6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresnel integrals are defined by

$$
\begin{equation*}
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t, \quad S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t \tag{6.9.1}
\end{equation*}
$$

The most convenient way of evaluating these functions to arbitrary precision is to use power series for small x and a continued fraction for large x. The series are

$$
\begin{align*}
& C(x)=x-\left(\frac{\pi}{2}\right)^{2} \frac{x^{5}}{5 \cdot 2!}+\left(\frac{\pi}{2}\right)^{4} \frac{x^{9}}{9 \cdot 4!}-\cdots \\
& S(x)=\left(\frac{\pi}{2}\right) \frac{x^{3}}{3 \cdot 1!}-\left(\frac{\pi}{2}\right)^{3} \frac{x^{7}}{7 \cdot 3!}+\left(\frac{\pi}{2}\right)^{5} \frac{x^{11}}{11 \cdot 5!}-\cdots \tag{6.9.2}
\end{align*}
$$

There is a complex continued fraction that yields both $S(x)$ and $C(x)$ simultaneously:

$$
\begin{equation*}
C(x)+i S(x)=\frac{1+i}{2} \operatorname{erf} z, \quad z=\frac{\sqrt{\pi}}{2}(1-i) x \tag{6.9.3}
\end{equation*}
$$

where

$$
\begin{align*}
e^{z^{2}} \operatorname{erfc} z & =\frac{1}{\sqrt{\pi}}\left(\frac{1}{z+} \frac{1 / 2}{z+} \frac{1}{z+} \frac{3 / 2}{z+} \frac{2}{z+} \cdots\right) \tag{6.9.4}\\
& =\frac{2 z}{\sqrt{\pi}}\left(\frac{1}{2 z^{2}+1-} \frac{1 \cdot 2}{2 z^{2}+5-} \frac{3 \cdot 4}{2 z^{2}+9-} \cdots\right)
\end{align*}
$$

In the last line we have converted the "standard" form of the continued fraction to its "even" form (see $\S 5.2$), which converges twice as fast. We must be careful not to evaluate the alternating series (6.9.2) at too large a value of x; inspection of the terms shows that $x=1.5$ is a good point to switch over to the continued fraction.

Note that for large x

$$
\begin{equation*}
C(x) \sim \frac{1}{2}+\frac{1}{\pi x} \sin \left(\frac{\pi}{2} x^{2}\right), \quad S(x) \sim \frac{1}{2}-\frac{1}{\pi x} \cos \left(\frac{\pi}{2} x^{2}\right) \tag{6.9.5}
\end{equation*}
$$

Thus the precision of the routine frenel may be limited by the precision of the library routines for sine and cosine for large x.

```
#include <math.h>
#include "complex.h"
#define EPS 6.0e-8
#define MAXIT 100
#define FPMIN 1.0e-30
#define XMIN 1.5
#define PI 3.1415927
#define PIBY2 (PI/2.0)
Here EPS is the relative error; MAXIT is the maximum number of iterations allowed; FPMIN
is a number near the smallest representable floating-point number; XMIN is the dividing line
between using the series and continued fraction.
#define TRUE 1
#define ONE Complex(1.0,0.0)
void frenel(float x, float *s, float *c)
Computes the Fresnel integrals S(x) and C(x) for all real x.
{
    void nrerror(char error_text[]);
    int k,n,odd;
    float a,ax,fact,pix2,sign,sum,sumc,sums,term,test;
    fcomplex b,cc,d,h,del,cs;
    ax=fabs(x);
    if (ax < sqrt(FPMIN)) { Special case: avoid failure of convergence
        *s=0.0;
        *c=ax;
    } else if (ax <= XMIN) {
        sum=sums=0.0;
        sumc=ax;
        sign=1.0;
        fact=PIBY2*ax*ax;
        odd=TRUE;
        term=ax;
        n=3;
        for (k=1;k<=MAXIT;k++) {
            term *= fact/k;
            sum += sign*term/n;
            test=fabs(sum)*EPS;
            if (odd) {
                    sign = -sign;
                    sums=sum;
                    sum=sumc;
            } else {
                    sumc=sum;
                    sum=sums;
            }
            if (term < test) break;
            odd=!odd;
            n += 2;
        }
        if (k > MAXIT) nrerror("series failed in frenel");
        *s=sums;
        *c=sumc;
    } else { Evaluate continued fraction by modified
        pix2=PI*ax*ax; Lentz's method (§5.2).
        b=Complex(1.0,-pix2);
        cc=Complex(1.0/FPMIN,0.0);
        d=h=Cdiv(ONE,b);
        n = -1;
        for (k=2;k<=MAXIT;k++) {
            n += 2;
            a = -n*(n+1);
            b=Cadd(b,Complex (4.0, 0.0));
            d=Cdiv(ONE,Cadd(RCmul(a,d),b)); Denominators cannot be zero.
```

```
            cc=Cadd(b,Cdiv(Complex(a,0.0),cc));
            del=Cmul(cc,d);
            h=Cmul(h,del);
            if (fabs(del.r-1.0)+fabs(del.i) < EPS) break;
        }
        if (k > MAXIT) nrerror("cf failed in frenel");
        h=Cmul (Complex (ax,-ax),h);
        cs=Cmul(Complex (0.5,0.5),
            Csub(ONE,Cmul(Complex(cos(0.5*pix2),sin(0.5*pix2)),h)));
        *c=cs.r;
        *s=cs.i;
    }
    if (x < 0.0) { Use antisymmetry.
    *c = -(*c);
    *s = - (*s);
    }
}
```


Cosine and Sine Integrals

The cosine and sine integrals are defined by

$$
\begin{align*}
& \operatorname{Ci}(x)=\gamma+\ln x+\int_{0}^{x} \frac{\cos t-1}{t} d t \\
& \operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t \tag{6.9.6}
\end{align*}
$$

Here $\gamma \approx 0.5772 \ldots$ is Euler's constant. We only need a way to calculate the functions for $x>0$, because

$$
\begin{equation*}
\operatorname{Si}(-x)=-\operatorname{Si}(x), \quad \operatorname{Ci}(-x)=\operatorname{Ci}(x)-i \pi \tag{6.9.7}
\end{equation*}
$$

Once again we can evaluate these functions by a judicious combination of power series and complex continued fraction. The series are

$$
\begin{align*}
& \mathrm{Si}(x)=x-\frac{x^{3}}{3 \cdot 3!}+\frac{x^{5}}{5 \cdot 5!}-\cdots \\
& \mathrm{Ci}(x)=\gamma+\ln x+\left(-\frac{x^{2}}{2 \cdot 2!}+\frac{x^{4}}{4 \cdot 4!}-\cdots\right) \tag{6.9.8}
\end{align*}
$$

The continued fraction for the exponential integral $E_{1}(i x)$ is

$$
\begin{align*}
E_{1}(i x) & =-\operatorname{Ci}(x)+i[\operatorname{Si}(x)-\pi / 2] \\
& =e^{-i x}\left(\frac{1}{i x+} \frac{1}{1+} \frac{1}{i x+} \frac{2}{1+} \frac{2}{i x+} \cdots\right) \tag{6.9.9}\\
& =e^{-i x}\left(\frac{1}{1+i x-} \frac{1^{2}}{3+i x-} \frac{2^{2}}{5+i x-} \cdots\right)
\end{align*}
$$

The "even" form of the continued fraction is given in the last line and converges twice as fast for about the same amount of computation. A good crossover point from the alternating series to the continued fraction is $x=2$ in this case. As for the Fresnel integrals, for large x the precision may be limited by the precision of the sine and cosine routines.

```
#include <math.h>
#include "complex.h"
#define EPS 6.0e-8
#define EULER 0.57721566
#define MAXIT 100
#define PIBY2 1.5707963
#define FPMIN 1.0e-30
#define TMIN 2.0
#define TRUE 1
#define ONE Complex(1.0,0.0)
void cisi(float x, float *ci, float *si)
Computes the cosine and sine integrals }\textrm{Ci}(x)\mathrm{ and }\textrm{Si}(x). Ci(0) is returned as a large negativ
number and no error message is generated. For }x<0\mathrm{ the routine returns }\textrm{Ci}(-x)\mathrm{ and you must
supply the -i\pi yourself.
{
    void nrerror(char error_text[]);
    int i,k,odd;
    float a,err,fact,sign,sum,sumc,sums,t,term;
    fcomplex h,b,c,d,del;
    t=fabs(x);
    if (t == 0.0) { Special case.
        *si=0.0;
        *ci = -1.0/FPMIN;
        return;
    }
    if (t > TMIN) {
        b=Complex(1.0,t);
        c=Complex(1.0/FPMIN,0.0);
        d=h=Cdiv(ONE,b);
        for (i=2;i<=MAXIT;i++) {
            a = -(i-1)*(i-1);
            b=Cadd(b,Complex(2.0,0.0));
            d=Cdiv(ONE,Cadd(RCmul (a,d),b));
                    Denominators cannot be zero.
            c=Cadd(b,Cdiv(Complex(a,0.0), c));
            del=Cmul(c,d);
            h=Cmul(h,del);
            if (fabs(del.r-1.0)+fabs(del.i) < EPS) break;
        }
        if (i > MAXIT) nrerror("cf failed in cisi");
        h=Cmul(Complex (cos(t),-sin(t)),h);
        *ci = -h.r;
        *si=PIBY2+h.i;
    } else { Evaluate both series simultaneously.
        if (t < sqrt(FPMIN)) { Special case: avoid failure of convergence
            sumc=0.0;
            sums=t;
            } else {
                sum=sums=sumc=0.0;
                sign=fact=1.0;
                odd=TRUE;
                for (k=1;k<=MAXIT;k++) {
                    fact *= t/k;
                    term=fact/k;
                    sum += sign*term;
                    err=term/fabs(sum);
                    if (odd) {
                    sign = -sign;
                    sums=sum;
                    sum=sumc;
                    } else {
                    sumc=sum;
                    sum=sums;
```

```
                }
                if (err < EPS) break;
                odd=!odd;
            }
            if (k > MAXIT) nrerror("maxits exceeded in cisi");
        }
        *si=sums;
        *ci=sumc+log(t)+EULER;
    }
    if (x < 0.0) *si = -(*si);
}
```


CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards, vol. 80B, pp. 291-311; 1981, op. cit., vol. 86, pp. 661-686.
Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson's Integral

Dawson's Integral $F(x)$ is defined by

$$
\begin{equation*}
F(x)=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t \tag{6.10.1}
\end{equation*}
$$

The function can also be related to the complex error function by

$$
\begin{equation*}
F(z)=\frac{i \sqrt{\pi}}{2} e^{-z^{2}}[1-\operatorname{erfc}(-i z)] \tag{6.10.2}
\end{equation*}
$$

A remarkable approximation for $F(x)$, due to Rybicki [1], is

$$
\begin{equation*}
F(z)=\lim _{h \rightarrow 0} \frac{1}{\sqrt{\pi}} \sum_{n \text { odd }} \frac{e^{-(z-n h)^{2}}}{n} \tag{6.10.3}
\end{equation*}
$$

What makes equation (6.10.3) unusual is that its accuracy increases exponentially as h gets small, so that quite moderate values of h (and correspondingly quite rapid convergence of the series) give very accurate approximations.

We will discuss the theory that leads to equation (6.10.3) later, in $\S 13.11$, as an interesting application of Fourier methods. Here we simply implement a routine based on the formula.

It is first convenient to shift the summation index to center it approximately on the maximum of the exponential term. Define n_{0} to be the even integer nearest to x / h, and $x_{0} \equiv n_{0} h, x^{\prime} \equiv x-x_{0}$, and $n^{\prime} \equiv n-n_{0}$, so that

$$
\begin{equation*}
F(x) \approx \frac{1}{\sqrt{\pi}} \sum_{\substack{n^{\prime}=-N \\ n^{\prime} \text { odd }}}^{N} \frac{e^{-\left(x^{\prime}-n^{\prime} h\right)^{2}}}{n^{\prime}+n_{0}} \tag{6.10.4}
\end{equation*}
$$

