
4.5 Gaussian Quadratures and Orthogonal Polynomials 147

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of §4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order translates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”

There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W (x)” rather than for the usual class of integrands “polynomials.” The function
W (x) can then be chosen to remove integrable singularities from the desired integral.
Given W (x), in other words, and given an integer N , we can find a set of weights
wj and abscissas xj such that the approximation∫ b

a

W (x)f(x)dx ≈
N∑
j=1

wjf(xj) (4.5.1)

is exact if f(x) is a polynomial. For example, to do the integral∫ 1

−1

exp(− cos2 x)√
1− x2

dx (4.5.2)

(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

W (x) =
1√

1− x2
(4.5.3)

in the interval (−1, 1). (This particular choice is called Gauss-Chebyshev integration,
for reasons that will become clear shortly.)

148 Chapter 4. Integration of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Notice that the integration formula (4.5.1) can also be written with the weight
functionW (x) not overtly visible: Define g(x) ≡W (x)f(x) and vj ≡ wj/W (xj).
Then (4.5.1) becomes

∫ b

a

g(x)dx ≈
N∑
j=1

vjg(xj) (4.5.4)

Where did the function W (x) go? It is lurking there, ready to give high-order
accuracy to integrands of the form polynomials timesW (x), and ready to deny high-
order accuracy to integrands that are otherwise perfectly smooth and well-behaved.
When you find tabulations of the weights and abscissas for a givenW (x), you have
to determine carefully whether they are to be used with a formula in the form of
(4.5.1), or like (4.5.4).

Here is an example of a quadrature routine that contains the tabulated abscissas
and weights for the case W (x) = 1 and N = 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there
are actually only five distinct values of each:

float qgaus(float (*func)(float), float a, float b)
Returns the integral of the function func between a and b, by ten-point Gauss-Legendre inte-
gration: the function is evaluated exactly ten times at interior points in the range of integration.
{

int j;
float xr,xm,dx,s;
static float x[]={0.0,0.1488743389,0.4333953941, The abscissas and weights.

First value of each array
not used.

0.6794095682,0.8650633666,0.9739065285};
static float w[]={0.0,0.2955242247,0.2692667193,

0.2190863625,0.1494513491,0.0666713443};

xm=0.5*(b+a);
xr=0.5*(b-a);
s=0; Will be twice the average value of the function, since the

ten weights (five numbers above each used twice)
sum to 2.

for (j=1;j<=5;j++) {
dx=xr*x[j];
s += w[j]*((*func)(xm+dx)+(*func)(xm-dx));

}
return s *= xr; Scale the answer to the range of integration.

}

The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: One just locates tabulated weights
and abscissas in a book (e.g., [1] or [2]). However, the theory is very pretty, and it
will come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice ofW (x). We will therefore give, without any proofs,
some useful results that will enable you to do this. Several of the results assume that
W (x) does not change sign inside (a, b), which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who
used continued fractions to develop the subject. In 1826 Jacobi rederived Gauss’s
results by means of orthogonal polynomials. The systematic treatment of arbitrary
weight functionsW (x) using orthogonal polynomials is largely due to Christoffel in
1877. To introduce these orthogonal polynomials, let us fix the interval of interest
to be (a, b). We can define the “scalar product of two functions f and g over a

4.5 Gaussian Quadratures and Orthogonal Polynomials 149

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

weight function W ” as

〈f |g〉 ≡
∫ b

a

W (x)f(x)g(x)dx (4.5.5)

The scalar product is a number, not a function of x. Two functions are said to be
orthogonal if their scalar product is zero. A function is said to be normalized if its
scalar product with itself is unity. A set of functions that are all mutually orthogonal
and also all individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of
order j, called pj(x), for each j = 0, 1, 2, . . . , and (ii) all of which are mutually
orthogonal over the specified weight function W (x). A constructive procedure for
finding such a set is the recurrence relation

p−1(x) ≡ 0

p0(x) ≡ 1

pj+1(x) = (x− aj)pj(x) − bjpj−1(x) j = 0, 1, 2, . . .

(4.5.6)

where

aj =
〈xpj|pj〉
〈pj|pj〉

j = 0, 1, . . .

bj =
〈pj |pj〉

〈pj−1|pj−1〉
j = 1, 2, . . .

(4.5.7)

The coefficient b0 is arbitrary; we can take it to be zero.
The polynomials defined by (4.5.6) are monic, i.e., the coefficient of their

leading term [xj for pj(x)] is unity. If we divide each pj(x) by the constant
[〈pj|pj〉]1/2 we can render the set of polynomials orthonormal. One also encounters
orthogonal polynomials with various other normalizations. You can convert from
a given normalization to monic polynomials if you know that the coefficient of
xj in pj is λj , say; then the monic polynomials are obtained by dividing each pj
by λj . Note that the coefficients in the recurrence relation (4.5.6) depend on the
adopted normalization.

The polynomial pj(x) can be shown to have exactly j distinct roots in the
interval (a, b). Moreover, it can be shown that the roots of pj(x) “interleave” the
j − 1 roots of pj−1(x), i.e., there is exactly one root of the former in between each
two adjacent roots of the latter. This fact comes in handy if you need to find all the
roots: You can start with the one root of p1(x) and then, in turn, bracket the roots
of each higher j, pinning them down at each stage more precisely by Newton’s rule
or some other root-finding scheme (see Chapter 9).

Why would you ever want to find all the roots of an orthogonal polynomial
pj(x)? Because the abscissas of the N -point Gaussian quadrature formulas (4.5.1)
and (4.5.4) with weighting functionW (x) in the interval (a, b) are precisely the roots
of the orthogonal polynomial pN (x) for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and lets you find the
abscissas for any particular case.

150 Chapter 4. Integration of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Once you know the abscissas x1, . . . , xN , you need to find the weights wj ,
j = 1, . . . , N . One way to do this (not the most efficient) is to solve the set of
linear equations

p0(x1) . . . p0(xN)
p1(x1) . . . p1(xN)

...
...

pN−1(x1) . . . pN−1(xN)



w1

w2
...
wN

 =


∫ b
a W (x)p0(x)dx

0
...
0

 (4.5.8)

Equation (4.5.8) simply solves for those weights such that the quadrature (4.5.1)
gives the correct answer for the integral of the firstN orthogonal polynomials. Note
that the zeros on the right-hand side of (4.5.8) appear because p1(x), . . . , pN−1(x)
are all orthogonal to p0(x), which is a constant. It can be shown that, with those
weights, the integral of the next N − 1 polynomials is also exact, so that the
quadrature is exact for all polynomials of degree 2N − 1 or less. Another way to
evaluate the weights (though one whose proof is beyond our scope) is by the formula

wj =
〈pN−1|pN−1〉

pN−1(xj)p
′
N(xj)

(4.5.9)

where p′N(xj) is the derivative of the orthogonal polynomial at its zero xj .
The computation of Gaussian quadrature rules thus involves two distinct phases:

(i) the generation of the orthogonal polynomials p0, . . . , pN , i.e., the computation of
the coefficients aj , bj in (4.5.6); (ii) the determination of the zeros of pN (x), and
the computation of the associated weights. For the case of the “classical” orthogonal
polynomials, the coefficients aj and bj are explicitly known (equations 4.5.10 –
4.5.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight function W (x), and you don’t know the coefficients aj and
bj , the construction of the associated set of orthogonal polynomials is not trivial.
We discuss it at the end of this section.

Computation of the Abscissas and Weights

This task can range from easy to difficult, depending on how much you already
know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known,
including good approximations for their zeros. These can be used as starting guesses,
enabling Newton’s method (to be discussed in §9.4) to converge very rapidly.
Newton’s method requires the derivative p′N(x), which is evaluated by standard
relations in terms of pN and pN−1. The weights are then conveniently evaluated by
equation (4.5.9). For the following named cases, this direct root-finding is faster,
by a factor of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomials and their corresponding Gaussian
quadrature formulas.

4.5 Gaussian Quadratures and Orthogonal Polynomials 151

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Gauss-Legendre:

W (x) = 1 − 1 < x < 1

(j + 1)Pj+1 = (2j + 1)xPj − jPj−1 (4.5.10)

Gauss-Chebyshev:

W (x) = (1− x2)−1/2 − 1 < x < 1

Tj+1 = 2xTj − Tj−1 (4.5.11)

Gauss-Laguerre:

W (x) = xαe−x 0 < x <∞

(j + 1)Lαj+1 = (−x + 2j + α+ 1)Lαj − (j + α)Lαj−1 (4.5.12)

Gauss-Hermite:

W (x) = e−x
2

−∞ < x <∞

Hj+1 = 2xHj − 2jHj−1 (4.5.13)

Gauss-Jacobi:

W (x) = (1− x)α(1 + x)β − 1 < x < 1

cjP
(α,β)
j+1 = (dj + ejx)P

(α,β)
j − fjP (α,β)

j−1 (4.5.14)

where the coefficients cj , dj, ej , and fj are given by

cj = 2(j + 1)(j + α+ β + 1)(2j + α+ β)

dj = (2j + α+ β + 1)(α2 − β2)

ej = (2j + α+ β)(2j + α+ β + 1)(2j + α+ β + 2)

fj = 2(j + α)(j + β)(2j + α+ β + 2)

(4.5.15)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, those of
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.5.9) in the
special form for the Gauss-Legendre case,

wj =
2

(1− x2
j)[P

′
N(xj)]2

(4.5.16)

The routine also scales the range of integration from (x1, x2) to (−1, 1), and provides
abscissas xj and weights wj for the Gaussian formula∫ x2

x1

f(x)dx =

N∑
j=1

wjf(xj) (4.5.17)

152 Chapter 4. Integration of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include <math.h>
#define EPS 3.0e-11 EPS is the relative precision.

void gauleg(float x1, float x2, float x[], float w[], int n)
Given the lower and upper limits of integration x1 and x2, and given n, this routine returns
arrays x[1..n] and w[1..n] of length n, containing the abscissas and weights of the Gauss-
Legendre n-point quadrature formula.
{

int m,j,i;
double z1,z,xm,xl,pp,p3,p2,p1; High precision is a good idea for this rou-

tine.
m=(n+1)/2; The roots are symmetric in the interval, so

we only have to find half of them.xm=0.5*(x2+x1);
xl=0.5*(x2-x1);
for (i=1;i<=m;i++) { Loop over the desired roots.

z=cos(3.141592654*(i-0.25)/(n+0.5));
Starting with the above approximation to the ith root, we enter the main loop of
refinement by Newton’s method.
do {

p1=1.0;
p2=0.0;
for (j=1;j<=n;j++) { Loop up the recurrence relation to get the

Legendre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;

}
p1 is now the desired Legendre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=n*(z*p1-p2)/(z*z-1.0);
z1=z;
z=z1-p1/pp; Newton’s method.

} while (fabs(z-z1) > EPS);
x[i]=xm-xl*z; Scale the root to the desired interval,
x[n+1-i]=xm+xl*z; and put in its symmetric counterpart.
w[i]=2.0*xl/((1.0-z*z)*pp*pp); Compute the weight
w[n+1-i]=w[i]; and its symmetric counterpart.

}
}

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to
be used with the integration formula

∫ ∞
0

xαe−xf(x)dx =

N∑
j=1

wjf(xj) (4.5.18)

#include <math.h>
#define EPS 3.0e-14 Increase EPS if you don’t have this preci-

sion.#define MAXIT 10

void gaulag(float x[], float w[], int n, float alf)
Given alf, the parameter α of the Laguerre polynomials, this routine returns arrays x[1..n]
and w[1..n] containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x[1], the largest in x[n].
{

float gammln(float xx);
void nrerror(char error_text[]);
int i,its,j;
float ai;

4.5 Gaussian Quadratures and Orthogonal Polynomials 153

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

double p1,p2,p3,pp,z,z1; High precision is a good idea for this rou-
tine.

for (i=1;i<=n;i++) { Loop over the desired roots.
if (i == 1) { Initial guess for the smallest root.

z=(1.0+alf)*(3.0+0.92*alf)/(1.0+2.4*n+1.8*alf);
} else if (i == 2) { Initial guess for the second root.

z += (15.0+6.25*alf)/(1.0+0.9*alf+2.5*n);
} else { Initial guess for the other roots.

ai=i-2;
z += ((1.0+2.55*ai)/(1.9*ai)+1.26*ai*alf/

(1.0+3.5*ai))*(z-x[i-2])/(1.0+0.3*alf);
}
for (its=1;its<=MAXIT;its++) { Refinement by Newton’s method.

p1=1.0;
p2=0.0;
for (j=1;j<=n;j++) { Loop up the recurrence relation to get the

Laguerre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2*j-1+alf-z)*p2-(j-1+alf)*p3)/j;

}
p1 is now the desired Laguerre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=(n*p1-(n+alf)*p2)/z;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (fabs(z-z1) <= EPS) break;

}
if (its > MAXIT) nrerror("too many iterations in gaulag");
x[i]=z; Store the root and the weight.
w[i] = -exp(gammln(alf+n)-gammln((float)n))/(pp*n*p2);

}
}

Next is a routine for Gauss-Hermite abscissas and weights. If we use the
“standard” normalization of these functions, as given in equation (4.5.13), we find
that the computations overflow for large N because of various factorials that occur.
We can avoid this by using instead the orthonomal set of polynomials H̃j . They
are generated by the recurrence

H̃−1 = 0, H̃0 =
1

π1/4
, H̃j+1 = x

√
2

j + 1
H̃j −

√
j

j + 1
H̃j−1 (4.5.19)

The formula for the weights becomes

wj =
2

(H̃ ′j)
2

(4.5.20)

while the formula for the derivative with this normalization is

H̃ ′j =
√

2jH̃j−1 (4.5.21)

The abscissas and weights returned by gauher are used with the integration formula∫ ∞
−∞

e−x
2

f(x)dx =

N∑
j=1

wjf(xj) (4.5.22)

154 Chapter 4. Integration of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include <math.h>
#define EPS 3.0e-14 Relative precision.
#define PIM4 0.7511255444649425 1/π1/4.
#define MAXIT 10 Maximum iterations.

void gauher(float x[], float w[], int n)
Given n, this routine returns arrays x[1..n] and w[1..n] containing the abscissas and weights
of the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned in x[1], the
most negative in x[n].
{

void nrerror(char error_text[]);
int i,its,j,m;
double p1,p2,p3,pp,z,z1; High precision is a good idea for this rou-

tine.
m=(n+1)/2;
The roots are symmetric about the origin, so we have to find only half of them.
for (i=1;i<=m;i++) { Loop over the desired roots.

if (i == 1) { Initial guess for the largest root.
z=sqrt((double)(2*n+1))-1.85575*pow((double)(2*n+1),-0.16667);

} else if (i == 2) { Initial guess for the second largest root.
z -= 1.14*pow((double)n,0.426)/z;

} else if (i == 3) { Initial guess for the third largest root.
z=1.86*z-0.86*x[1];

} else if (i == 4) { Initial guess for the fourth largest root.
z=1.91*z-0.91*x[2];

} else { Initial guess for the other roots.
z=2.0*z-x[i-2];

}
for (its=1;its<=MAXIT;its++) { Refinement by Newton’s method.

p1=PIM4;
p2=0.0;
for (j=1;j<=n;j++) { Loop up the recurrence relation to get

the Hermite polynomial evaluated at
z.

p3=p2;
p2=p1;
p1=z*sqrt(2.0/j)*p2-sqrt(((double)(j-1))/j)*p3;

}
p1 is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.5.21) using p2, the polynomial of one lower order.
pp=sqrt((double)2*n)*p2;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (fabs(z-z1) <= EPS) break;

}
if (its > MAXIT) nrerror("too many iterations in gauher");
x[i]=z; Store the root
x[n+1-i] = -z; and its symmetric counterpart.
w[i]=2.0/(pp*pp); Compute the weight
w[n+1-i]=w[i]; and its symmetric counterpart.

}
}

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which
implement the integration formula

∫ 1

−1

(1− x)α(1 + x)βf(x)dx =

N∑
j=1

wjf(xj) (4.5.23)

4.5 Gaussian Quadratures and Orthogonal Polynomials 155

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include <math.h>
#define EPS 3.0e-14 Increase EPS if you don’t have this preci-

sion.#define MAXIT 10

void gaujac(float x[], float w[], int n, float alf, float bet)
Given alf and bet, the parameters α and β of the Jacobi polynomials, this routine returns
arrays x[1..n] and w[1..n] containing the abscissas and weights of the n-point Gauss-Jacobi
quadrature formula. The largest abscissa is returned in x[1], the smallest in x[n].
{

float gammln(float xx);
void nrerror(char error_text[]);
int i,its,j;
float alfbet,an,bn,r1,r2,r3;
double a,b,c,p1,p2,p3,pp,temp,z,z1; High precision is a good idea for this rou-

tine.
for (i=1;i<=n;i++) { Loop over the desired roots.

if (i == 1) { Initial guess for the largest root.
an=alf/n;
bn=bet/n;
r1=(1.0+alf)*(2.78/(4.0+n*n)+0.768*an/n);
r2=1.0+1.48*an+0.96*bn+0.452*an*an+0.83*an*bn;
z=1.0-r1/r2;

} else if (i == 2) { Initial guess for the second largest root.
r1=(4.1+alf)/((1.0+alf)*(1.0+0.156*alf));
r2=1.0+0.06*(n-8.0)*(1.0+0.12*alf)/n;
r3=1.0+0.012*bet*(1.0+0.25*fabs(alf))/n;
z -= (1.0-z)*r1*r2*r3;

} else if (i == 3) { Initial guess for the third largest root.
r1=(1.67+0.28*alf)/(1.0+0.37*alf);
r2=1.0+0.22*(n-8.0)/n;
r3=1.0+8.0*bet/((6.28+bet)*n*n);
z -= (x[1]-z)*r1*r2*r3;

} else if (i == n-1) { Initial guess for the second smallest root.
r1=(1.0+0.235*bet)/(0.766+0.119*bet);
r2=1.0/(1.0+0.639*(n-4.0)/(1.0+0.71*(n-4.0)));
r3=1.0/(1.0+20.0*alf/((7.5+alf)*n*n));
z += (z-x[n-3])*r1*r2*r3;

} else if (i == n) { Initial guess for the smallest root.
r1=(1.0+0.37*bet)/(1.67+0.28*bet);
r2=1.0/(1.0+0.22*(n-8.0)/n);
r3=1.0/(1.0+8.0*alf/((6.28+alf)*n*n));
z += (z-x[n-2])*r1*r2*r3;

} else { Initial guess for the other roots.
z=3.0*x[i-1]-3.0*x[i-2]+x[i-3];

}
alfbet=alf+bet;
for (its=1;its<=MAXIT;its++) { Refinement by Newton’s method.

temp=2.0+alfbet; Start the recurrence with P0 and P1 to avoid
a division by zero when α + β = 0 or
−1.

p1=(alf-bet+temp*z)/2.0;
p2=1.0;
for (j=2;j<=n;j++) { Loop up the recurrence relation to get the

Jacobi polynomial evaluated at z.p3=p2;
p2=p1;
temp=2*j+alfbet;
a=2*j*(j+alfbet)*(temp-2.0);
b=(temp-1.0)*(alf*alf-bet*bet+temp*(temp-2.0)*z);
c=2.0*(j-1+alf)*(j-1+bet)*temp;
p1=(b*p2-c*p3)/a;

}
pp=(n*(alf-bet-temp*z)*p1+2.0*(n+alf)*(n+bet)*p2)/(temp*(1.0-z*z));
p1 is now the desired Jacobi polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
z1=z;
z=z1-p1/pp; Newton’s formula.

156 Chapter 4. Integration of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (fabs(z-z1) <= EPS) break;
}
if (its > MAXIT) nrerror("too many iterations in gaujac");
x[i]=z; Store the root and the weight.
w[i]=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0)-

gammln(n+alfbet+1.0))*temp*pow(2.0,alfbet)/(pp*p2);
}

}

Legendre polynomials are special cases of Jacobi polynomials withα = β = 0,
but it is worth having the separate routine for them, gauleg, given above. Chebyshev
polynomials correspond to α = β = −1/2 (see §5.8). They have analytic abscissas
and weights:

xj = cos

(
π(j − 1

2)

N

)
wj =

π

N

(4.5.24)

Case of Known Recurrences

Turn now to the case where you do not know good initial guesses for the zeros of your
orthogonal polynomials, but you do have available the coefficients aj and bj that generate
them. As we have seen, the zeros of pN (x) are the abscissas for the N -point Gaussian
quadrature formula. The most useful computational formula for the weights is equation
(4.5.9) above, since the derivative p′N can be efficiently computed by the derivative of (4.5.6)
in the general case, or by special relations for the classical polynomials. Note that (4.5.9) is
valid as written only for monic polynomials; for other normalizations, there is an extra factor
of λN/λN−1, where λN is the coefficient of xN in pN .

Except in those special cases already discussed, the best way to find the abscissas is not
to use a root-finding method like Newton’s method on pN (x). Rather, it is generally faster
to use the Golub-Welsch [3] algorithm, which is based on a result of Wilf [4]. This algorithm
notes that if you bring the term xpj to the left-hand side of (4.5.6) and the term pj+1 to the
right-hand side, the recurrence relation can be written in matrix form as

x


p0

p1

...
pN−2

pN−1

 =


a0 1
b1 a1 1

...
...

bN−2 aN−2 1
bN−1 aN−1

 ·


p0

p1

...
pN−2

pN−1

+


0
0
...
0
pN


or

xp = T · p + pNeN−1 (4.5.25)

Here T is a tridiagonal matrix, p is a column vector of p0, p1, . . . , pN−1, and eN−1 is a unit
vector with a 1 in the (N − 1)st (last) position and zeros elsewhere. The matrix T can be
symmetrized by a diagonal similarity transformation D to give

J = DTD−1 =


a0

√
b1√

b1 a1

√
b2

...
...√
bN−2 aN−2

√
bN−1√

bN−1 aN−1

 (4.5.26)

The matrix J is called the Jacobi matrix (not to be confused with other matrices named
after Jacobi that arise in completely different problems!). Now we see from (4.5.25) that

4.5 Gaussian Quadratures and Orthogonal Polynomials 157

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

pN (xj) = 0 is equivalent to xj being an eigenvalue of T. Since eigenvalues are preserved
by a similarity transformation, xj is an eigenvalue of the symmetric tridiagonal matrix J.
Moreover, Wilf [4] shows that if vj is the eigenvector corresponding to the eigenvalue xj ,
normalized so that v · v = 1, then

wj = µ0v
2
j,1 (4.5.27)

where

µ0 =

∫ b

a

W (x) dx (4.5.28)

and where vj,1 is the first component of v. As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine, gaucof, for finding the abscissas
and weights, given the coefficients aj and bj . Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily
convert it to monic form by means of the quantities λj .

#include <math.h>
#include "nrutil.h"

void gaucof(int n, float a[], float b[], float amu0, float x[], float w[])
Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi matrix.
On input, a[1..n] and b[1..n] are the coefficients of the recurrence relation for the set of

monic orthogonal polynomials. The quantity µ0 ≡
∫ b
a
W (x)dx is input as amu0. The abscissas

x[1..n] are returned in descending order, with the corresponding weights in w[1..n]. The
arrays a and b are modified. Execution can be speeded up by modifying tqli and eigsrt to
compute only the first component of each eigenvector.
{

void eigsrt(float d[], float **v, int n);
void tqli(float d[], float e[], int n, float **z);
int i,j;
float **z;

z=matrix(1,n,1,n);
for (i=1;i<=n;i++) {

if (i != 1) b[i]=sqrt(b[i]); Set up superdiagonal of Jacobi matrix.
for (j=1;j<=n;j++) z[i][j]=(float)(i == j);
Set up identity matrix for tqli to compute eigenvectors.

}
tqli(a,b,n,z);
eigsrt(a,z,n); Sort eigenvalues into descending order.
for (i=1;i<=n;i++) {

x[i]=a[i];
w[i]=amu0*z[1][i]*z[1][i]; Equation (4.5.12).

}
free_matrix(z,1,n,1,n);

}

Orthogonal Polynomials with Nonclassical Weights

This somewhat specialized subsection will tell you what to do if your weight function
is not one of the classical ones dealt with above and you do not know the aj’s and bj ’s
of the recurrence relation (4.5.6) to use in gaucof. Then, a method of finding the aj ’s
and bj ’s is needed.

The procedure of Stieltjes is to compute a0 from (4.5.7), then p1(x) from (4.5.6).
Knowing p0 and p1, we can compute a1 and b1 from (4.5.7), and so on. But how are we
to compute the inner products in (4.5.7)?

158 Chapter 4. Integration of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

The textbook approach is to represent each pj(x) explicitly as a polynomial in x and
to compute the inner products by multiplying out term by term. This will be feasible if we
know the first 2N moments of the weight function,

µj =

∫ b

a

xjW (x)dx j = 0, 1, . . . , 2N − 1 (4.5.29)

However, the solution of the resulting set of algebraic equations for the coefficients aj and bj
in terms of the moments µj is in general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N = 12. We thus reject any procedure
based on the moments (4.5.29).

Sack and Donovan [5] discovered that the numerical stability is greatly improved if,
instead of using powers of x as a set of basis functions to represent the pj’s, one uses some
other known set of orthogonal polynomials πj(x), say. Roughly speaking, the improved
stability occurs because the polynomial basis “samples” the interval (a, b) better than the
power basis when the inner product integrals are evaluated, especially if its weight function
resembles W (x).

So assume that we know the modified moments

νj =

∫ b

a

πj(x)W (x)dx j = 0, 1, . . . , 2N − 1 (4.5.30)

where the πj’s satisfy a recurrence relation analogous to (4.5.6),

π−1(x) ≡ 0

π0(x) ≡ 1

πj+1(x) = (x− αj)πj(x)− βjπj−1(x) j = 0, 1, 2, . . .

(4.5.31)

and the coefficients αj, βj are known explicitly. Then Wheeler [6] has given an efficient
O(N2) algorithm equivalent to that of Sack and Donovan for finding aj and bj via a set
of intermediate quantities

σk,l = 〈pk|πl〉 k, l ≥ −1 (4.5.32)

Initialize

σ−1,l = 0 l = 1, 2, . . . , 2N − 2

σ0,l = νl l = 0, 1, . . . , 2N − 1

a0 = α0 +
ν1

ν0

b0 = 0

(4.5.33)

Then, for k = 1, 2, . . . , N − 1, compute

σk,l = σk−1,l+1 − (ak−1 − αl)σk−1,l − bk−1σk−2,l + βlσk−1,l−1

l = k, k + 1, . . . , 2N − k − 1

ak = αk −
σk−1,k

σk−1,k−1
+
σk,k+1

σk,k

bk =
σk,k

σk−1,k−1

(4.5.34)

Note that the normalization factors can also easily be computed if needed:

〈p0|p0〉 = ν0

〈pj |pj〉 = bj 〈pj−1|pj−1〉 j = 1, 2, . . .
(4.5.35)

You can find a derivation of the above algorithm in Ref. [7].
Wheeler’s algorithm requires that the modified moments (4.5.30) be accurately computed.

In practical cases there is often a closed form, or else recurrence relations can be used. The

4.5 Gaussian Quadratures and Orthogonal Polynomials 159

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

algorithm is extremely successful for finite intervals (a, b). For infinite intervals, the algorithm
does not completely remove the ill-conditioning. In this case, Gautschi [8,9] recommends
reducing the interval to a finite interval by a change of variable, and then using a suitable
discretization procedure to compute the inner products. You will have to consult the
references for details.

We give the routine orthog for generating the coefficients aj and bj by Wheeler’s
algorithm, given the coefficients αj and βj , and the modified moments νj . For consistency
with gaucof, the vectors α, β, a and b are 1-based. Correspondingly, we increase the indices
of the σ matrix by 2, i.e., sig[k,l] = σk−2,l−2.

#include "nrutil.h"

void orthog(int n, float anu[], float alpha[], float beta[], float a[],
float b[])

Computes the coefficients aj and bj , j = 0, . . . N − 1, of the recurrence relation for monic
orthogonal polynomials with weight function W (x) by Wheeler’s algorithm. On input, the arrays
alpha[1..2*n-1] and beta[1..2*n-1] are the coefficients αj and βj , j = 0, . . . 2N−2, of
the recurrence relation for the chosen basis of orthogonal polynomials. The modified moments
νj are input in anu[1..2*n]. The first n coefficients are returned in a[1..n] and b[1..n].
{

int k,l;
float **sig;
int looptmp;

sig=matrix(1,2*n+1,1,2*n+1);
looptmp=2*n;
for (l=3;l<=looptmp;l++) sig[1][l]=0.0; Initialization, Equation (4.5.33).
looptmp++;
for (l=2;l<=looptmp;l++) sig[2][l]=anu[l-1];
a[1]=alpha[1]+anu[2]/anu[1];
b[1]=0.0;
for (k=3;k<=n+1;k++) { Equation (4.5.34).

looptmp=2*n-k+3;
for (l=k;l<=looptmp;l++) {

sig[k][l]=sig[k-1][l+1]+(alpha[l-1]-a[k-2])*sig[k-1][l]-
b[k-2]*sig[k-2][l]+beta[l-1]*sig[k-1][l-1];

}
a[k-1]=alpha[k-1]+sig[k][k+1]/sig[k][k]-sig[k-1][k]/sig[k-1][k-1];
b[k-1]=sig[k][k]/sig[k-1][k-1];

}
free_matrix(sig,1,2*n+1,1,2*n+1);

}

As an example of the use of orthog, consider the problem [7] of generating orthogonal
polynomials with the weight function W (x) = − log x on the interval (0, 1). A suitable set
of πj’s is the shifted Legendre polynomials

πj =
(j!)2

(2j)!
Pj(2x− 1) (4.5.36)

The factor in front of Pj makes the polynomials monic. The coefficients in the recurrence
relation (4.5.31) are

αj =
1

2
j = 0, 1, . . .

βj =
1

4(4− j−2)
j = 1, 2, . . .

(4.5.37)

while the modified moments are

νj =


1 j = 0

(−1)j(j!)2

j(j + 1)(2j)!
j ≥ 1

(4.5.38)

160 Chapter 4. Integration of Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

A call to orthog with this input allows one to generate the required polynomials to machine
accuracy for very largeN , and hence do Gaussian quadrature with this weight function. Before
Sack and Donovan’s observation, this seemingly simple problem was essentially intractable.

Extensions of Gaussian Quadrature

There are many different ways in which the ideas of Gaussian quadrature have
been extended. One important extension is the case of preassigned nodes: Some
points are required to be included in the set of abscissas, and the problem is to choose
the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases are Gauss-Radau quadrature, where
one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto
quadrature, where both a and b are nodes. Golub [10] has given an algorithm similar
to gaucof for these cases.

The second important extension is the Gauss-Kronrod formulas. For ordinary
Gaussian quadrature formulas, as N increases the sets of abscissas have no points
in common. This means that if you compare results with increasing N as a way of
estimating the quadrature error, you cannot reuse the previous function evaluations.
Kronrod [11] posed the problem of searching for optimal sequences of rules, each
of which reuses all abscissas of its predecessor. If one starts with N = m, say,
and then adds n new points, one has 2n + m free parameters: the n new abscissas
and weights, and m new weights for the fixed previous abscissas. The maximum
degree of exactness one would expect to achieve would therefore be 2n + m − 1.
The question is whether this maximum degree of exactness can actually be achieved
in practice, when the abscissas are required to all lie inside (a, b). The answer to
this question is not known in general.

Kronrod showed that if you choose n = m + 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson [12] showed how to compute
continued extensions of this kind. Sequences such as N = 10, 21, 43, 87, . . . are
popular in automatic quadrature routines [13] that attempt to integrate a function until
some specified accuracy has been achieved.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Stroud, A.H., and Secrest, D. 1966, Gaussian Quadrature Formulas (Englewood Cliffs, NJ:
Prentice-Hall). [2]

Golub, G.H., and Welsch, J.H. 1969, Mathematics of Computation, vol. 23, pp. 221–230 and
A1–A10. [3]

Wilf, H.S. 1962, Mathematics for the Physical Sciences (New York: Wiley), Problem 9, p. 80. [4]

Sack, R.A., and Donovan, A.F. 1971/72, Numerische Mathematik, vol. 18, pp. 465–478. [5]

Wheeler, J.C. 1974, Rocky Mountain Journal of Mathematics, vol. 4, pp. 287–296. [6]

Gautschi, W. 1978, in Recent Advances in Numerical Analysis, C. de Boor and G.H. Golub, eds.
(New York: Academic Press), pp. 45–72. [7]

Gautschi, W. 1981, in E.B. Christoffel, P.L. Butzer and F. Fehér, eds. (Basel: Birkhauser Verlag),
pp. 72–147. [8]

Gautschi, W. 1990, in Orthogonal Polynomials, P. Nevai, ed. (Dordrecht: Kluwer Academic
Publishers), pp. 181–216. [9]

4.6 Multidimensional Integrals 161

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Golub, G.H. 1973, SIAM Review, vol. 15, pp. 318–334. [10]

Kronrod, A.S. 1964, Doklady Akademii Nauk SSSR, vol. 154, pp. 283–286 (in Russian). [11]

Patterson, T.N.L. 1968, Mathematics of Computation, vol. 22, pp. 847–856 and C1–C11; 1969,
op. cit., vol. 23, p. 892. [12]

Piessens, R., de Doncker, E., Uberhuber, C.W., and Kahaner, D.K. 1983, QUADPACK: A Sub-
routine Package for Automatic Integration (New York: Springer-Verlag). [13]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.6.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.5.

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §§2.9–2.10.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §§4.4–4.8.

4.6 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, are not easy. There are two reasons for this. First, the number of function
evaluations needed to sample an N -dimensional space increases as the N th power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration in N -dimensional space is defined by
an N − 1 dimensional boundary which can itself be terribly complicated: It need
not be convex or simply connected, for example. By contrast, the boundary of a
one-dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral,
is, “can it be reduced analytically to a lower dimensionality?” For example,
so-called iterated integrals of a function of one variable f(t) can be reduced to
one-dimensional integrals by the formula∫ x

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t3

0

dt2

∫ t2

0

f(t1)dt1

=
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt

(4.6.1)

Alternatively, the function may have some special symmetry in the way it depends
on its independent variables. If the boundary also has this symmetry, then the
dimension can be reduced. In three dimensions, for example, the integration of a
spherically symmetric function over a spherical region reduces, in polar coordinates,
to a one-dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does

