
3.3 Cubic Spline Interpolation 113

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

c=vector(1,n);
d=vector(1,n);
hh=fabs(x-xa[1]);
for (i=1;i<=n;i++) {

h=fabs(x-xa[i]);
if (h == 0.0) {

*y=ya[i];
*dy=0.0;
FREERETURN

} else if (h < hh) {
ns=i;
hh=h;

}
c[i]=ya[i];
d[i]=ya[i]+TINY; The TINY part is needed to prevent a rare zero-over-zero

condition.}
*y=ya[ns--];
for (m=1;m<n;m++) {

for (i=1;i<=n-m;i++) {
w=c[i+1]-d[i];
h=xa[i+m]-x; h will never be zero, since this was tested in the initial-

izing loop.t=(xa[i]-x)*d[i]/h;
dd=t-c[i+1];
if (dd == 0.0) nrerror("Error in routine ratint");
This error condition indicates that the interpolating function has a pole at the
requested value of x.
dd=w/dd;
d[i]=c[i+1]*dd;
c[i]=t*dd;

}
*y += (*dy=(2*ns < (n-m) ? c[ns+1] : d[ns--]));

}
FREERETURN

}

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function yi = y(xi), i = 1...N , focus attention on one
particular interval, between xj and xj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj +Byj+1 (3.3.1)



114 Chapter 3. Interpolation and Extrapolation

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

where

A ≡ xj+1 − x
xj+1 − xj

B ≡ 1−A =
x− xj

xj+1 − xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas xj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of yi, we
also have tabulated values for the function’s second derivatives, y′′, that is, a set
of numbers y′′i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y′′j on the left to a value y′′j+1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 +Cy′′j +Dy′′j+1 (3.3.3)

where A and B are defined in (3.3.2) and

C ≡ 1

6
(A3 − A)(xj+1 − xj)2 D ≡ 1

6
(B3 −B)(xj+1 − xj)2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (throughA and
B) the cubic x-dependence of C and D.

We can readily check that y′′ is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions of A,B, C,D to compute dA/dx, dB/dx, dC/dx, and
dD/dx. The result is

dy

dx
=
yj+1 − yj
xj+1 − xj

− 3A2 − 1

6
(xj+1 − xj)y′′j +

3B2 − 1

6
(xj+1 − xj)y′′j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay′′j + By′′j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y′′ is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj, xj+1).



3.3 Cubic Spline Interpolation 115

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

The only problem now is that we supposed the y′′i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y′′i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = xj in the interval (xj−1, xj) equal to the same equation evaluated forx = xj but
in the interval (xj, xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)

xj − xj−1

6
y′′j−1 +

xj+1 − xj−1

3
y′′j +

xj+1 − xj
6

y′′j+1 =
yj+1 − yj
xj+1 − xj

− yj − yj−1

xj − xj−1

(3.3.7)

These are N − 2 linear equations in the N unknowns y′′i , i = 1, . . . , N . Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x1 and xN . The most common ways of doing this are either

• set one or both of y′′1 and y′′N equal to zero, giving the so-called natural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

• set either of y′′1 and y′′N to values calculated from equation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
also tridiagonal. Each y′′j is coupled only to its nearest neighbors at j±1. Therefore,
the equations can be solved in O(N) operations by the tridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculational routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
so we encourage you to study it carefully, comparing with tridag (§2.4). Arrays
are assumed to be unit-offset. If you have zero-offset arrays, see §1.2.

#include "nrutil.h"

void spline(float x[], float y[], int n, float yp1, float ypn, float y2[])
Given arrays x[1..n] and y[1..n] containing a tabulated function, i.e., yi = f(xi), with
x1 < x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the interpolating
function at points 1 and n, respectively, this routine returns an array y2[1..n] that contains
the second derivatives of the interpolating function at the tabulated points xi. If yp1 and/or
ypn are equal to 1 × 1030 or larger, the routine is signaled to set the corresponding boundary
condition for a natural spline, with zero second derivative on that boundary.
{

int i,k;
float p,qn,sig,un,*u;

u=vector(1,n-1);
if (yp1 > 0.99e30) The lower boundary condition is set either to be “nat-

ural”y2[1]=u[1]=0.0;
else { or else to have a specified first derivative.

y2[1] = -0.5;
u[1]=(3.0/(x[2]-x[1]))*((y[2]-y[1])/(x[2]-x[1])-yp1);

}



116 Chapter 3. Interpolation and Extrapolation

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (i=2;i<=n-1;i++) { This is the decomposition loop of the tridiagonal al-
gorithm. y2 and u are used for tem-
porary storage of the decomposed
factors.

sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
p=sig*y2[i-1]+2.0;
y2[i]=(sig-1.0)/p;
u[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);
u[i]=(6.0*u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p;

}
if (ypn > 0.99e30) The upper boundary condition is set either to be

“natural”qn=un=0.0;
else { or else to have a specified first derivative.

qn=0.5;
un=(3.0/(x[n]-x[n-1]))*(ypn-(y[n]-y[n-1])/(x[n]-x[n-1]));

}
y2[n]=(un-qn*u[n-1])/(qn*y2[n-1]+1.0);
for (k=n-1;k>=1;k--) This is the backsubstitution loop of the tridiagonal

algorithm.y2[k]=y2[k]*y2[k+1]+u[k];
free_vector(u,1,n-1);

}

It is important to understand that the program spline is called only once to
process an entire tabulated function in arrays xi and yi. Once this has been done,
values of the interpolated function for any value of x are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

void splint(float xa[], float ya[], float y2a[], int n, float x, float *y)
Given the arrays xa[1..n] and ya[1..n], which tabulate a function (with the xai’s in order),
and given the array y2a[1..n], which is the output from spline above, and given a value of
x, this routine returns a cubic-spline interpolated value y.
{

void nrerror(char error_text[]);
int klo,khi,k;
float h,b,a;

klo=1; We will find the right place in the table by means of
bisection. This is optimal if sequential calls to this
routine are at random values of x. If sequential calls
are in order, and closely spaced, one would do better
to store previous values of klo and khi and test if
they remain appropriate on the next call.

khi=n;
while (khi-klo > 1) {

k=(khi+klo) >> 1;
if (xa[k] > x) khi=k;
else klo=k;

} klo and khi now bracket the input value of x.
h=xa[khi]-xa[klo];
if (h == 0.0) nrerror("Bad xa input to routine splint"); The xa’s must be dis-

tinct.a=(xa[khi]-x)/h;
b=(x-xa[klo])/h; Cubic spline polynomial is now evaluated.
*y=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0;

}

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.



3.4 How to Search an Ordered Table 117

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(x) from a
set of tabulated xi’s and fi’s. Then you will need a fast way of finding your place
in the table of xi’s, given some particular value x at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissas xx[j], j=1, 2, . . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx[j] and xx[j+1].
For this task, let us define fictitious array elements xx[0] and xx[n+1] equal to
plus or minus infinity (in whichever order is consistent with the monotonicity of the
table). Then j will always be between 0 and n, inclusive; a value of 0 indicates
“off-scale” at one end of the table, n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log2n tries. We already did use
bisection in the spline evaluation routine splint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routine looks like this:

void locate(float xx[], unsigned long n, float x, unsigned long *j)
Given an array xx[1..n], and given a value x, returns a value j such that x is between xx[j]
and xx[j+1]. xx must be monotonic, either increasing or decreasing. j=0 or j=n is returned
to indicate that x is out of range.
{

unsigned long ju,jm,jl;
int ascnd;

jl=0; Initialize lower
ju=n+1; and upper limits.
ascnd=(xx[n] >= xx[1]);
while (ju-jl > 1) { If we are not yet done,

jm=(ju+jl) >> 1; compute a midpoint,
if (x >= xx[jm] == ascnd)

jl=jm; and replace either the lower limit
else

ju=jm; or the upper limit, as appropriate.
} Repeat until the test condition is satisfied.
if (x == xx[1]) *j=1; Then set the output
else if(x == xx[n]) *j=n-1;
else *j=jl;

} and return.

A unit-offset array xx is assumed. To use locate with a zero-offset array,
remember to subtract 1 from the address of xx, and also from the returned value j.

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times,
and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differential
equation: Most differential-equation integrators, as we shall see in Chapter 16, call


