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which (peeling of the C−1’s one at a time) implies a solution

x = C1 · C2 · C3 · · · b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.
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2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only a32 and a42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):

a′11 a′12 a′13 a′14

0 a′22 a′23 a′24

0 0 a′33 a′34

0 0 0 a′44

 ·

x1

x2

x3

x4

 =


b′1
b′2
b′3
b′4

 (2.2.1)

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.
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Backsubstitution

But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely

x4 = b′4/a
′
44 (2.2.2)

With the last x known we can move to the penultimate x,

x3 =
1

a′33

[b′3 − x4a
′
34] (2.2.3)

and then proceed with the x before that one. The typical step is

xi =
1

a′ii

b′i − N∑
j=i+1

a′ijxj

 (2.2.4)

The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N3 and N2M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only 1

3
N3 times (only half the matrix is reduced, and the increasing numbers of

predictable zeros reduce the count to one-third), and 1
2
N2M times, respectively.

Each backsubstitution of a right-hand side is 1
2N

2 executions of a similar loop (one
multiplication plus one subtraction). For M � N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of M = N
right-hand sides, namely the N unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require 1

3N
3 (matrix

reduction) +1
2N

3 (right-hand side manipulations) +1
2N

3 (N backsubstitutions)
= 4

3
N3 loop executions, which is more than theN3 for Gauss-Jordan. However, the

unit vectors are quite special in containing all zeros except for one element. If this
is taken into account, the right-side manipulations can be reduced to only 1

6N
3 loop

executions, and, for matrix inversion, the two methods have identical efficiencies.
Both Gaussian elimination and Gauss-Jordan elimination share the disadvantage

that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.
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2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,

L · U = A (2.3.1)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagonal and above). For the case of
a 4 × 4 matrix A, for example, equation (2.3.1) would look like this:α11 0 0 0

α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

 ·
 β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44

 =

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set

A · x = (L · U) · x = L · (U · x) = b (2.3.3)

by first solving for the vector y such that

L · y = b (2.3.4)

and then solving
U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

y1 =
b1
α11

yi =
1

αii

bi − i−1∑
j=1

αijyj

 i = 2, 3, . . . , N

(2.3.6)

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2)–
(2.2.4),

xN =
yN
βNN

xi =
1

βii

yi − N∑
j=i+1

βijxj

 i = N − 1, N − 2, . . . , 1
(2.3.7)


