
W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 9. Root Finding and
Nonlinear Sets of Equations

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While
most equations are born with both a right-hand side and a left-hand side, one
traditionally moves all terms to the left, leaving

f(x) = 0 (9.0.1)

whose solution or solutionsare desired. When there is only one independent variable,
the problem is one-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be
satisfied simultaneously. You likely once learned the implicit function theorem
which (in this context) gives us the hope of satisfying N equations in N unknowns
simultaneously. Note that we have only hope, not certainty. A nonlinear set of
equations may have no (real) solutions at all. Contrariwise, it may have more than
one solution. The implicit function theorem tells us that “generically” the solutions
will be distinct, pointlike, and separated from each other. If, however, life is so
unkind as to present you with a nongeneric, i.e., degenerate, case, then you can get
a continuous family of solutions. In vector notation, we want to find one or more
N -dimensional solution vectors x such that

f(x) = 0 (9.0.2)

where f is the N -dimensional vector-valued function whose components are the
individual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and
(9.0.1). Simultaneous solution of equations in N dimensions is much more difficult
than finding roots in the one-dimensional case. The principal difference between one
and many dimensions is that, in one dimension, it is possible to bracket or “trap” a root
between bracketing values, and then hunt it down like a rabbit. In multidimensions,
you can never be sure that the root is there at all until you have found it.

Except in linear problems, root finding invariably proceeds by iteration, and
this is equally true in one or in many dimensions. Starting from some approximate
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satisfied. For smoothly varying functions, good algorithms

347

348 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

will always converge, provided that the initial guess is good enough. Indeed one can
even determine in advance the rate of convergence of most algorithms.

It cannot be overemphasized, however, how crucially success depends on
having a good first guess for the solution, especially for multidimensional problems.
This crucial beginning usually depends on analysis rather than numerics. Carefully
crafted initial estimates reward you not only with reduced computational effort, but
also with understanding and increased self-esteem. Hamming’s motto, “the purpose
of computing is insight, not numbers,” is particularly apt in the area of finding
roots. You should repeat this motto aloud whenever your program converges, with
ten-digit accuracy, to the wrong root of a problem, or whenever it fails to converge
because there is actually no root, or because there is a root but your initial estimate
was not sufficiently close to it.

“This talk of insight is all very well, but what do I actually do?” For one-
dimensional root finding, it is possible to give some straightforward answers: You
should try to get some idea of what your function looks like before trying to find
its roots. If you need to mass-produce roots for many different functions, then you
should at least know what some typical members of the ensemble look like. Next,
you should always bracket a root, that is, know that the function changes sign in an
identified interval, before trying to converge to the root’s value.

Finally (this is advice with which some daring souls might disagree, but
we give it nonetheless) never let your iteration method get outside of the best
bracketing bounds obtained at any stage. We will see below that some pedagogically
important algorithms, such as secant method or Newton-Raphson, can violate this
last constraint, and are thus not recommended unless certain fixups are implemented.

Multiple roots, or very close roots, are a real problem, especially if the
multiplicity is an even number. In that case, there may be no readily apparent
sign change in the function, so the notion of bracketing a root — and maintaining
the bracket — becomes difficult. We are hard-liners: we nevertheless insist on
bracketing a root, even if it takes the minimum-searching techniques of Chapter 10
to determine whether a tantalizing dip in the function really does cross zero or not.
(You can easily modify the simple golden section routine of §10.1 to return early
if it detects a sign change in the function. And, if the minimum of the function is
exactly zero, then you have found a double root.)

As usual, we want to discourage you from using routines as black boxes without
understanding them. However, as a guide to beginners, here are some reasonable
starting points:

• Brent’s algorithm in §9.3 is the method of choice to find a bracketed root
of a general one-dimensional function, when you cannot easily compute
the function’s derivative. Ridders’ method (§9.2) is concise, and a close
competitor.

• When you can compute the function’s derivative, the routine rtsafe in
§9.4, which combines the Newton-Raphson method with some bookkeep-
ing on bounds, is recommended. Again, you must first bracket your root.

• Roots of polynomials are a special case. Laguerre’s method, in §9.5,
is recommended as a starting point. Beware: Some polynomials are
ill-conditioned!

• Finally, for multidimensional problems, the only elementary method is
Newton-Raphson (§9.6), which works very well if you can supply a

9.0 Introduction 349

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

good first guess of the solution. Try it. Then read the more advanced
material in §9.7 for some more complicated, but globally more convergent,
alternatives.

Avoiding implementations for specific computers, this book must generally
steer clear of interactive or graphics-related routines. We make an exception right
now. The following routine, which produces a crude function plot with interactively
scaled axes, can save you a lot of grief as you enter the world of root finding.

#include <stdio.h>
#define ISCR 60 Number of horizontal and vertical positions in display.
#define JSCR 21
#define BLANK ’ ’
#define ZERO ’-’
#define YY ’l’
#define XX ’-’
#define FF ’x’

void scrsho(float (*fx)(float))
For interactive CRT terminal use. Produce a crude graph of the function fx over the prompted-
for interval x1,x2. Query for another plot until the user signals satisfaction.
{

int jz,j,i;
float ysml,ybig,x2,x1,x,dyj,dx,y[ISCR+1];
char scr[ISCR+1][JSCR+1];

for (;;) {
printf("\nEnter x1 x2 (x1=x2 to stop):\n"); Query for another plot, quit

if x1=x2.scanf("%f %f",&x1,&x2);
if (x1 == x2) break;
for (j=1;j<=JSCR;j++) Fill vertical sides with character ’l’.

scr[1][j]=scr[ISCR][j]=YY;
for (i=2;i<=(ISCR-1);i++) {

scr[i][1]=scr[i][JSCR]=XX; Fill top, bottom with character ’-’.
for (j=2;j<=(JSCR-1);j++) Fill interior with blanks.

scr[i][j]=BLANK;
}
dx=(x2-x1)/(ISCR-1);
x=x1;
ysml=ybig=0.0; Limits will include 0.
for (i=1;i<=ISCR;i++) { Evaluate the function at equal intervals.

Find the largest and smallest val-
ues.

y[i]=(*fx)(x);
if (y[i] < ysml) ysml=y[i];
if (y[i] > ybig) ybig=y[i];
x += dx;

}
if (ybig == ysml) ybig=ysml+1.0; Be sure to separate top and bottom.
dyj=(JSCR-1)/(ybig-ysml);
jz=1-(int) (ysml*dyj); Note which row corresponds to 0.
for (i=1;i<=ISCR;i++) { Place an indicator at function height and

0.scr[i][jz]=ZERO;
j=1+(int) ((y[i]-ysml)*dyj);
scr[i][j]=FF;

}
printf(" %10.3f ",ybig);
for (i=1;i<=ISCR;i++) printf("%c",scr[i][JSCR]);
printf("\n");
for (j=(JSCR-1);j>=2;j--) { Display.

printf("%12s"," ");
for (i=1;i<=ISCR;i++) printf("%c",scr[i][j]);
printf("\n");

}
printf(" %10.3f ",ysml);

350 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (i=1;i<=ISCR;i++) printf("%c",scr[i][1]);
printf("\n");
printf("%8s %10.3f %44s %10.3f\n"," ",x1," ",x2);

}
}

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 5.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapters 2, 7, and 14.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 8.

Householder, A.S. 1970, The Numerical Treatment of a Single Nonlinear Equation (New York:
McGraw-Hill).

9.1 Bracketing and Bisection

We will say that a root is bracketed in the interval (a, b) if f(a) and f(b)
have opposite signs. If the function is continuous, then at least one root must lie in
that interval (the intermediate value theorem). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the
possibility that a bracketed root is not really there, as for example

f(x) =
1

x− c (9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge
to c in (9.1.1). Luckily there is not much possibility of your mistaking c, or any
number x close to it, for a root, since mere evaluation of |f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or of even determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of about x = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a
function’s minimum. There it is possible to give a procedure that always succeeds;
in essence, “Go downhill, taking steps of increasing size, until your function starts
back uphill.” There is no analogous procedure for roots. The procedure “go downhill
until your function changes sign,” can be foiled by a function that has a simple
extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this
procedure is often a good first start; success is usual if your function has opposite
signs in the limit x → ±∞.

