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f(z,y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss thisin §3.6.
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3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degree N — 1 through
the N points y; = f(z1),y2 = f(z2),...,yn = f(zn) is given explicitly by
Lagrange's classical formula,

(r —2z2)(x — x3)...(x — TN) (x —21)(z — x3)...(x — xN)
(21 — 22) (21 — 23)... (1 — 2n) " (22 — 21) (22 — 23)...(T2 — TN )
(x —x1)(z — x2)...(x — xN_-1)
(xny —x1)(xNy — z2)...(xN — TN—1)

P(x) = Yo

(3.1.1)
There are N terms, each a polynomial of degree N — 1 and each constructed to be
zero a al of the z; except one, at which it is constructed to be y;.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
butitis not terribly right either. The resulting algorithm gives no error estimate, and
it isaso somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomidl) is Neville's algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsol ete.

Let P, be the value at = of the unique polynomia of degree zero (i.e,
a constant) passing through the point (x1,y1); S0 P1 = y1. Likewise define
Py, Ps, ..., Py. Now let Pj5 be the value at = of the unique polynomia of
degree one passing through both (z1,y1) and (z2,y2). Likewise Pa3, Pay,. ..,
P(n_1)n. Similarly, for higher-order polynomials, upto P23, n, Whichisthevalue
of the unique interpolating polynomial through al N points, i.e., the desired answer.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM



3.1 Polynomial Interpolation and Extrapolation 109

The various P’s form a “tableau” with “ancestors’ on the left leading to a single
“descendant” at the extreme right. For example, with N = 4,

Z1: n="nr
P
T2 Y2 = P P1a3
Pos Pra3a (31.2)
z3: ys = P3 Py3y
Psy
T4t Yys = Py

Neville's algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

(= Tigm) Pigi+1)...(i4m—1) + (@i — 2) P11y (42)...i4m)

Pi(i+1)...(i+m) = T — Titm

(3.1.3)

This recurrence works because the two parents already agree at points ;41 . ..
Tit+m—1-

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to define (for m = 1,2,...,
N - 1),

Cni = Pi..,(i+m) - Pi...(i+m—1)

Dii = B (i1m) — Plat1)...(i4m) - (3.14)
Then one can easily derive from (3.1.3) the relations

(itm+1 — 2)(Cm,it1 — Dmi)

Dt =
Tj — Ti4+m+1 (3 1 5)

(i — 2)(Crjit+1 — Dm.i)
Tj — Ti+m+1

CLn+1J::

At each level m, the C"sand D’s are the corrections that make the interpol ation one
order higher. The final answer P; v isequal to the sum of any y; plusaset of C’s
and/or D’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapolation from N input
points. Note that the input arrays are assumed to be unit-offset. If you have
zero-offset arrays, remember to subtract 1 (see §1.2):

#include <math.h>
#include "nrutil.h"

void polint(float xal[], float ya[]l, int n, float x, float *y, float *dy)
Given arrays xa[1..n] and ya[1. .n], and given a value x, this routine returns a value y, and
an error estimate dy. If P(z) is the polynomial of degree N — 1 such that P(xa;) = ya;,i =
1,...,n, then the returned value y = P(x).
{

int i,m,ns=1;

float den,dif,dift,ho,hp,w;
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110 Chapter 3. Interpolation and Extrapolation

float *c,*d;

dif=fabs(x-xal[1]);

c=vector(1,n);

d=vector(1,n);

for (i=1;i<=n;i++) { Here we find the index ns of the closest table entry,
if ( (dift=fabs(x-xali])) < dif) {

ns=ij;
dif=dift;
}
clil=yalil; and initialize the tableau of ¢'s and d’s.
d[il=yalil;
}
*y=yal[ns--]; This is the initial approximation to y.
for (m=1;m<n;m++) { For each column of the tableau,
for (i=1;i<=n-m;i++) { we loop over the current c’s and d's and update
ho=xal[i]-x; them.

hp=xal[i+m]-x;
w=c[i+1]-d[i];
if ( (den=ho-hp) == 0.0) nrerror("Error in routine polint");
This error can occur only if two input xa's are (to within roundoff) identical.
den=w/den;
d[i]=hp*den; Here the c’s and d’s are updated.
c[i]l=ho*den;
}
xy += (*dy=(2#ns < (n-m) ? clns+1] : dlns--1));
After each column in the tableau is completed, we decide which correction, ¢ or d,
we want to add to our accumulating value of y, i.e., which path to take through the
tableau—forking up or down. We do this in such a way as to take the most “straight
line"” route through the tableau to its apex, updating ns accordingly to keep track of
where we are. This route keeps the partial approximations centered (insofar as possible)
on the target x. The last dy added is thus the error indication.
}
free_vector(d,1,n);
free_vector(c,1,n);

Quite often you will want to cal polint with the dummy arguments xa
and ya replaced by actua arrays with offsets. For example, the construction
polint (&xx[14],&yy[14],4,x,y,dy) performs4-pointinterpolation on the tab-
ulated valuesxx [15. . 18], yy [15. . 18]. For more on this, see the end of §3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.
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3.2 Rational Function Interpolation and Extrapolation 111

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, but are well
approximated by rational functions, that is quotients of polynomials. We de-
note by Rj(it1)...(i+m) @ rationd function passing through the m + 1 points
(i, ¥i) - - - (Titm, Yirm). More explicitly, suppose

Du(x) _potpia+---+pua”
Qu(z)  q+qar+- -+ gav

RiGit1)...(i0m) = (3.21)

Sincethereare n + v + 1 unknown p’s and ¢'s (qo being arbitrary), we must have
m+l=p+v+1 (3.2.2)

In specifying a rationa function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functionswith poles, that is, zerosof the denominator
of equation (3.2.1). These poles might occur for real values of z, if the function
to be interpolated itself has poles. More often, the function f(x) is finite for dl
finite real z, but has an analytic continuation with poles in the complex z-plane.
Such poles can themselves ruin a polynomia approximation, even one restricted to
real values of z, just as they can ruin the convergence of an infinite power series
in z. If you draw a circle in the complex plane around your m tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
poleis rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers of x in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should aso
mention in passing that rational function approximations can be used in anaytic
work. One sometimes constructs a rational function approximation by the criterion
that the rationa function of equation (3.2.1) itself have a power series expansion
that agrees with the first m + 1 terms of the power series expansion of the desired
function f(x). Thisiscaled Padé approximation, and is discussed in §5.12.

Bulirsch and Stoer found an agorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of eguation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithm produces the so-called diagonal rational function, with
the degrees of numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd, cf. equation 3.2.2 above). For the
derivation of thealgorithm, refer to [1]. The algorithmissummarized by arecurrence
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