 [1..nf]. res[1..nf] [1..nf] is used for temporary storage.
{

void interp(double **uf, double **uc, int nf);

int i,j;

interp(res,uc,nf);
for (j=1;j<=nf;j++)
for (i=1;i<=nf;i++)
uf [i] [j] += res[il[j];

void slvsml(double **u, double **rhs)
Solution of the model problem on the coarsest grid, where h = % The right-hand side is input
in rhs[1..3][1..3] and the solution is returned in u[1..3] [1..3].
{
void fillO(double **u, int n);
double h=0.5;

£i110(u,3);
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19.6 Multigrid Methods for Boundary Value Problems 881

u[2] [2] = -h*h*rhs[2] [2]/4.0;

void relax(double **u, double **rhs, int n)
Red-black Gauss-Seidel relaxation for model problem. Updates the current value of the solution
ul1..n][1..n], using the right-hand side function rhs[1..n][1..n].
{
int i,ipass,isw,j,jsw=1;
double h,h2;

h=1.0/(n-1);
h2=hxh;
for (ipass=1;ipass<=2;ipass++,jsw=3-jsw) { Red and black sweeps.

isw=jsw;

for (j=2;j<n;j++,isw=3-isw)

for (i=isw+1;i<n;i+=2) Gauss-Seidel formula.
ulil [j1=0.25*(uli+1] [j1+uli-1] [j1+uli] [j+1]
+uli] [j-11-h2*rhs[i] [j1);

void resid(double **res, double **u, double **rhs, int n)
Returns minus the residual for the model problem. Input quantities are u[1..n] [1..n] and
rhs[1..n][1..n], while res[1..n][1..n] is returned.

{
int i,j;
double h,h2i;
h=1.0/(n-1);
h2i=1.0/(h*h);
for (j=2;j<m;j++) Interior points.
for (i=2;i<n;i++)
res[i] [j] = -h2i*(uli+1] [j1+uli-1] [j1+ulil [j+1]1+uli] [j-11-
4.0*%ul[i] [j1)+rhs[i]1[j];
for (i=1;i<=n;i++) Boundary points.
res[i] [1]=res[i] [n]=res[1] [i]=res[n] [i]=0.0;
}

void copy(double **aout, double **ain, int n)
Copies ain[1..n][1..n] to aout[1..n][1..n].

{
int 1i,j;
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
aout [j]1[i]=ain[j][i];
}

void fillO0(double **u, int n)
Fills u[1..n] [1..n] with zeros.

{
int i,j;
for (j=1;j<=n;j++)
for (i=1;i<=n;i++)
uli][j1=0.0;
}

The routinemglin is written for clarity, not maximum efficiency, so that it is
easy to modify. Several simple changes will speed up the execution time:
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882 Chapter 19.  Partial Differential Equations

e Thedefect d;, vanishesidentically at all black mesh pointsafter ared-black
Gauss-Seidd step. Thus dy = Rdy, for half-weighting reduces to simply
copying half the defect from thefine grid to the corresponding coarse-grid
point. The cals to resid followed by rstrct in the first part of the
V-cycle can be replaced by aroutine that loops only over the coarse grid,
filling it with half the defect.

o Similarly, the quantity u;*" = wu, + Pvy need not be computed &t red
mesh points, since they will immediately be redefined in the subsequent
Gauss-Seidel sweep. This means that addint need only loop over black
points.

e You can speed up relax in several ways. First, you can have a special
form when theinitia guessiszero, and omit theroutinef£i110. Next, you
can store h2 f;, on the various grids and save a multiplication. Finally, it
is possible to save an addition in the Gauss-Seidel formula by rewriting
it with intermediate variables.

e Ontypical problems, mglin withncycle = 1 will return a solution with
the iteration error bigger than the truncation error for the given size of h.
To knock the error down to the size of the truncation error, you have to
set ncycle = 2 or, more cheaply, npre = 2. A more efficient way turns
out to be to use a higher-order P in (19.6.20) than thelinear interpolation
used in the V-cycle.

Implementing all the above features typically gives up to a factor of two
improvement in execution time and is certainly worthwhile in a production code.

Nonlinear Multigrid: The FAS Algorithm

Now turn to solving a nonlinear elliptic equation, which we write symbolically as
L(u)=0 (19.6.21)

Any explicit source term has been moved to the left-hand side. Suppose equation (19.6.21)
is suitably discretized:

Lin(un) =0 (19.6.22)

We will see below that in the multigrid algorithm we will have to consider equations where a
nonzero right-hand side is generated during the course of the solution:

Ln(ur) = fr (19.6.23)

Oneway of solving nonlinear problemswith multigrid isto use Newton’s method, which
produces linear equations for the correction term at each iteration. We can then use linear
multigrid to solve these equations. A great strength of the multigrid idea, however, is that it
can be applied directly to nonlinear problems. All we need is a suitable nonlinear relaxation
method to smooth the errors, plus a procedure for approximating corrections on coarser grids.
This direct approach is Brandt's Full Approximation Storage Algorithm (FAS). No nonlinear
equations need be solved, except perhaps on the coarsest grid.

To develop the nonlinear algorithm, suppose we have a relaxation procedure that can
smooth the residual vector aswe did in the linear case. Then we can seek a smooth correction
vy, to solve (19.6.23):

L (Un +vn) = fn (19.6.24)
To find v, note that
Ly (Un + vn) — Ln(Un) = frn — Ln(Un)

19.6.25
. (19.6.25)
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19.6 Multigrid Methods for Boundary Value Problems 883

The right-hand side is smooth after a few nonlinear relaxation sweeps. Thus we can transfer
the left-hand side to a coarse grid:

Lu(ug) — Lua(Rup) = —Rdp (19.6.26)
that is, we solve
Lu(ug) = Lu(Rup) — Rdp (19.6.27)

on the coarse grid. (Thisis how nonzero right-hand sides appear.) Suppose the approximate
solution is wg. Then the coarse-grid correction is

B = g — Rin (19.6.28)
and
ﬂ};ew =up + P(ﬂH — Rﬂh) (19629)

Note that PR # 1ingeneral, so uy,“" # Pug. Thisisakey point: In equation (19.6.29) the
interpolation error comes only from the correction, not from the full solution .

Equation (19.6.27) showsthat oneis solving for the full approximation w7, not just the
error as in the linear algorithm. Thisis the origin of the name FAS.

The FAS multigrid algorithm thus looks very similar to the linear multigrid algorithm.
The only differences are that both the defect d;, and the relaxed approximation u,, have to be
restricted to the coarse grid, where now it is equation (19.6.27) that is solved by recursive
invocation of the algorithm. However, instead of implementing the algorithm this way, we
will first describe the so-called dual viewpoint, which leads to a powerful aternative way
of looking at the multigrid idea.

The dual viewpoint considers the local truncation error, defined as

T=Lp(u) — fn (19.6.30)
where u is the exact solution of the oiginal continuum equation. If we rewrite this as
Ln(u) = fn+7 (19.6.31)

we see that 7 can be regarded as the correction to f; so that the solution of the fine-grid
equation will be the exact solution w.

Now consider the relative truncation error 7, which is defined on the H-grid relative
to the h-grid:

™ = L (Ruh) —RLy (Uh) (19.6.32)
Since L (un) = fn, this can be rewritten as
Lu(um) = fo+ (19.6.33)

In other words, we can think of 7, as the correction to fx that makes the solution of the
coarse-grid equation equal to the fine-grid solution. Of course we cannot compute 7, but we
do have an approximation to it from using u, in equation (19.6.32):

Th 7’:h = [:H (Rah) — R,Ch (ﬂh) (19634)
Replacing 7, by 7 in equation (19.6.33) gives
Lu(ur) = Lu(Rup) — Rdp (19.6.35)

which is just the coarse-grid equation (19.6.27)!
Thus we see that there are two complementary viewpoints for the relation between
coarse and fine grids:

e Coarse grids are used to accelerate the convergence of the smooth components
of the fine-grid residuals.
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884 Chapter 19.  Partial Differential Equations

e Fine grids are used to compute correction terms to the coarse-grid equations,
yielding fine-grid accuracy on the coarse grids.

One benefit of thisnew viewpointisthat it allows usto derive anatural stopping criterion
for a multigrid iteration. Normally the criterion would be

dnll <€ (19.6.36)

and the question is how to choose e. There is clearly no benefit in iterating beyond the
point when the remaining error is dominated by the local truncation error 7. The computable
quantity is 7,. What isthe relation between + and 73, ? For the typical case of a second-order
accurate differencing scheme,

7= Lu(u) — Ln(un) = K2ra(z,y) + - - (19.6.37)

Assume the solution satisfies up, = u + h*ua(z,y) + ---. Then, assuming R is of high
enough order that we can neglect its effect, equation (19.6.32) gives

Th > [:H(u =+ hQUQ) — [:h(u + hQUQ)
= L (u) — Ln(u) + h*[L (u2) — L3 (ua)] + - - (19.6.39)
= (H? — h*)12 + O(h*)

For the usual case of H = 2h we therefore have

T~ ;Th ~ %’F]—L (19639)
The stopping criterion is thus equation (19.6.36) with
e = a7, an~ 3 (19.6.40)

We have one remaining task before implementing our nonlinear multigrid algorithm:
choosing a nonlinear relaxation scheme. Once again, your first choice should probably be
the nonlinear Gauss-Seidel scheme. If the discretized equation (19.6.23) is written with
some choice of ordering as

Li(u1,...,un) = fi, i=1,...,N (19.6.41)
then the nonlinear Gauss-Seidel schemes solves
Li (Ul, ey Ui—1, U?CW, Ui+1y- - - 7u]\]) = fz (19642)

foru; ™. Asusual new u’sreplaceold u’sas soon asthey havebeen computed. Often equation
(19.6.42) islinear in u; ", since the nonlinear terms are discretized by meansof its neighbors.
If thisis not the case, we replace equation (19.6.42) by one step of a Newton iteration:

new old LZ (U?Id) — Ju
hew _ gotd - = 1 It 19.6.43
T T L (e fou ( )
For example, consider the simple nonlinear equation
Viu+u®=p (19.6.44)

In two-dimensional notation, we have
L(tig) = (Wis1,g + i1+ Uigr1 + ig—1 — duig) /h° +uf; —piy =0 (19.6.45)
Since

oL 5
Bu; —4/h" + 2u; ; (19.6.46)
the Newton Gauss-Seidel iteration is
new __ . AC(UZ',]')
Ui 5 = Uij —4/h2 + 21[,2’] (19647)

Hereisaroutinemgf as that solvesequation (19.6.44) using the Full Multigrid Algorithm
and the FAS scheme. Restriction and prolongation are done asin mglin. We have included
the convergencetest based on equation (19.6.40). A successful multigrid solution of aproblem
should aim to satisfy this condition with the maximum number of V-cycles, maxcyc, equal to
1or 2. Theroutinemgfas usesthe same functions copy, interp, andrstrct asmglin.
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19.6 Multigrid Methods for Boundary Value Problems 885

#include "nrutil.h"

#define NPRE 1 Number of relaxation sweeps before . ..

#define NPOST 1 ... and after the coarse-grid correction is computed.
#define ALPHA 0.33 Relates the estimated truncation error to the norm
#define NGMAX 15 of the residual.

void mgfas(double **u, int n, int maxcyc)
Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation (19.6.44).
Oninputu[l..n] [1..n] contains the right-hand side p, while on output it returns the solution.
The dimension n must be of the form 27 4 1 for some integer j. (j is actually the number of
grid levels used in the solution, called ng below.) maxcyc is the maximum number of V-cycles
to be used at each level.
{

double anorm2(double **a, int n);

void copy(double **aout, double **ain, int n);

void interp(double **uf, double **uc, int nf);

void lop(double **out, double **u, int n);

void matadd(double **a, double **b, double **c, int n);

void matsub(double **a, double **b, double **c, int n);

void relax2(double **u, double **rhs, int n);

void rstrct(double **uc, double **uf, int nc);

void slvsm2(double **u, double **rhs);

unsigned int j,jcycle,jj,jml,jpost, jpre,nf,ng=0,ngrid,nn;

double **irho[NGMAX+1],**irhs [NGMAX+1] ,**itau[NGMAX+1],

*xitemp [NGMAX+1] ,**iu[NGMAX+1];
double res,trerr;

nn=n;

while (nn >>= 1) ng++;

if (n != 1+(1L << ng)) nrerror("n-1 must be a power of 2 in mgfas.");

if (ng > NGMAX) nrerror("increase NGMAX in mglin.");

nn=n/2+1;

ngrid=ng-1;

irho[ngrid]=dmatrix(1,nn,1,nn); Allocate storage for r.h.s. on grid ng — 1,

rstrct(irho[ngrid] ,u,nn); and fill it by restricting from the fine grid.

while (nn > 3) { Similarly allocate storage and fill r.h.s. on all
nn=nn/2+1; coarse grids.

irho[--ngrid]=dmatrix(1,nn,1,nn);
rstrct(irho [ngrid],irho [ngrid+1],nn);
}
nn=3;
iu[1]=dmatrix(1,nn,1,nn);
irhs[1]=dmatrix(1,nn,1,nn);
itau[1]=dmatrix(1,nn,1,nn);
itemp[1]=dmatrix(1,nn,1,nn);
slvsm2(iul1],irho[1]);
free_dmatrix(irho[1],1,nn,1,nn);
ngrid=ng;
for (j=2;j<=ngrid;j++) {
nn=2*nn-1;
iu[jl=dmatrix(1,nn,1,nn);
irhs[jl=dmatrix(1,nn,1,nn);
itaul[jl=dmatrix(1,nn,1,nn);
itemp[jl=dmatrix(1l,nn,1,nn);
interp(iulj],iulj-1],nn);
Interpolate from coarse grid to next finer grid.

Initial solution on coarsest grid.

Nested iteration loop.

copy(irhs[j],(j != ngrid ? irho[j] : w),nn); Set up r.h.s.
for (jcycle=1;jcycle<=maxcyc;jcycle++) { V-cycle loop.
nf=nn;
for (jj=j;jj>=2;jj—) { Downward stoke of the V.
for (jpre=1;jpre<=NPRE;jpre++) Pre-smoothing.
relax2(iuljjl,irhs[jj],nf);
lop(itempl[jjl,iuljjl,nf); Ly, (ap).-

nf=nf/2+1;
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jmi=jj-1;

rstrct(itemp[jml] ,itemp[jjl,nf);
rstrct(iuljmi] ,iuljjl,nf);
lop(itauljml],iuljmi],nf);

L (Ruy,) stored temporarily in 7.

matsub(itaul[jml],itemp[jmi],itauljml],nf);

if (3j ==
trerr=ALPHA*anorm2(itau[jm1] ,nf);
rstrct(irhs[jmi],irhs[jj],nf);

matadd (irhs[jm1],itauljm1],irhs[jmi] ,nf);

}
slvsm2(iul[1],irhs[1]);
nf=3;
for (jj=2;jj<=j;jj+t) {
jmi=jj-1;
rstrct(itemp[jml],iuljj],nf);
matsub(iuljml],itemp[jm1],itemp[jmi],nf);
nf=2xnf-1;
interp(itauljjl,itemp[jmi],nf);
matadd(iuljjl,itauljjl,iuljjl,nf);
for (jpost=1;jpost<=NPOST;jpost++)
relax2(iuljjl,irhs[jjl,nf);
}
lop(itemp[j],iulj],nf);
matsub(itemp[j],irhs[j],itemp[j],nf);
res=anorm2(itemp[j],nf);
if (res < trerr) break;
}
}
copy(u,iulngrid] ,n);
for (nn=n, j=ng;j>=1;j--,nn=nn/2+1) {
free_dmatrix(itemp[j],1,nn,1,nn);
free_dmatrix(itaulj],1,nn,1,nn);
free_dmatrix(irhs[j],1,nn,1,nn);
free_dmatrix(iuljl,1,nn,1,nn);

RLy (n).
Ry,

Form 74,.

Estimate truncation error 7.

Ju- N

fu +Th

Bottom of V: Solve on coars-
est grid.

Upward stroke of V.

Rily,.
Gy — Riiy.
P(ug—Ruy,) stored in 7.

Form upew.
Post-smoothing.

Form residual ||d},||.
No more V-cycles needed if

residual small enough.

Return solution in u.

if (j '= ng && j !'= 1) free_dmatrix(irho[j],1,nn,1,nn);

void relax2(double **u, double **rhs, int n)

Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution
ul1..n][1..n] is updated, using the right-hand side function rhs[1..n][1..n].

{
int i,ipass,isw,j,jsw=1;
double foh2,h,h2i,res;

h=1.0/(n-1);
h2i=1.0/(h*h);
foh2 = -4.0%h2i;
for (ipass=1;ipass<=2;ipass++, jsw=3-jsw) {
isw=jsw;
for (j=2;j<n;j++,isw=3-isw) {
for (i=isw+1;i<n;i+=2) {

Red and black sweeps.

res=h2ix(u[i+1] [j1+uli-1] [j1+uli] [j+1]+ulil [j-1]-
4.0%ul[i] [j1)+ulil [j1*ulil [jI1-rhs[i] [j];

ulil[j] -= res/(foh2+2.0%u[il[j1);

Newton Gauss-Seidel formula.
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#include <math.h>

void slvsm2(double **u, double **rhs)
Solution of equation (19.6.44) on the coarsest grid, where h = % The right-hand side is input
in rhs[1..3][1..3] and the solution is returned in u[1..3] [1..3].
{
void fill0(double **u, int n);
double disc,fact,h=0.5;

£i1110(u,3);

fact=2.0/(h*h);

disc=sqrt(fact*fact+rhs[2] [2]);

ul[2] [2] = -rhs[2] [2]/(fact+disc);
}

void lop(double **out, double **u, int n)
Given u[1..n] [1..n], returns £y (@) for equation (19.6.44) in out[1..n][1..n].
{

int i,j;

double h,h2i;

h=1.0/(n-1);
h2i=1.0/(h*h);
for (j=2;j<m;j++) Interior points.
for (i=2;i<n;i++)
out [i] [jI1=h2ix*(uli+1] [j1+uli-1]1[j1+ulil [j+1]1+ulil [j-11-
4.0%xuli] [j1)+ulil [j1*ulil [3];
for (i=1;i<=n;i++) Boundary points.
out [i] [1]=out[i] [n]=out [1] [i]=out [n] [i]=0.0;
}

void matadd(double **a, double **b, double **c, int n)
Adds a[1..n][1..n] to b[1..n][1..n] and returns result in c[1..n][1..n].
{

int i,j;

for (j=1;j<=n;j++)
for (i=1;i<=n;i++)
clil[j1=alil [j1+b[i1 [j1;
}

void matsub(double **a, double **b, double **c, int n)
Subtracts b[1..n] [1..n] from a[1..n] [1..n] and returns result in c[1..n] [1..n].
{

int i,j;

for (j=1;j<=n;j++)
for (i=1;i<=n;i++)

clil[j1=alil [31-b[i1 [3];

#include <math.h>

double anorm2(double **a, int n)
Returns the Euclidean norm of the matrix a[1..n][1..n].
{

int i,j;

double sum=0.0;

for (j=1;j<=n;j++)
for (i=1;i<=n;i++)
sum += alil [j1*alil[j];
return sqrt(sum)/n;
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