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4.6 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, are not easy. There are two reasons for this. First, the number of function
evaluations needed to sample an N -dimensional space increases as the N th power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration in N -dimensional space is defined by
an N − 1 dimensional boundary which can itself be terribly complicated: It need
not be convex or simply connected, for example. By contrast, the boundary of a
one-dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral,
is, “can it be reduced analytically to a lower dimensionality?” For example,
so-called iterated integrals of a function of one variable f(t) can be reduced to
one-dimensional integrals by the formula∫ x

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t3

0

dt2

∫ t2

0

f(t1)dt1

=
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt

(4.6.1)

Alternatively, the function may have some special symmetry in the way it depends
on its independent variables. If the boundary also has this symmetry, then the
dimension can be reduced. In three dimensions, for example, the integration of a
spherically symmetric function over a spherical region reduces, in polar coordinates,
to a one-dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
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the problem require high accuracy, or does it require an answer accurate only to
a percent, or a few percent?

If your answers are that the boundary is complicated, the integrand is not
strongly peaked in very small regions, and relatively low accuracy is tolerable, then
your problem is a good candidate for Monte Carlo integration. This method is very
straightforward to program, in its cruder forms. One needs only to know a region
with simple boundaries that includes the complicated region of integration, plus a
method of determining whether a random point is inside or outside the region of
integration. Monte Carlo integration evaluates the function at a random sample of
points, and estimates its integral based on that random sample. We will discuss it in
more detail, and with more sophistication, in Chapter 7.

If the boundary is simple, and the function is very smooth, then the remaining
approaches, breaking up the problem into repeated one-dimensional integrals, or
multidimensional Gaussian quadratures, will be effective and relatively fast [1]. If
you require high accuracy, these approaches are in any case the only ones available
to you, since Monte Carlo methods are by nature asymptotically slow to converge.

For low accuracy, use repeated one-dimensional integration or multidimensional
Gaussian quadratures when the integrand is slowly varying and smooth in the region
of integration, Monte Carlo when the integrand is oscillatory or discontinuous, but
not strongly peaked in small regions.

If the integrand is strongly peaked in small regions, and you know where those
regions are, break the integral up into several regions so that the integrand is smooth
in each, and do each separately. If you don’t know where the strongly peaked regions
are, you might as well (at the level of sophistication of this book) quit: It is hopeless
to expect an integration routine to search out unknown pockets of large contribution
in a huge N -dimensional space. (But see §7.8.)

If, on the basis of the above guidelines, you decide to pursue the repeated one-
dimensional integration approach, here is how it works. For definiteness, we will
consider the case of a three-dimensional integral in x, y, z-space. Two dimensions,
or more than three dimensions, are entirely analogous.

The first step is to specify the region of integration by (i) its lower and upper
limits in x, which we will denote x1 and x2; (ii) its lower and upper limits in y at a
specified value of x, denoted y1(x) and y2(x); and (iii) its lower and upper limits
in z at specified x and y, denoted z1(x, y) and z2(x, y). In other words, find the
numbers x1 and x2, and the functions y1(x), y2(x), z1(x, y), and z2(x, y) such that

I ≡
∫ ∫ ∫

dx dy dzf(x, y, z)

=

∫ x2

x1

dx

∫ y2(x)

y1(x)

dy

∫ z2(x,y)

z1(x,y)

dz f(x, y, z)

(4.6.2)

For example, a two-dimensional integral over a circle of radius one centered on
the origin becomes

∫ 1

−1

dx

∫ √1−x2

−
√

1−x2

dy f(x, y) (4.6.3)
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Figure 4.6.1. Function evaluations for a two-dimensional integral over an irregular region, shown
schematically. The outer integration routine, in y, requests values of the inner, x, integral at locations
along the y axis of its own choosing. The inner integration routine then evaluates the function at
x locations suitable to it. This is more accurate in general than, e.g., evaluating the function on a
Cartesian mesh of points.

Now we can define a function G(x, y) that does the innermost integral,

G(x, y) ≡
∫ z2(x,y)

z1(x,y)

f(x, y, z)dz (4.6.4)

and a function H(x) that does the integral of G(x, y),

H(x) ≡
∫ y2(x)

y1(x)

G(x, y)dy (4.6.5)

and finally our answer as an integral over H(x)

I =

∫ x2

x1

H(x)dx (4.6.6)

In an implementation of equations (4.6.4)–(4.6.6), some basic one-dimensional
integration routine (e.g., qgaus in the program following) gets called recursively:
once to evaluate the outer integral I, then many times to evaluate the middle integral
H , then even more times to evaluate the inner integralG (see Figure 4.6.1). Current
values of x and y, and the pointer to your function func, are passed “over the head”
of the intermediate calls through static top-level variables.
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static float xsav,ysav;
static float (*nrfunc)(float,float,float);

float quad3d(float (*func)(float, float, float), float x1, float x2)
Returns the integral of a user-supplied function func over a three-dimensional region specified
by the limits x1, x2, and by the user-supplied functions yy1, yy2, z1, and z2, as defined in
(4.6.2). (The functions y1 and y2 are here called yy1 and yy2 to avoid conflict with the names
of Bessel functions in some C libraries). Integration is performed by calling qgaus recursively.
{

float qgaus(float (*func)(float), float a, float b);
float f1(float x);

nrfunc=func;
return qgaus(f1,x1,x2);

}

float f1(float x) This is H of eq. (4.6.5).
{

float qgaus(float (*func)(float), float a, float b);
float f2(float y);
float yy1(float),yy2(float);

xsav=x;
return qgaus(f2,yy1(x),yy2(x));

}

float f2(float y) This is G of eq. (4.6.4).
{

float qgaus(float (*func)(float), float a, float b);
float f3(float z);
float z1(float,float),z2(float,float);

ysav=y;
return qgaus(f3,z1(xsav,y),z2(xsav,y));

}

float f3(float z) The integrand f(x, y, z) evaluated at fixed x and y.
{

return (*nrfunc)(xsav,ysav,z);
}

The necessary user-supplied functions have the following prototypes:

float func(float x,float y,float z); The 3-dimensional function to be inte-
grated.float yy1(float x);

float yy2(float x);
float z1(float x,float y);
float z2(float x,float y);
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