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A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A-x—C-y=b

(2.3.17)
C-x+A-y=d

which can be written as a 2N x 2N set of real equations,

(¢ %)-()-(2) 2318

and then solved with 1udcmp and 1ubksb in their present forms. This schemeis a factor of
2 inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient in
time, since the complex multiplies in a complexified version of the routines would each use
4 real multiplies, while the solution of a2N x 2N problem involves 8 times the work of
an N x N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.
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2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that istridiagonal, that is, has
nonzero el ements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systemsthat are band diagonal, with nonzero elements
only along a few diagond lines adjacent to the main diagonal (above and bel ow).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O (V') operations, and the whole sol ution can be encoded
very concisaly. Theresultingroutinetridagisonethat wewill usein later chapters.

Naturally, one does not reserve storage for the full N x N matrix, but only for
the nonzero components, stored as three vectors. The set of equationsto be solvedis

bl C1 0 cee ul T1
ay by ca - U2 T2
= S (24.1)
an—1 bv-1 cn—1 UN_1 TN-1

0 anN by UN TN
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2.4 Tridiagonal and Band Diagonal Systems of Equations 51

Noticethat a; and ¢y are undefined and are not referenced by theroutinethat follows.

#include "nrutil.h"

void tridag(float al[], float b[], float c[], float r[], float ull,
unsigned long n)
Solves for a vector u[1..n] the tridiagonal linear set given by equation (2.4.1). a[1. .n],
bl[1..n], c[1..n], and r[1..n] are input vectors and are not modified.
{
unsigned long j;
float bet,*gam;

gam=vector(1,n); One vector of workspace, gam is needed.

if (b[1] == 0.0) nrerror("Error 1 in tridag");

If this happens then you should rewrite your equations as a set of order N — 1, with us

trivially eliminated.

ul1]=r[1]/(bet=b[1]);

for (j=2;j<=n;j++) {
gam[jl=c[j-1]/bet;
bet=b[jl-aljl*gam[j];

Decomposition and forward substitution.

if (bet == 0.0) nrerror ("Error 2 in tridag"); Algorithm fails; see be-
uljl=(r[jl-aljl*ulj-1]) /bet; low.

}

for (j=(n-1);j>=1;j--)
uljl -= gam[j+1]*ulj+1]; Backsubstitution.

free_vector(gam,1,n);

Thereisno pivotingin tridag. Itisfor thisreason that tridag can fail even
when the underlying matrix isnonsingular: A zero pivot can be encountered even for
anonsingular matrix. In practice, thisisnot something to lose sleep about. The kinds
of problems that lead to tridiagonal linear sets usually have additional properties
which guarantee that the algorithmin tridag will succeed. For example, if

|bj|>|aj|+|cj| j:1,...,N (242)

(called diagonal dominance) then it can be shown that the al gorithm cannot encounter
a zero pivot.

It is possible to construct special examples in which the lack of pivoting in the
algorithm causesnumerical instability. In practice, however, suchinstability isalmost
never encountered — unlike the general matrix problem where pivotingis essential.

The tridiagona agorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routinesbandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additiona elements (e.g., upper right and lower left corners) aso alow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systemsare slightly more general and have (say) m: > 0 nonzero elements
immediately to the left of (below) the diagonal and m2 > 0 nonzero elementsimmediately to
itsright (aboveit). Of course, thisisonly auseful classificationif m, and m. areboth < N.
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52 Chapter 2. Solution of Linear Algebraic Equations

In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N x N case.
The precise definition of a band diagonal matrix with elements a;; is that

ai; =0 when j>i4+mo or i>j+m (24.3)

Band diagonal matrices are stored and manipulated in aso-called compact form, which results
if the matrix is tilted 45° clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + mo columns and N rows. This is best illustrated by an example:
The band diagonal matrix

3100000
4 15 0 0 00
9 2 6 5 0 0 0
035 89 00 (24.4)
0079 3 20
000 3 8 4 6
0000 2 4 4
whichhas N =7, m; = 2, and my = 1, is stored compactly asthe 7 x 4 matrix,
(24.5)

NWIWoR &
=00 O UTN R
> Wooo — W
8 ON O UtOt

Here = denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in column m; + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elementsa;; out of the
compact storage format in an orderly fashion.

#include "nrutil.h"

void banmul(float **a, unsigned long n, int ml, int m2, float x[], float b[])
Matrix multiply b = A - X, where A is band diagonal with m1 rows below the diagonal and m2
rows above. The input vector X and output vector b are stored as x[1..n] and b[1..n],
respectively. The array a[1..n] [1..m1+m2+1] stores A as follows: The diagonal elements
are in a[1..n] [m1+1]. Subdiagonal elements are in a[j..n][1..m1] (with 5 > 1 ap-
propriate to the number of elements on each subdiagonal). Superdiagonal elements are in
al1l..5] [m1+2. .m1+m2+1] with j < n appropriate to the number of elements on each su-
perdiagonal.
{

unsigned long i, j,k,tmploop;

for (i=1;i<=n;i++) {
k=i-m1-1;
tmploop=LMIN (m1+m2+1,n-k) ;
b[i]=0.0;
for (j=LMAX(1,1-k);j<=tmploop;j++) b[i] += al[i] [jl*x[j+k];
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2.4 Tridiagonal and Band Diagonal Systems of Equations 53

It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout’'s
method, see §2.3) producesadditional nonzero “fill-ins.” One straightforward storage scheme
is to return the upper triangular factor (U) in the same spacethat A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N x my. The
diagonal elements of U (whose product, times d = +1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of 1udcmp in §2.3:

#include <math.h>
#define SWAP(a,b) {dum=(a);(a)=(b);(b)=dum;}
#define TINY 1.0e-20

void bandec(float **a, unsigned long n, int ml, int m2, float *x*al,

unsigned long indx[], float *d)
Given an n X n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal rows,
compactly stored in the array a[1..n] [1. .m1+m2+1] as described in the comment for routine
banmul, this routine constructs an LU decomposition of a rowwise permutation of A. The upper
triangular matrix replaces a, while the lower triangular matrix is returned in al[1..n] [1. .m1].
indx[1..n] is an output vector which records the row permutation effected by the partial
pivoting; d is output as £1 depending on whether the number of row interchanges was even
or odd, respectively. This routine is used in combination with banbks to solve band-diagonal
sets of equations.
{

unsigned long i,j,k,1;

int mm;

float dum;

mm=m1+m2+1;

1=m1;

for (i=1;i<=ml;i++) { Rearrange the storage a bit.
for (j=m1+2-i;j<=mm;j++) alil[j-1l=alil[j];
1--;
for (j=mm-1;j<=mm;j++) al[i]l[j]=0.0;

}
*d=1.0;
1=m1;
for (k=1;k<=n;k++) { For each row...
dum=al[k] [1];
i=k;
if (1 < n) 1++;
for (j=k+1;j<=1;j++) { Find the pivot element.
if (fabs(aljl[1]) > fabs(dum)) {
dum=a[j][1];
i=j;
}
}
indx[k]=1i;
if (dum == 0.0) al[k][1]=TINY;
Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in
some applications).
if (i !'=k) { Interchange rows.
*d = —-(*xd);
for (j=1;j<=mm;j++) SWAP(alk][jl,alil[j])
}
for (i=k+1;i<=1;i++) { Do the elimination.
dum=a[i] [1]/alk] [1];
al[k] [i-k]=dum;
for (j=2;j<=mm;j++) alil [j-1]=ali] [j]1-dum*a[k] [j];
ali] [mm]=0.0;
}
}
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54 Chapter 2. Solution of Linear Algebraic Equations

Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U, then the original matrix (perhaps as modified by roundoff error)
is in fact singular. In this regard, bandec is somewhat more robust than tridag above,
which canfail algorithmically even for nonsingular matrices; bandec is thusalso useful (with
m1 = mg = 1) for some ill-behaved tridiagonal systems.

Oncethematrix A hasbeen decomposed, any number of right-hand sidescan besolvedin
turn by repeated callsto banbks, the backsubstitution routine whoseanalogin §2.3 is Lubksb.

#define SWAP(a,b) {dum=(a);(a)=(b);(b)=dum;}

void banbks(float **a, unsigned long n, int ml, int m2, float **al,

unsigned long indx[], float b[])
Given the arrays a, al, and indx as returned from bandec, and given a right-hand side vector
b[1..n], solves the band diagonal linear equations A - X = b. The solution vector X overwrites
b[1..n]. The other input arrays are not modified, and can be left in place for successive calls
with different right-hand sides.
{

unsigned long i,k,1;

int mm;

float dum;

mm=m1+m2+1;
1=m1;
for (k=1;k<=n;k++) { Forward substitution, unscrambling the permuted rows
i=indx [k]; as we go.
if (i != k) SWAP(b[k],b[i])
if (1 < n) 1++;
for (i=k+1;i<=1;i++) b[i] -= al[k] [i-k]*b[k];
}
1=1;
for (i=n;i>=1;i--) { Backsubstitution.
dum=b[i];
for (k=2;k<=1;k++) dum -= al[i] [k]*b[k+i-1];
blil=dum/al[il[1];
if (1 < mm) 1++;

The routines bandec and banbks are based on the Handbook routines bandetl and
bansol1 in [1].

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell), p. 74.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. || of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM



2.5 Iterative Improvement of a Solution to Linear Equations 55
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Figure 2.5.1. Iterativeimprovement of the solutionto A - x = b. Thefirst guessx + éx is multiplied by
A to produceb + éb. The known vector b is subtracted, giving 6b. The linear set with this right-hand
sideisinverted, giving 6x. Thisis subtracted from the first guess giving an improved solution x.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obvioudly it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If thishappensto you, thereis a neat trick to restore the full machine precision,
caled iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A-x=b (25.1)
You don’t, however, know X. You only know some slightly wrong solution X + 6x,
where §x istheunknown error. When multipliedby thematrix A, your dightly wrong
solutiongivesaproduct slightly discrepant fromthe desired right-hand sideb, namely
A-(X+6x)=b+éb (25.2)

Subtracting (2.5.1) from (2.5.2) gives

A - §x = 8b (25.3)
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