
3.4 How to Search an Ordered Table 117

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(x) from a
set of tabulated xi’s and fi’s. Then you will need a fast way of finding your place
in the table of xi’s, given some particular value x at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissas xx[j], j=1, 2, . . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx[j] and xx[j+1].
For this task, let us define fictitious array elements xx[0] and xx[n+1] equal to
plus or minus infinity (in whichever order is consistent with the monotonicity of the
table). Then j will always be between 0 and n, inclusive; a value of 0 indicates
“off-scale” at one end of the table, n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log2n tries. We already did use
bisection in the spline evaluation routine splint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routine looks like this:

void locate(float xx[], unsigned long n, float x, unsigned long *j)
Given an array xx[1..n], and given a value x, returns a value j such that x is between xx[j]
and xx[j+1]. xx must be monotonic, either increasing or decreasing. j=0 or j=n is returned
to indicate that x is out of range.
{

unsigned long ju,jm,jl;
int ascnd;

jl=0; Initialize lower
ju=n+1; and upper limits.
ascnd=(xx[n] >= xx[1]);
while (ju-jl > 1) { If we are not yet done,

jm=(ju+jl) >> 1; compute a midpoint,
if (x >= xx[jm] == ascnd)

jl=jm; and replace either the lower limit
else

ju=jm; or the upper limit, as appropriate.
} Repeat until the test condition is satisfied.
if (x == xx[1]) *j=1; Then set the output
else if(x == xx[n]) *j=n-1;
else *j=jl;

} and return.

A unit-offset array xx is assumed. To use locate with a zero-offset array,
remember to subtract 1 from the address of xx, and also from the returned value j.

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times,
and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differential
equation: Most differential-equation integrators, as we shall see in Chapter 16, call

118 Chapter 3. Interpolation and Extrapolation

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

hunt phase

bisection phase

1 7 10

8

14 22

32

38

321
(a)

(b)

51

64

Figure 3.4.1. (a) The routine locate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routine hunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown here is a
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergence to an element near 7, such as 9, which would require just three “hops.”

for right-hand side evaluations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection, ab initio, on each call. The
following routine instead starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. Second, it then bisects in the bracketed interval. At worst, this routine is
about a factor of 2 slower than locate above (if the hunt phase expands to include
the whole table). At best, it can be a factor of log2n faster than locate, if the desired
point is usually quite close to the input guess. Figure 3.4.1 compares the two routines.

void hunt(float xx[], unsigned long n, float x, unsigned long *jlo)
Given an array xx[1..n], and given a value x, returns a value jlo such that x is between
xx[jlo] and xx[jlo+1]. xx[1..n] must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as the
initial guess for jlo on output.
{

unsigned long jm,jhi,inc;
int ascnd;

ascnd=(xx[n] >= xx[1]); True if ascending order of table, false otherwise.
if (*jlo <= 0 || *jlo > n) { Input guess not useful. Go immediately to bisec-

tion.*jlo=0;
jhi=n+1;

} else {
inc=1; Set the hunting increment.
if (x >= xx[*jlo] == ascnd) { Hunt up:

if (*jlo == n) return;
jhi=(*jlo)+1;
while (x >= xx[jhi] == ascnd) { Not done hunting,

*jlo=jhi;
inc += inc; so double the increment
jhi=(*jlo)+inc;
if (jhi > n) { Done hunting, since off end of table.

jhi=n+1;
break;

} Try again.

3.4 How to Search an Ordered Table 119

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

} Done hunting, value bracketed.
} else { Hunt down:

if (*jlo == 1) {
*jlo=0;
return;

}
jhi=(*jlo)--;
while (x < xx[*jlo] == ascnd) { Not done hunting,

jhi=(*jlo);
inc <<= 1; so double the increment
if (inc >= jhi) { Done hunting, since off end of table.

*jlo=0;
break;

}
else *jlo=jhi-inc;

} and try again.
} Done hunting, value bracketed.

} Hunt is done, so begin the final bisection phase:
while (jhi-(*jlo) != 1) {

jm=(jhi+(*jlo)) >> 1;
if (x >= xx[jm] == ascnd)

*jlo=jm;
else

jhi=jm;
}
if (x == xx[n]) *jlo=n-1;
if (x == xx[1]) *jlo=1;

}

If your array xx is zero-offset, read the comment following locate, above.

After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired value lies between table entries xx[j] and xx[j+1], where xx[1..n] is the
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy

arrays, of length m. How do you make the connection?
The solution: Calculate

k = IMIN(IMAX(j-(m-1)/2,1),n+1-m)

(The macros IMIN and IMAX give the minimum and maximum of two integer
arguments; see §1.2 and Appendix B.) This expression produces the index of the
leftmost member of an m-point set of points centered (insofar as possible) between
j and j+1, but bounded by 1 at the left and n at the right. C then lets you call the
interpolation routine with array addresses offset by k, e.g.,

polint(&xx[k-1],&yy[k-1],m,. . .)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

120 Chapter 3. Interpolation and Extrapolation

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneous interpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficients are what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through the tabulated points, for example, while values
computed by the routines in §3.1–§3.3 will pass exactly through such points.

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best fit polynomial through a data set. Fitting is a smoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
points are equal, takes the tabulated values as perfect. If they in fact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated points to be yi ≡ y(xi). If the interpolating
polynomial is written as

y = c0 + c1x+ c2x
2 + · · ·+ cNx

N (3.5.1)

then the ci’s are required to satisfy the linear equation


1 x0 x2

0 · · · xN0

1 x1 x2
1 · · · xN1

...
...

...
...

1 xN x2
N · · · xNN

 ·

c0

c1
...
cN

 =


y0

y1

...
yN

 (3.5.2)

This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (§2.3); however
the special method that was derived in §2.8 is more efficient by a large factor, of
order N , so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.1, but only difficulty in finding coefficients.

Like the routine in §2.8, the following is due to G.B. Rybicki. Note that the
arrays are all assumed to be zero-offset.

