```
c=vector(1,n);
d=vector(1,n);
hh=fabs(x-xa[1]);
for (i=1;i<=n;i++) {</pre>
    h=fabs(x-xa[i]);
    if (h == 0.0) {
        *y=ya[i];
        *dy=0.0;
        FREERETURN
    } else if (h < hh) {
        ns=i:
        hh=h;
    }
    c[i]=ya[i];
    d[i]=ya[i]+TINY;
                               The TINY part is needed to prevent a rare zero-over-zero
}
                                   condition.
*y=ya[ns--];
for (m=1;m<n;m++) {</pre>
    for (i=1:i<=n-m:i++) {</pre>
        w=c[i+1]-d[i];
        h=xa[i+m]-x;
                               h will never be zero, since this was tested in the initial-
        t=(xa[i]-x)*d[i]/h;
                                       izing loop.
        dd=t-c[i+1];
        if (dd == 0.0) nrerror("Error in routine ratint");
        This error condition indicates that the interpolating function has a pole at the
        requested value of x.
        dd=w/dd:
        d[i]=c[i+1]*dd;
        c[i]=t*dd;
    }
       += (*dy=(2*ns < (n-m) ? c[ns+1] : d[ns--]));
    *v
7
FREERETURN
```

CITED REFERENCES AND FURTHER READING:

}

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag), §2.2. [1]

Gear, C.W. 1971, *Numerical Initial Value Problems in Ordinary Differential Equations* (Englewood Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, *Nonlinear Methods in Numerical Analysis* (Amsterdam: North-Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function $y_i = y(x_i)$, i = 1...N, focus attention on one particular interval, between x_j and x_{j+1} . Linear interpolation in that interval gives the interpolation formula

$$y = Ay_j + By_{j+1} (3.3.1)$$

World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

where

$$A \equiv \frac{x_{j+1} - x}{x_{j+1} - x_j} \qquad B \equiv 1 - A = \frac{x - x_j}{x_{j+1} - x_j}$$
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in the interior of each interval, and an undefined, or infinite, second derivative at the abscissas x_i . The goal of cubic spline interpolation is to get an interpolation formula that is smooth in the first derivative, and continuous in the second derivative, both within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y_i , we also have tabulated values for the function's second derivatives, y'', that is, a set of numbers y_i'' . Then, within each interval, we can add to the right-hand side of equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a value y_j'' on the left to a value y_{j+1}'' on the right. Doing so, we will have the desired continuous second derivative. If we also construct the cubic polynomial to have zero values at x_j and x_{j+1} , then adding it in will not spoil the agreement with the tabulated functional values y_i and y_{i+1} at the endpoints x_i and x_{i+1} .

A little side calculation shows that there is only one way to arrange this construction, namely replacing (3.3.1) by

$$y = Ay_j + By_{j+1} + Cy''_j + Dy''_{j+1}$$
(3.3.3)

where A and B are defined in (3.3.2) and

$$C \equiv \frac{1}{6}(A^3 - A)(x_{j+1} - x_j)^2 \qquad D \equiv \frac{1}{6}(B^3 - B)(x_{j+1} - x_j)^2 \qquad (3.3.4)$$

Notice that the dependence on the independent variable x in equations (3.3.3) and (3.3.4) is entirely through the linear x-dependence of A and B, and (through A and B) the cubic x-dependence of C and D.

We can readily check that y'' is in fact the second derivative of the new interpolating polynomial. We take derivatives of equation (3.3.3) with respect to x, using the definitions of A, B, C, D to compute dA/dx, dB/dx, dC/dx, and dD/dx. The result is

$$\frac{dy}{dx} = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} - \frac{3A^2 - 1}{6}(x_{j+1} - x_j)y_j'' + \frac{3B^2 - 1}{6}(x_{j+1} - x_j)y_{j+1}'' \quad (3.3.5)$$

for the first derivative, and

$$\frac{d^2y}{dx^2} = Ay_j'' + By_{j+1}''$$
(3.3.6)

for the second derivative. Since A = 1 at x_i , A = 0 at x_{i+1} , while B is just the other way around, (3.3.6) shows that y'' is just the tabulated second derivative, and also that the second derivative will be continuous across (e.g.) the boundary between the two intervals (x_{j-1}, x_j) and (x_j, x_{j+1}) .

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) World Wide Web sample page from NUMERICAL Copyright (C) 1988-1992 by Cambridge University University Press. Programs Copyright (C) bersonal use. Further reproduction, or any copying of machine-To order Numerical Recipes books, diskettes, or CDROMs 1988-1992 by Numerical Recip ĕs Software.

RECIPES IN C: THE

ART OF

SCIENTIFIC COMPUTING (

ISBN 0-521-43108-5)

The only problem now is that we supposed the y_i'' 's to be known, when, actually, they are not. However, we have not yet required that the *first* derivative, computed from equation (3.3.5), be continuous across the boundary between two intervals. The key idea of a cubic spline is to require this continuity and to use it to get equations for the second derivatives y_i'' .

The required equations are obtained by setting equation (3.3.5) evaluated for $x = x_j$ in the interval (x_{j-1}, x_j) equal to the same equation evaluated for $x = x_j$ but in the interval (x_j, x_{j+1}) . With some rearrangement, this gives (for j = 2, ..., N-1)

$$\frac{x_j - x_{j-1}}{6}y_{j-1}'' + \frac{x_{j+1} - x_{j-1}}{3}y_j'' + \frac{x_{j+1} - x_j}{6}y_{j+1}'' = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} - \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(3.3.7)

These are N - 2 linear equations in the N unknowns y''_i , i = 1, ..., N. Therefore there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken as boundary conditions at x_1 and x_N . The most common ways of doing this are either

- set one or both of y_1'' and y_N'' equal to zero, giving the so-called *natural* cubic spline, which has zero second derivative on one or both of its boundaries, or
- set either of y_1'' and y_N'' to values calculated from equation (3.3.5) so as to make the first derivative of the interpolating function have a specified value on either or both boundaries.

One reason that cubic splines are especially practical is that the set of equations (3.3.7), along with the two additional boundary conditions, are not only linear, but also *tridiagonal*. Each y''_j is coupled only to its nearest neighbors at $j \pm 1$. Therefore, the equations can be solved in O(N) operations by the tridiagonal algorithm (§2.4). That algorithm is concise enough to build right into the spline calculational routine. This makes the routine not completely transparent as an implementation of (3.3.7), so we encourage you to study it carefully, comparing with tridag (§2.4). Arrays are assumed to be unit-offset. If you have zero-offset arrays, see §1.2.

```
#include "nrutil.h"
```

void spline(float x[], float y[], int n, float yp1, float ypn, float y2[]) Given arrays x[1..n] and y[1..n] containing a tabulated function, i.e., $y_i = f(x_i)$, with $x_1 < x_2 < \ldots < x_N$, and given values yp1 and ypn for the first derivative of the interpolating function at points 1 and n, respectively, this routine returns an array y2[1..n] that contains the second derivatives of the interpolating function at the tabulated points x_i . If yp1 and/or ypn are equal to 1×10^{30} or larger, the routine is signaled to set the corresponding boundary condition for a natural spline, with zero second derivative on that boundary.

```
int i,k;
float p,qn,sig,un,*u;
u=vector(1,n-1);
if (yp1 > 0.99e30) The lower boundary condition is set either to be "nat-
y2[1]=u[1]=0.0; ural"
else { or else to have a specified first derivative.
    y2[1] = -0.5;
    u[1]=(3.0/(x[2]-x[1]))*((y[2]-y[1])/(x[2]-x[1])-yp1);
}
```

World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

```
for (i=2;i<=n-1;i++) {</pre>
                                  This is the decomposition loop of the tridiagonal al-
    sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
                                                 gorithm. y2 and u are used for tem-
    p=sig*y2[i-1]+2.0;
                                                 porary storage of the decomposed
    y2[i]=(sig-1.0)/p;
                                                 factors.
    u[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);
    u[i]=(6.0*u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p;
}
                                  The upper boundary condition is set either to be
if (ypn > 0.99e30)
    qn=un=0.0;
                                       "natural'
                                  or else to have a specified first derivative.
else {
    qn=0.5;
    un=(3.0/(x[n]-x[n-1]))*(ypn-(y[n]-y[n-1])/(x[n]-x[n-1]));
}
y2[n]=(un-qn*u[n-1])/(qn*y2[n-1]+1.0);
for (k=n-1;k>=1;k--)
                                   This is the backsubstitution loop of the tridiagonal
    y2[k]=y2[k]*y2[k+1]+u[k];
                                      algorithm.
free_vector(u,1,n-1);
```

It is important to understand that the program spline is called only *once* to process an entire tabulated function in arrays x_i and y_i . Once this has been done, values of the interpolated function for any value of x are obtained by calls (as many as desired) to a separate routine splint (for "*spl*ine *int*erpolation"):

```
void splint(float xa[], float ya[], float y2a[], int n, float x, float *y)
Given the arrays xa[1..n] and ya[1..n], which tabulate a function (with the xa_i's in order),
and given the array y2a[1..n], which is the output from spline above, and given a value of
x, this routine returns a cubic-spline interpolated value y.
ſ
    void nrerror(char error_text[]);
    int klo,khi,k;
   float h,b,a;
   klo=1;
                                   We will find the right place in the table by means of
   khi=n;
                                       bisection. This is optimal if sequential calls to this
    while (khi-klo > 1) {
                                       routine are at random values of x. If sequential calls
                                       are in order, and closely spaced, one would do better
        k=(khi+klo) >> 1;
        if (xa[k] > x) khi=k;
                                       to store previous values of klo and khi and test if
        else klo=k;
                                       they remain appropriate on the next call.
    }
                                   klo and khi now bracket the input value of x.
   h=xa[khi]-xa[klo];
                                                                    The xa's must be dis-
    if (h == 0.0) nrerror("Bad xa input to routine splint");
    a=(xa[khi]-x)/h;
                                                                         tinct.
    b=(x-xa[klo])/h;
                                   Cubic spline polynomial is now evaluated.
    *y=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0;
}
```

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

- Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, *Computer Methods for Mathematical Computations* (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.
- Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag), §2.4.
- Ralston, A., and Rabinowitz, P. 1978, *A First Course in Numerical Analysis*, 2nd ed. (New York: McGraw-Hill), §3.8.

World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

}

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme, such as fourth-order polynomial interpolation, to compute a function f(x) from a set of tabulated x_i 's and f_i 's. Then you will need a fast way of finding your place in the table of x_i 's, given some particular value x at which the function evaluation is desired. This problem is not properly one of numerical analysis, but it occurs so often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissas xx[j], j=1, 2, ..., n, with the elements either monotonically increasing or monotonically decreasing, and given a number x, find an integer j such that x lies between xx[j] and xx[j+1]. For this task, let us define fictitious array elements xx[0] and xx[n+1] equal to plus or minus infinity (in whichever order is consistent with the monotonicity of the table). Then j will always be between 0 and n, inclusive; a value of 0 indicates "off-scale" at one end of the table, n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better than *bisection*, which will find the right place in the table in about $\log_2 n$ tries. We already did use bisection in the spline evaluation routine splint of the preceding section, so you might glance back at that. Standing by itself, a bisection routine looks like this:

```
void locate(float xx[], unsigned long n, float x, unsigned long *j)
Given an array xx[1..n], and given a value x, returns a value j such that x is between xx[j]
and xx[j+1]. xx must be monotonic, either increasing or decreasing. j=0 or j=n is returned
to indicate that x is out of range.
{
```

```
unsigned long ju,jm,jl;
    int ascnd;
    jl=0;
                                    Initialize lower
    ju=n+1;
                                    and upper limits.
    ascnd=(xx[n] \ge xx[1]);
    while (ju-jl > 1) {
                                    If we are not yet done,
        jm=(ju+jl) >> 1;
                                    compute a midpoint,
        if (x \ge xx[jm] == ascnd)
                                    and replace either the lower limit
             jl=jm;
        else
            ju=jm;
                                    or the upper limit, as appropriate.
    }
                                    Repeat until the test condition is satisfied.
    if (x == xx[1]) *j=1;
                                    Then set the output
    else if(x == xx[n]) *j=n-1;
    else *j=jl;
}
                                    and return.
```

A unit-offset array xx is assumed. To use locate with a zero-offset array, remember to subtract 1 from the address of xx, and also from the returned value j.

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times, and with nearly identical abscissas on consecutive searches. For example, you may be generating a function that is used on the right-hand side of a differential equation: Most differential-equation integrators, as we shall see in Chapter 16, call

World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIEN Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988 Permission is granted for internet users to make one paper copy for their own personal personal content. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) ART OF SCIENTIFIC COMPUTING (C) 1988-1992 by Numerical Recipes Software. personal use. Further reproduction, or any copying of machine-To order Numerical Recipes books, diskettes, or CDROMs 1988-1992 by Numerical ISBN 0-521-43108-5) Software.