7.2 Transformation Method: Exponential and Normal Deviates

In the previous section, we learned how to generate random deviates with a uniform probability distribution, so that the probability of generating a number between x and x + dx, denoted p(x)dx, is given by

$$p(x)dx = \begin{cases} dx & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$
(7.2.1)

The probability distribution p(x) is of course normalized, so that

$$\int_{-\infty}^{\infty} p(x)dx = 1 \tag{7.2.2}$$

Now suppose that we generate a uniform deviate x and then take some prescribed function of it, y(x). The probability distribution of y, denoted p(y)dy, is determined by the fundamental transformation law of probabilities, which is simply

$$|p(y)dy| = |p(x)dx|$$
 (7.2.3)

or

$$p(y) = p(x) \left| \frac{dx}{dy} \right|$$
(7.2.4)

Exponential Deviates

As an example, suppose that $y(x) \equiv -\ln(x)$, and that p(x) is as given by equation (7.2.1) for a uniform deviate. Then

$$p(y)dy = \left|\frac{dx}{dy}\right| dy = e^{-y}dy \tag{7.2.5}$$

which is distributed exponentially. This exponential distribution occurs frequently in real problems, usually as the distribution of waiting times between independent Poisson-random events, for example the radioactive decay of nuclei. You can also easily see (from 7.2.4) that the quantity y/λ has the probability distribution $\lambda e^{-\lambda y}$. So we have

```
#include <math.h>
```

}

float expdev(long *idum)
Returns an exponentially distributed, positive, random deviate of unit mean, using
ran1(idum) as the source of uniform deviates.
{

```
float ran1(long *idum);
float dum;
do
    dum=ran1(idum);
while (dum == 0.0);
return -log(dum);
```

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) World Wide Web sample page from NUMERICAL Copyright (C) 1988-1992 by Cambridge University by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)

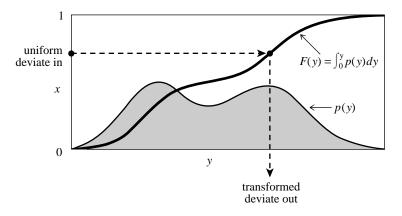


Figure 7.2.1. Transformation method for generating a random deviate y from a known probability distribution p(y). The indefinite integral of p(y) must be known and invertible. A uniform deviate x is chosen between 0 and 1. Its corresponding y on the definite-integral curve is the desired deviate.

Let's see what is involved in using the above *transformation method* to generate some arbitrary desired distribution of y's, say one with p(y) = f(y) for some positive function f whose integral is 1. (See Figure 7.2.1.) According to (7.2.4), we need to solve the differential equation

$$\frac{dx}{dy} = f(y) \tag{7.2.6}$$

But the solution of this is just x = F(y), where F(y) is the indefinite integral of f(y). The desired transformation which takes a uniform deviate into one distributed as f(y) is therefore

$$y(x) = F^{-1}(x) \tag{7.2.7}$$

where F^{-1} is the inverse function to *F*. Whether (7.2.7) is feasible to implement depends on whether the *inverse function of the integral of f*(*y*) is itself feasible to compute, either analytically or numerically. Sometimes it is, and sometimes it isn't.

Incidentally, (7.2.7) has an immediate geometric interpretation: Since F(y) is the area under the probability curve to the left of y, (7.2.7) is just the prescription: choose a uniform random x, then find the value y that has that fraction x of probability area to its left, and return the value y.

Normal (Gaussian) Deviates

Transformation methods generalize to more than one dimension. If x_1, x_2 , ... are random deviates with a *joint* probability distribution $p(x_1, x_2, ...)$ $dx_1 dx_2 ...,$ and if $y_1, y_2, ...$ are each functions of all the x's (same number of y's as x's), then the joint probability distribution of the y's is

$$p(y_1, y_2, \ldots) dy_1 dy_2 \ldots = p(x_1, x_2, \ldots) \left| \frac{\partial(x_1, x_2, \ldots)}{\partial(y_1, y_2, \ldots)} \right| dy_1 dy_2 \ldots$$
(7.2.8)

where $|\partial(-)/\partial(-)|$ is the Jacobian determinant of the x's with respect to the y's (or reciprocal of the Jacobian determinant of the y's with respect to the x's).

visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. eadable files (including this one) to any server computer, is strictly prohibited. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-his one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs

An important example of the use of (7.2.8) is the *Box-Muller* method for generating random deviates with a normal (Gaussian) distribution,

$$p(y)dy = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$
(7.2.9)

289

Consider the transformation between two uniform deviates on (0,1), x_1, x_2 , and two quantities y_1, y_2 ,

$$y_1 = \sqrt{-2\ln x_1} \cos 2\pi x_2$$

$$y_2 = \sqrt{-2\ln x_1} \sin 2\pi x_2$$
(7.2.10)

Equivalently we can write

$$x_{1} = \exp\left[-\frac{1}{2}(y_{1}^{2} + y_{2}^{2})\right]$$

$$x_{2} = \frac{1}{2\pi}\arctan\frac{y_{2}}{y_{1}}$$
(7.2.11)

Now the Jacobian determinant can readily be calculated (try it!):

$$\frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = -\left[\frac{1}{\sqrt{2\pi}}e^{-y_1^2/2}\right] \left[\frac{1}{\sqrt{2\pi}}e^{-y_2^2/2}\right]$$
(7.2.12)

Since this is the product of a function of y_2 alone and a function of y_1 alone, we see that each y is independently distributed according to the normal distribution (7.2.9).

One further trick is useful in applying (7.2.10). Suppose that, instead of picking uniform deviates x_1 and x_2 in the unit square, we instead pick v_1 and v_2 as the ordinate and abscissa of a random point inside the unit circle around the origin. Then the sum of their squares, $R^2 \equiv v_1^2 + v_2^2$ is a uniform deviate, which can be used for x_1 , while the angle that (v_1, v_2) defines with respect to the v_1 axis can serve as the random angle $2\pi x_2$. What's the advantage? It's that the cosine and sine in (7.2.10) can now be written as $v_1/\sqrt{R^2}$ and $v_2/\sqrt{R^2}$, obviating the trigonometric function calls!

We thus have

#include <math.h>

float gasdev(long *idum)
Returns a normally distributed deviate with zero mean and unit variance, using ran1(idum)
as the source of uniform deviates.
f

World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

```
fac=sqrt(-2.0*log(rsq)/rsq);
Now make the Box-Muller transformation to get two normal deviates. Return one and
save the other for next time.
gset=v1*fac;
iset=1; Set flag.
return v2*fac;
} else { We have an extra deviate handy,
iset=0; so unset the flag,
return gset; and return it.
}
```

See Devroye [1] and Bratley [2] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Devroye, L. 1986, *Non-Uniform Random Variate Generation* (New York: Springer-Verlag), §9.1. [1]

- Bratley, P., Fox, B.L., and Schrage, E.L. 1983, *A Guide to Simulation* (New York: Springer-Verlag). [2]
- Knuth, D.E. 1981, *Seminumerical Algorithms*, 2nd ed., vol. 2 of *The Art of Computer Programming* (Reading, MA: Addison-Wesley), pp. 116ff.

7.3 Rejection Method: Gamma, Poisson, Binomial Deviates

The rejection method is a powerful, general technique for generating random deviates whose distribution function p(x)dx (probability of a value occurring between x and x + dx) is known and computable. The rejection method does not require that the cumulative distribution function [indefinite integral of p(x)] be readily computable, much less the inverse of that function — which was required for the transformation method in the previous section.

The rejection method is based on a simple geometrical argument:

Draw a graph of the probability distribution p(x) that you wish to generate, so that the area under the curve in any range of x corresponds to the desired probability of generating an x in that range. If we had some way of choosing a random point *in two dimensions*, with uniform probability in the *area* under your curve, then the x value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f(x) which has finite (not infinite) area and lies everywhere *above* your original probability distribution. (This is always possible, because your original curve encloses only unit area, by definition of probability.) We will call this f(x) the *comparison function*. Imagine now that you have some way of choosing a random point in two dimensions that is uniform in the area under the comparison function. Whenever that point lies outside the area under the original probability distribution, we will *reject* it and choose another random point. Whenever it lies inside the area under the original probability distribution, we will *accept* it. It should be obvious that the accepted points are uniform in the accepted area, so that their x values have the desired distribution. It

World Wide Web sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC Communication of the second devices of the second dev