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5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must I store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variable y? Can’t I convert the ck’s into actual polynomial coefficients
in the original variable x and have an approximation of the following form?”

f(x) ≈
m−1∑
k=0

gkx
k (5.10.1)

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficient g’s reflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as by chebev). This is because
the Chebyshev polynomials themselves exhibit a rather delicate cancellation: The
leading coefficient of Tn(x), for example, is 2n−1; other coefficients of Tn(x) are
even bigger; yet they all manage to combine into a polynomial that lies between±1.
Only when m is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get the g’s in equation (5.10.1) from the c’s output from chebft (suitably
truncated at a modest value ofm) by calling in sequence the following two procedures:

#include "nrutil.h"

void chebpc(float c[], float d[], int n)
Chebyshev polynomial coefficients. Given a coefficient array c[0..n-1], this routine generates

a coefficient array d[0..n-1] such that
∑n-1
k=0 dky

k =
∑n-1
k=0 ckTk(y) − c0/2. The method

is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than arithmetically.
{

int k,j;
float sv,*dd;

dd=vector(0,n-1);
for (j=0;j<n;j++) d[j]=dd[j]=0.0;
d[0]=c[n-1];
for (j=n-2;j>=1;j--) {

for (k=n-j;k>=1;k--) {
sv=d[k];
d[k]=2.0*d[k-1]-dd[k];
dd[k]=sv;

}
sv=d[0];
d[0] = -dd[0]+c[j];
dd[0]=sv;

}
for (j=n-1;j>=1;j--)

d[j]=d[j-1]-dd[j];
d[0] = -dd[0]+0.5*c[0];
free_vector(dd,0,n-1);

}
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void pcshft(float a, float b, float d[], int n)
Polynomial coefficient shift. Given a coefficient array d[0..n-1], this routine generates a

coefficient array g[0..n-1] such that
∑n-1
k=0 dky

k =
∑n-1
k=0 gkx

k, where x and y are related
by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval a < x < b. The array
g is returned in d.
{

int k,j;
float fac,cnst;

cnst=2.0/(b-a);
fac=cnst;
for (j=1;j<n;j++) { First we rescale by the factor const...

d[j] *= fac;
fac *= cnst;

}
cnst=0.5*(a+b); ...which is then redefined as the desired shift.
for (j=0;j<=n-2;j++) We accomplish the shift by synthetic division. Synthetic

division is a miracle of high-school algebra. If you
never learned it, go do so. You won’t be sorry.

for (k=n-2;k>=j;k--)
d[k] -= cnst*d[k+1];

}

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182–183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, the economization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are already computing a function by the use of a convergent power
series, for example

f(x) ≡ 1− x

3!
+
x2

5!
− x3

7!
+ · · · (5.11.1)

(This function is actually sin(
√
x)/
√
x, but pretend you don’t know that.) You might be

doing a problem that requires evaluating the series many times in some particular interval, say
[0, (2π)2]. Everything is fine, except that the series requires a large number of terms before
its error (approximated by the first neglected term, say) is tolerable. In our example, with
x = (2π)2, the first term smaller than 10−7 is x13/(27!). This then approximates the error
of the finite series whose last term is x12/(25!).

Notice that because of the large exponent in x13, the error is much smaller than 10−7

everywhere in the interval except at the very largest values of x. This is the feature that allows
“economization”: if we are willing to let the error elsewhere in the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:
1. Change variables from x to y, as in equation (5.8.10), to map the x interval into
−1 ≤ y ≤ 1.

2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equals your
truncated power series (the one with enough terms for accuracy).

3. Truncate this Chebyshev series to a smaller number of terms, using the coefficient of the
first neglected Chebyshev polynomial as an estimate of the error.


