3.3 Cubic Spline Interpolation 113

c=vector(1,n);
d=vector(1,n);
hh=fabs (x-xa[1]);
for (i=1;i<=n;i++) {
h=fabs (x-xal[i]);
if (h == 0.0) {
*xy=yal[il;
*dy=0.0;
FREERETURN
} else if (h < hh) {
ns=i;
hh=h;
}
clil=yalil;
d[i]l=ya[i]+TINY; The TINY part is needed to prevent a rare zero-over-zero
} condition.
*y=yalns--1;
for (m=1;m<n;m++) {
for (i=1;i<=n-m;i++) {
w=c[i+1]-d4[i];

h=xal[i+m]-x; h will never be zero, since this was tested in the initial-
t=(xalil-x)*d[i]/h; izing loop.

dd=t-c[i+1];

if (dd == 0.0) nrerror("Error in routine ratint");

This error condition indicates that the interpolating function has a pole at the
requested value of x.

dd=w/dd;
dli]=c[i+1]*dd;
c[il=tx*dd;
}
*y += (*dy=(2*ns < (n-m) ? clns+1] : d[ns--1));
}
FREERETURN

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. 1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function y; = y(z;), ¢« = 1...N, focus attention on one
particular interval, between ; and x ;1. Linear interpolation in that interval gives
the interpolation formula

y = Ay; + Byjn (331)

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

114 Chapter 3. Interpolation and Extrapolation

where

Tiy] — X T —X;
A=t B=1-A=_—"""9
Tj41 — T4 Tj41 — Ty

(33.2)

Equations (3.3.1) and (3.3.2) are aspecia case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas ;. Thegoal of cubic splineinterpolationisto get an interpolationformula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y;, we
aso have tabulated values for the function’s second derivatives, y”, that is, a set
of numbers y/’. Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomia whose second derivative varies linearly from a
valuey; ontheleftto avaluey, ; ontheright. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomia to have
zero values a z; and 41, then adding it in will not spoil the agreement with the
tabulated functional values y; and y;4 a the endpointsz; and x;41.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ay; + Byj+1 + Cyj + Dy, (3.3.3)
where A and B are defined in (3.3.2) and

1
—(AB—A)(Ij+1 —xj)2 D

=%

SB Bl o) (334)
Notice that the dependence on the independent variable = in equations (3.3.3) and
(3.34) is entirely through the linear z-dependence of A and B, and (through A and
B) the cubic z-dependence of C' and D.

We can readily check that y” is in fact the second derivative of the new
interpolating polynomial. We take derivatives of eguation (3.3.3) with respect
to x, using the definitions of A, B, C, D to compute dA/dx,dB/dx,dC/dz, and
dD/dxz. The result is

dy yj+1—vy; 3A%Z—1 3B? — 1
A/ S R (xjq1 — xj)y;-/ =+ T(%‘H - xj)y;'/-H (335)

dx Tj41 — T4 6

for the first derivative, and

dzy " "
prhe Ay + Byjq (3.3.6)
for the second derivative. Since A =1 a xj, A = 0 a x;41, while B isjust the
other way around, (3.3.6) showsthat '’ isjust the tabulated second derivative, and
also that the second derivativewill be continuousacross (e.g.) the boundary between
the two intervals (z;_1,z;) and (z;, z;11).

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(G-80TEY-T2S-0 NESI) ONILNAINOD DIHILNIIOS 4O L8V FHL D NI S3dIOTY TvIIYINNN wouy abed sjdwes gam apIm PHOM

3.3 Cubic Spline Interpolation 115

Theonly problemnow isthat we supposed the "’ sto be known, when, actualy,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of acubic spline isto require this continuity and to use it to get equations
for the second derivatives y; .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = x; intheinterval (z;_1, ;) equal to the same equation evaluated for x = x; but
intheinterval (x;, z;41). With somerearrangement, thisgives(forj =2, ..., N—1)

LTj—Tj—1_p LTj+1 — Lj—1

. Y+ !+ Ti+1 — Xy Yl = Yi+1 — Y Y~ Y1

3 J 6 A

Tj41 — T4 Tj— Tj—1
(33.7)

These are N — 2 linear equationsin the N unknownsy/',i = 1,..., N. Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
asboundary conditionsat x; and z . Themost common ways of doingthisareeither

e set one or both of y{ and v}, equal to zero, giving the so-called natural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

e set either of yf and y}; to values calculated from eguation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical isthat the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
asotridiagonal. Eachy iscoupled only toitsnearest neighborsat j 4- 1. Therefore,
the equations can be solved in O (V) operations by thetridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculationa routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
S0 we encourage you to study it carefully, comparing with tridag (§2.4). Arrays
are assumed to be unit-offset. If you have zero-offset arrays, see §1.2.

#include "nrutil.h"

void spline(float x[], float y[], int n, float ypl, float ypn, float y2[])
Given arrays x[1..n] and y[1..n] containing a tabulated function, i.e., y, = f(x;), with
X1 < X2 < ... < Xy, and given values yp1 and ypn for the first derivative of the interpolating
function at points 1 and n, respectively, this routine returns an array y2[1..n] that contains
the second derivatives of the interpolating function at the tabulated points x;. If yp1 and/or
ypn are equal to 1 X 1030 or larger, the routine is signaled to set the corresponding boundary
condition for a natural spline, with zero second derivative on that boundary.
{

int i,k;

float p,qn,sig,un,*u;

u=vector(1,n-1);

if (ypl > 0.99e30) The lower boundary condition is set either to be “nat-

y2[1]=ul1]=0.0; ural”
else { or else to have a specified first derivative.
y2[1] = -0.5;

ul11=(3.0/(x[2]-x[11))*((y [2]-y [1]1)/ (x[2]-x[11) -yp1);

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

116 Chapter 3. Interpolation and Extrapolation

for (i=2;i<=n-1;i++) { This is the decomposition loop of the tridiagonal al-
sig=(x[i]l-x[i-11)/(x[i+1]-x[i-1]); gorithm. y2 and u are used for tem-
p=sig*y2[i-1]+2.0; porary storage of the decomposed
y2[i]=(sig-1.0)/p; factors.
ulil=(y[i+1]-y[i1)/ (x[i+1]-x[i]) - (y[il-y[i-11)/(x[i]-x[i-11);
uli]=(6.0*%uli]l/(x[i+1]-x[i-1])-sig*ul[i-11)/p;

}

if (ypn > 0.99e30) The upper boundary condition is set either to be
qn=un=0.0; “natural”

else { or else to have a specified first derivative.
qn=0.5;
un=(3.0/(x[n]-x[n-11))*(ypn-(y [n]-y[n-11)/ (x[n]-x[n-11));

}

y2[n]=(un-gn*u[n-11)/(gn*y2[n-11+1.0);

for (k=n-1;k>=1;k--) This is the backsubstitution loop of the tridiagonal
y2 [k]=y2[k]*y2 [k+1]+u[k]; algorithm.

free_vector(u,1,n-1);

It is important to understand that the program spline is caled only once to
process an entire tabulated function in arrays x; and y,;. Once this has been done,
values of theinterpolated function for any value of x are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

void splint(float xal[], float yal[], float y2a[], int n, float x, float *y)
Given the arrays xa[1. .n] and ya[1. .n], which tabulate a function (with the xa;'s in order),
and given the array y2a[1. .n], which is the output from spline above, and given a value of
X, this routine returns a cubic-spline interpolated value y.

{
void nrerror(char error_text[]);
int klo,khi,k;
float h,b,a;
klo=1; We will find the right place in the table by means of
khi=n; bisection. This is optimal if sequential calls to this
while (khi-klo > 1) { routine are at random values of x. If sequential calls
k=(khi+klo) >> 1; are in order, and closely spaced, one would do better
if (xalk] > x) khi=k; to store previous values of klo and khi and test if
else klo=k; they remain appropriate on the next call.
} klo and khi now bracket the input value of x.
h=xal[khi]-xalklo];
if (h == 0.0) nrerror("Bad xa input to routine splint"); The xa's must be dis-
a=(xa[khi]-x)/h; tinct.
b=(x-xalklo])/h; Cubic spline polynomial is now evaluated.
*y=axya[klo]+b*ya[khi]+((a*a*a-a)*y2al[klo]+(b*b*b-b)*y2al[khi])* (h*h)/6.0;
}

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4-4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

3.4 How to Search an Ordered Table 117

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomia interpolation, to compute a function f(z) from a
set of tabulated x;’s and f;'s. Then you will need a fast way of finding your place
in the table of x;'s, given some particular value x at which the function evaluation
isdesired. This problemis not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, theproblemisthis: Given an array of abscissasxx [j]1, j=1,2,... n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx[j] and xx [j+1].
For this task, let us define fictitious array elements xx[0] and xx [n+1] equal to
plus or minusinfinity (in whichever order is consistent with the monotonicity of the
table). Then j will aways be between 0 and n, inclusive; a value of O indicates
“off-scale” at one end of the table, n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log,n tries. We aready did use
bisection in the spline evaluation routine splint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routinelookslike this:

void locate(float xx[], unsigned long n, float x, unsigned long *j)

Given an array xx[1..n], and given a value x, returns a value j such that x is between xx [j]
and xx[j+1]. xx must be monotonic, either increasing or decreasing. j=0 or j=n is returned
to indicate that x is out of range.

{
unsigned long ju, jm,jl;
int ascnd;
j1=0; Initialize lower
ju=n+1; and upper limits.
ascnd=(xx[n] >= xx[1]);
while (ju-jl > 1) { If we are not yet done,
jm=(ju+jl) >> 1; compute a midpoint,
if (x >= xx[jm] == ascnd)
jl=jm; and replace either the lower limit
else
ju=jm; or the upper limit, as appropriate.
} Repeat until the test condition is satisfied.
if (x == xx[1]) *j=1; Then set the output
else if(x == xx[n]) *j=n-1;
else *j=jl;
} and return.

A unit-offset array xx is assumed. To use locate with a zero-offset array,
remember to subtract 1 from the address of xx, and also from the returned value j.

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times,
and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differential
equation: Most differential-equation integrators, as we shall see in Chapter 16, call

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

