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5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must | store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variable y? Can’t | convert the ¢;.’sinto actua polynomial coefficients
in the original variable = and have an approximation of the following form?’

m—1

fl)~ > geat (5.10.1)

k=0

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficient ¢'sreflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as by chebev). This is because
the Chebyshev polynomias themselves exhibit a rather delicate cancellation: The
leading coefficient of T, (z), for example, is 2"~1; other coefficients of T;,(z) are
even bigger; yet they al manage to combineinto apolynomial that lies between +1.
Only when m is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get the g’sin equation (5.10.1) from the ¢’s output from chebft (suitably
truncated at amodest valueof m) by callingin sequencethefollowing two procedures:

#include "nrutil.h"

void chebpc(float c[], float d[], int n)
Chebyshev polynomial coefficients. Given a coefficient array ¢ [0. .n-1], this routine generates

a coefficient array d[0..n-1] such that ZE;% dpy® = ZE;% ¢, Tk(y) — co/2. The method
is Clenshaw'’s recurrence (5.8.11), but now applied algebraically rather than arithmetically.
{

int k,j;

float sv,*dd;

dd=vector(0,n-1);
for (j=0;j<n;j++) d[jl=dd[j]=0.0;
d[0]=c[n-1];
for (j=n-2;j>=1;j--) {
for (k=n-j;k>=1;k--) {
sv=d[k];
d[k]=2.0%d[k-1]-dd [k];
dd[k]=sv;
}
sv=d[0];
d[0] = -dd[0]+c[j];
dd[0]=sv;
}
for (j=n-1;j>=1;j--)
dl[jl=d[j-11-dd[j]1;
d[0] = -dd[0]+0.5%c[0];
free_vector(dd,0O,n-1);
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void pcshft(float a, float b, float d[], int n)

Polynomial coefficient shift. Given a coefficient array d[0..n-1], this routine generates a
coefficient array g[0..n-1] such that ZE;% dpy* = ZE;% grz®, where z and y are related
by (5.8.10), i.e., the interval —1 < y < 1 is mapped to the interval a < = < b. The array
g is returned in d.

{
int k,j;
float fac,cnst;
cnst=2.0/(b-a);
fac=cnst;
for (j=1;j<n;j++) { First we rescale by the factor const...
d[j] *= fac;
fac *= cnst;
}
cnst=0.5*(a+b); ...which is then redefined as the desired shift.
for (j=0;j<=n-2;j++) We accomplish the shift by synthetic division. Synthetic
for (k=n-2;k>=j;k--) division is a miracle of high-school algebra. If you
d[k] -= cnstxd[k+1]; never learned it, go do so. You won't be sorry.
}

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182-183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, the economization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are aready computing a function by the use of a convergent power
series, for example

x 1172 1173

f(x)51—§+ﬁ_ﬁ+”' (5.11.1)
(This function is actually sin(y/z)/+/z, but pretend you don’t know that.) You might be
doing a problem that requires eval uating the series many times in some particular interval, say
[0, (2)?]. Everything is fine, except that the series requires a large number of terms before
its error (approximated by the first neglected term, say) is tolerable. In our example, with
x = (2r)?, the first term smaller than 10~ is z*3/(27!). This then approximates the error
of the finite series whose last term is 22 /(25!).

Notice that because of the large exponent in =%, the error is much smaller than 10~
everywherein theinterval except at the very largest values of . Thisisthe feature that allows
“economization”: if we are willing to let the error elsewherein the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:

1. Change variables from x to y, as in equation (5.8.10), to map the z interval into

-1<y< L

2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equalsyour
truncated power series (the one with enough terms for accuracy).

3. Truncatethis Chebyshev seriesto a smaller number of terms, using the coefficient of the
first neglected Chebyshev polynomial as an estimate of the error.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadioay feouswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM



