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which (peeling of the C™"'s one at a time) implies a solution
x=C;:-C2-Cs---b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’'s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.
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2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian eimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not al the way to the identity matrix, but
only halfway, to amatrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When aqo
isthe pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only ase and a4z, Not a12 (See egquation 2.1.1).
Suppose, aso, that we do only partia pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done thisfor all the pivots, we will be left with areduced
equation that 1ooks like this (in the case of a single right-hand side vector):

/ / / / /
Ay Gy Q3 Gy 1 by
/ / / /
0 a3 a3 agy A by (2.2.1)
0 0 df 4 T o
33 Q34 T3 3
0 0 0 a)y X4 b

Here the primes signify that the a’s and b’'s do not have their original numerical
values, but have been modified by al the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.
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Backsubstitution

But how do we solve for the 2’s? The last x (x4 in this example) is aready
isolated, namely

xq = bl /aly, (22.2)
With the last = known we can move to the penultimate x,
1
x3 = ——[b5 — zaaky] (2.2.3)
a33

and then proceed with the = before that one. The typical step is

1 N
T = b, — Z ;T (2.2.4)
2 j=i+1

The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.

The advantage of Gaussian €limination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N3 and N2 M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only %N?’ times (only half the matrix is reduced, and the increasing numbers of
predictable zeros reduce the count to one-third), and %N 2 M times, respectively.
Each backsubstitution of aright-hand sideis 3 N executions of asimilar loop (one
multiplication plus one subtraction). For M < N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to afactor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view asthecase of M = N
right-hand sides, namely the NV unit vectors which are the columns of the identity
meatrix), Gauss an elimination and backsubstitution at first glancerequi re%N?’ (matrix
reduction) +1 N? (right-hand side manipulations) +N?® (N backsubstitutions)
= %N 3 loop executions, which is more than the V2 for Gauss-Jordan. However, the
unit vectors are quite special in containing all zeros except for one element. If this
istaken into account, the right-side manipulations can be reduced to only 3 N'* loop
executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian €liminationand Gauss-Jordan elimination share the di sadvantage
that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and aso has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.
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2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,
L-U=A (23.1)

where L is lower triangular (has e ements only on the diagonal and below) and U
is upper triangular (has elements only on the diagona and above). For the case of
a4 x 4 matrix A, for example, equation (2.3.1) would look like this:

air 0 0 0 B11 Bz Bz Bia ajl aiz2 @13 a4

oag1 a0 0 | | O Bo2 Pag Boa| _ | @21 a2 a23 azy

asz1 azz azz 0 0 0 B33 B34 a3zl as2 a3z as4

Q41 Q42 43 g 0 0 0 B a41 Q42 Q43 Q44
(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set
A-x=(L-U)y-x=L-(U-x)=hb (2.3.3)
by first solving for the vector y such that

L-y=b (2.3.4)
and then solving
U-x=y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equationsis quitetrivial, as
we have aready seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

b1
Y= ——
a1
. i1 (2.3.6)
i =— |b — i =2,3,...,N

while (2.3.5) can then be solved by backsubstitution exactly asin equations (2.2.2)—
(2.2.4),

N = LA

BNN

) N (2.3.7)
ri=— |yi — Biix; ti=N-1,N—-2,...,1

j=i+1
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