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which contain no singularities, and where the endpoints are also nonsingular. qromb,
in such circumstances, takes many, many fewer function evaluations than either of
the routines in §4.2. For example, the integral∫ 2

0

x4 log(x+
√
x2 + 1)dx

converges (with parameters as shown above) on the very first extrapolation, after
just 5 calls to trapzd, while qsimp requires 8 calls (8 times as many evaluations of
the integrand) and qtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§3.4–3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1–7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10–2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

• its integrand goes to a finite limiting value at finite upper and lower limits,
but cannot be evaluated right on one of those limits (e.g., sinx/x at x = 0)

• its upper limit is ∞ , or its lower limit is −∞
• it has an integrable singularity at either limit (e.g., x−1/2 at x = 0)
• it has an integrable singularity at a known place between its upper and

lower limits
• it has an integrable singularity at an unknown place between its upper

and lower limits
If an integral is infinite (e.g.,

∫∞
1 x−1dx), or does not exist in a limiting sense

(e.g.,
∫∞
−∞ cosxdx), we do not call it improper; we call it impossible. No amount of

clever algorithmics will return a meaningful answer to an ill-posed problem.
In this section we will generalize the techniques of the preceding two sections

to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably §18.3. The
fifth problem, singularity at unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one which is an open formula in the sense of §4.1, i.e., does not require the integrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is
the best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property
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of having an error series that is entirely even in h. Indeed there is a formula, not as
well known as it ought to be, called the Second Euler-Maclaurin summation formula,∫ xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2 + · · ·+ fN−3/2 + fN−1/2]

+
B2h

2

4
(f ′N − f ′1) + · · ·

+
B2kh

2k

(2k)!
(1− 2−2k+1)(f

(2k−1)
N − f(2k−1)

1 ) + · · ·

(4.4.1)

This equation can be derived by writing out (4.2.1) with stepsize h, then writing it
out again with stepsize h/2, then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor

√
3 of unnecessary work,

since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
is only

√
2, but we lose an extra factor of 2 in being unable to use all the previous

evaluations. Since 1.732 < 2 × 1.414, it is better to triple.
Here is the resulting routine, which is directly comparable to trapzd.

#define FUNC(x) ((*func)(x))

float midpnt(float (*func)(float), float a, float b, int n)
This routine computes the nth stage of refinement of an extended midpoint rule. func is input
as a pointer to the function to be integrated between limits a and b, also input. When called with

n=1, the routine returns the crudest estimate of
∫ b
a f(x)dx. Subsequent calls with n=2,3,...

(in that sequential order) will improve the accuracy of s by adding (2/3) × 3n-1 additional
interior points. s should not be modified between sequential calls.
{

float x,tnm,sum,del,ddel;
static float s;
int it,j;

if (n == 1) {
return (s=(b-a)*FUNC(0.5*(a+b)));

} else {
for(it=1,j=1;j<n-1;j++) it *= 3;
tnm=it;
del=(b-a)/(3.0*tnm);
ddel=del+del; The added points alternate in spacing between

del and ddel.x=a+0.5*del;
sum=0.0;
for (j=1;j<=it;j++) {

sum += FUNC(x);
x += ddel;
sum += FUNC(x);
x += del;

}
s=(s+(b-a)*sum/tnm)/3.0; The new sum is combined with the old integral

to give a refined integral.return s;
}

}
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The routine midpnt can exactly replace trapzd in a driver routine like qtrap
(§4.2); one simply changes trapzd(func,a,b,j) to midpnt(func,a,b, j), and
perhaps also decreases the parameter JMAX since 3JMAX−1 (from step tripling) is a
much larger number than 2JMAX−1 (step doubling).

The open formula implementation analogous to Simpson’s rule (qsimp in §4.2)
substitutes midpnt for trapzd and decreases JMAX as above, but now also changes
the extrapolation step to be

s=(9.0*st-ost)/8.0;

since, when the number of steps is tripled, the error decreases to 1/9th its size, not
1/4th as with step doubling.

Either the modified qtrap or the modified qsimp will fix the first problem
on the list at the beginning of this section. Yet more sophisticated is to generalize
Romberg integration in like manner:

#include <math.h>
#define EPS 1.0e-6
#define JMAX 14
#define JMAXP (JMAX+1)
#define K 5

float qromo(float (*func)(float), float a, float b,
float (*choose)(float(*)(float), float, float, int))

Romberg integration on an open interval. Returns the integral of the function func from a to b,
using any specified integrating function choose and Romberg’s method. Normally choose will
be an open formula, not evaluating the function at the endpoints. It is assumed that choose
triples the number of steps on each call, and that its error series contains only even powers of
the number of steps. The routines midpnt, midinf, midsql, midsqu, midexp, are possible
choices for choose. The parameters have the same meaning as in qromb.
{

void polint(float xa[], float ya[], int n, float x, float *y, float *dy);
void nrerror(char error_text[]);
int j;
float ss,dss,h[JMAXP+1],s[JMAXP];

h[1]=1.0;
for (j=1;j<=JMAX;j++) {

s[j]=(*choose)(func,a,b,j);
if (j >= K) {

polint(&h[j-K],&s[j-K],K,0.0,&ss,&dss);
if (fabs(dss) <= EPS*fabs(ss)) return ss;

}
h[j+1]=h[j]/9.0; This is where the assumption of step tripling and an even

error series is used.}
nrerror("Too many steps in routing qromo");
return 0.0; Never get here.

}

Don’t be put off by qromo’s complicated ANSI declaration. A typical invocation
(integrating the Bessel function Y0(x) from 0 to 2) is simply

#include "nr.h"
float answer;
...
answer=qromo(bessy0,0.0,2.0,midpnt);
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The differences between qromo and qromb (§4.3) are so slight that it is perhaps
gratuitous to list qromo in full. It, however, is an excellent driver routine for solving
all the other problems of improper integrals in our first list (except the intractable
fifth), as we shall now see.

The basic trick for improper integrals is to make a change of variables to
eliminate the singularity, or to map an infinite range of integration to a finite one.
For example, the identity

∫ b

a

f(x)dx =

∫ 1/a

1/b

1

t2
f

(
1

t

)
dt ab > 0 (4.4.2)

can be used with either b→∞ and a positive, or with a→ −∞ and b negative, and
works for any function which decreases towards infinity faster than 1/x2.

You can make the change of variable implied by (4.4.2) either analytically and
then use (e.g.) qromo and midpnt to do the numerical evaluation, or you can let
the numerical algorithm make the change of variable for you. We prefer the latter
method as being more transparent to the user. To implement equation (4.4.2) we
simply write a modified version of midpnt, called midinf, which allows b to be
infinite (or, more precisely, a very large number on your particular machine, such
as 1 × 1030), or a to be negative and infinite.

#define FUNC(x) ((*funk)(1.0/(x))/((x)*(x))) Effects the change of variable.

float midinf(float (*funk)(float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, i.e., returns the nth stage of refinement of
the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in x. This allows the upper limit bb to be as large and positive as
the computer allows, or the lower limit aa to be as large and negative, but not both. aa and
bb must have the same sign.
{

float x,tnm,sum,del,ddel,b,a;
static float s;
int it,j;

b=1.0/aa; These two statements change the limits of integration.
a=1.0/bb;
if (n == 1) { From this point on, the routine is identical to midpnt.

return (s=(b-a)*FUNC(0.5*(a+b)));
} else {

for(it=1,j=1;j<n-1;j++) it *= 3;
tnm=it;
del=(b-a)/(3.0*tnm);
ddel=del+del;
x=a+0.5*del;
sum=0.0;
for (j=1;j<=it;j++) {

sum += FUNC(x);
x += ddel;
sum += FUNC(x);
x += del;

}
return (s=(s+(b-a)*sum/tnm)/3.0);

}
}
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If you need to integrate from a negative lower limit to positive infinity, you do
this by breaking the integral into two pieces at some positive value, for example,

answer=qromo(funk,-5.0,2.0,midpnt)+qromo(funk,2.0,1.0e30,midinf);

Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second call to
qromo deals with a polynomial in 1/x, not in x.

To deal with an integral that has an integrable power-law singularity at its lower
limit, one also makes a change of variable. If the integrand diverges as (x − a)γ ,
0 ≤ γ < 1, near x = a, use the identity∫ b

a

f(x)dx =
1

1− γ

∫ (b−a)1−γ

0

t
γ

1−γ f(t
1

1−γ + a)dt (b > a) (4.4.3)

If the singularity is at the upper limit, use the identity∫ b

a

f(x)dx =
1

1− γ

∫ (b−a)1−γ

0

t
γ

1−γ f(b − t
1

1−γ )dt (b > a) (4.4.4)

If there is a singularity at both limits, divide the integral at an interior breakpoint
as in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse
square-root singularities, a case that occurs frequently in practice:∫ b

a

f(x)dx =

∫ √b−a
0

2tf(a + t2)dt (b > a) (4.4.5)

for a singularity at a, and∫ b

a

f(x)dx =

∫ √b−a
0

2tf(b − t2)dt (b > a) (4.4.6)

for a singularity at b. Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for midpnt which make the
change of variable automatically:

#include <math.h>

#define FUNC(x) (2.0*(x)*(*funk)(aa+(x)*(x)))

float midsql(float (*funk)(float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.
{

float x,tnm,sum,del,ddel,a,b;
static float s;
int it,j;

b=sqrt(bb-aa);
a=0.0;
if (n == 1) {

The rest of the routine is exactly like midpnt and is omitted.
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Similarly,

#include <math.h>

#define FUNC(x) (2.0*(x)*(*funk)(bb-(x)*(x)))

float midsqu(float (*funk)(float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.
{

float x,tnm,sum,del,ddel,a,b;
static float s;
int it,j;

b=sqrt(bb-aa);
a=0.0;
if (n == 1) {

The rest of the routine is exactly like midpnt and is omitted.

One last example should suffice to show how these formulas are derived in
general. Suppose the upper limit of integration is infinite, and the integrand falls off
exponentially. Then we want a change of variable that maps e−xdx into (±)dt (with
the sign chosen to keep the upper limit of the new variable larger than the lower
limit). Doing the integration gives by inspection

t = e−x or x = − log t (4.4.7)

so that ∫ x=∞

x=a

f(x)dx =

∫ t=e−a

t=0

f(− log t)
dt

t
(4.4.8)

The user-transparent implementation would be

#include <math.h>

#define FUNC(x) ((*funk)(-log(x))/(x))

float midexp(float (*funk)(float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
(value passed not actually used). It is assumed that the function funk decreases exponentially
rapidly at infinity.
{

float x,tnm,sum,del,ddel,a,b;
static float s;
int it,j;

b=exp(-aa);
a=0.0;
if (n == 1) {

The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.
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Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of §4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order translates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”

There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W (x)” rather than for the usual class of integrands “polynomials.” The function
W (x) can then be chosen to remove integrable singularities from the desired integral.
Given W (x), in other words, and given an integer N , we can find a set of weights
wj and abscissas xj such that the approximation∫ b

a

W (x)f(x)dx ≈
N∑
j=1

wjf(xj) (4.5.1)

is exact if f(x) is a polynomial. For example, to do the integral∫ 1

−1

exp(− cos2 x)√
1− x2

dx (4.5.2)

(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

W (x) =
1√

1− x2
(4.5.3)

in the interval (−1, 1). (This particular choice is called Gauss-Chebyshev integration,
for reasons that will become clear shortly.)


