
338 Chapter 8. Sorting

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (rra < ra[j]) { Demote rra.
ra[i]=ra[j];
i=j;
j <<= 1;

} else j=ir+1; This is rra’s level. Set j to terminate the sift-down.
}
ra[i]=rra; Put rra into its slot.

}
}

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept of keys plays a prominent role in the management of data files. A
data record in such a file may contain several items, or fields. For example, a record
in a file of weather observations may have fields recording time, temperature, and
wind velocity. When we sort the records, we must decide which of these fields we
want to be brought into sorted order. The other fields in a record just come along
for the ride, and will not, in general, end up in any particular order. The field on
which the sort is performed is called the key field.

For a data file with many records and many fields, the actual movement of N
records into the sorted order of their keys Ki, i = 1, . . . , N , can be a daunting task.
Instead, one can construct an index table Ij , j = 1, . . . , N , such that the smallest
Ki has i = I1, the second smallest has i = I2, and so on up to the largest Ki with
i = IN . In other words, the array

KIj j = 1, 2, . . . , N (8.4.1)

is in sorted order when indexed by j. When an index table is available, one need not
move records from their original order. Further, different index tables can be made
from the same set of records, indexing them to different keys.

The algorithm for constructing an index table is straightforward: Initialize the
index array with the integers from 1 to N , then perform the Quicksort algorithm,
moving the elements around as if one were sorting the keys. The integer that initially
numbered the smallest key thus ends up in the number one position, and so on.

#include "nrutil.h"
#define SWAP(a,b) itemp=(a);(a)=(b);(b)=itemp;
#define M 7
#define NSTACK 50

void indexx(unsigned long n, float arr[], unsigned long indx[])
Indexes an array arr[1..n], i.e., outputs the array indx[1..n] such that arr[indx[j]] is
in ascending order for j = 1, 2, . . . , N . The input quantities n and arr are not changed.
{

unsigned long i,indxt,ir=n,itemp,j,k,l=1;
int jstack=0,*istack;
float a;



8.4 Indexing and Ranking 339

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

15

6

3

5

7

4

32

3

8

2

1

14

3

6

6

5

1

4

2

3

4

2

1

5

5

6

1

5

2

4

6

3

3

2

1

4

32

6

15

5

14

4

8

3

7

2

1

3

original
array

index
table

rank
table

sorted
array

(a) (b) (c) (d)

Figure 8.4.1. (a) An unsorted array of six numbers. (b) Index table, whose entries are pointers to
the elements of (a) in ascending order. (c) Rank table, whose entries are the ranks of the corresponding
elements of (a). (d) Sorted array of the elements in (a).

istack=ivector(1,NSTACK);
for (j=1;j<=n;j++) indx[j]=j;
for (;;) {

if (ir-l < M) {
for (j=l+1;j<=ir;j++) {

indxt=indx[j];
a=arr[indxt];
for (i=j-1;i>=l;i--) {

if (arr[indx[i]] <= a) break;
indx[i+1]=indx[i];

}
indx[i+1]=indxt;

}
if (jstack == 0) break;
ir=istack[jstack--];
l=istack[jstack--];

} else {
k=(l+ir) >> 1;
SWAP(indx[k],indx[l+1]);
if (arr[indx[l]] > arr[indx[ir]]) {

SWAP(indx[l],indx[ir])
}
if (arr[indx[l+1]] > arr[indx[ir]]) {

SWAP(indx[l+1],indx[ir])
}
if (arr[indx[l]] > arr[indx[l+1]]) {

SWAP(indx[l],indx[l+1])
}
i=l+1;
j=ir;
indxt=indx[l+1];



340 Chapter 8. Sorting

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

a=arr[indxt];
for (;;) {

do i++; while (arr[indx[i]] < a);
do j--; while (arr[indx[j]] > a);
if (j < i) break;
SWAP(indx[i],indx[j])

}
indx[l+1]=indx[j];
indx[j]=indxt;
jstack += 2;
if (jstack > NSTACK) nrerror("NSTACK too small in indexx.");
if (ir-i+1 >= j-l) {

istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;

} else {
istack[jstack]=j-1;
istack[jstack-1]=l;
l=i;

}
}

}
free_ivector(istack,1,NSTACK);

}

If you want to sort an array while making the corresponding rearrangement of
several or many other arrays, you should first make an index table, then use it to
rearrange each array in turn. This requires two arrays of working space: one to
hold the index, and another into which an array is temporarily moved, and from
which it is redeposited back on itself in the rearranged order. For 3 arrays, the
procedure looks like this:

#include "nrutil.h"

void sort3(unsigned long n, float ra[], float rb[], float rc[])
Sorts an array ra[1..n] into ascending numerical order while making the corresponding re-
arrangements of the arrays rb[1..n] and rc[1..n]. An index table is constructed via the
routine indexx.
{

void indexx(unsigned long n, float arr[], unsigned long indx[]);
unsigned long j,*iwksp;
float *wksp;

iwksp=lvector(1,n);
wksp=vector(1,n);
indexx(n,ra,iwksp); Make the index table.
for (j=1;j<=n;j++) wksp[j]=ra[j]; Save the array ra.
for (j=1;j<=n;j++) ra[j]=wksp[iwksp[j]]; Copy it back in rearranged order.
for (j=1;j<=n;j++) wksp[j]=rb[j]; Ditto rb.
for (j=1;j<=n;j++) rb[j]=wksp[iwksp[j]];
for (j=1;j<=n;j++) wksp[j]=rc[j]; Ditto rc.
for (j=1;j<=n;j++) rc[j]=wksp[iwksp[j]];
free_vector(wksp,1,n);
free_lvector(iwksp,1,n);

}

The generalization to any other number of arrays is obviously straightforward.

A rank table is different from an index table. A rank table’s jth entry gives the



8.5 Selecting the Mth Largest 341

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

rank of the jth element of the original array of keys, ranging from 1 (if that element
was the smallest) to N (if that element was the largest). One can easily construct
a rank table from an index table, however:

void rank(unsigned long n, unsigned long indx[], unsigned long irank[])
Given indx[1..n] as output from the routine indexx, returns an array irank[1..n], the
corresponding table of ranks.
{

unsigned long j;

for (j=1;j<=n;j++) irank[indx[j]]=j;
}

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. (Say that five times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a single
returned value: What is thekth smallest (or, equivalently, them = N+1−kth largest)
element out of N elements? The fastest methods for selection do, unfortunately,
rearrange the array for their own computational purposes, typically putting all smaller
elements to the left of the kth, all larger elements to the right, and scrambling the
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of it is taxing
on memory, or when the computational burden of the selection is a negligible part
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Such in place selection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. When N is odd, the median is the kth element, with
k = (N +1)/2. WhenN is even, statistics books define the median as the arithmetic
mean of the elements k = N/2 and k = N/2 + 1 (that is, N/2 from the bottom
and N/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. For N > 100 we usually define k = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, is partition-
ing, exactly as was done in the Quicksort algorithm (§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels” (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desired kth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales as N rather than as N logN (see [1]). Comparison
with sort in §8.2 should make the following routine obvious:


