NUCLEAR WALLET CARDS

(Fifth edition)

JULY 1995

JAGDISH K. TULI

NATIONAL NUCLEAR DATA CENTER

for

The U.S. Nuclear Data Network

Supported by The Division of Nuclear Physics, Office of High Energy and Nuclear Physics, US Department of Energy.

Brookhaven National Laboratory^{*} Upton, New York 11973, USA * Operated by Associated Universities, Inc., under contract No. DE-AC02-76CH00016 with US Department of Energy

NUCLEAR WALLET CARDS

July 1995

CONTENTS

U. S. Nuclear Data Network	ii
Introduction	iii
Explanation of Table	iv
Acknowledgements	vii
References	vii
Nuclear Wallet Cards	1 - 70

Appendices:

Ι	Table of Elemental Properties
II	Frequently-Used Constants
III	Fundamental Constants
IV	Energy-Equivalent Factors
V	Observed Hypernuclides
VIa	Periodic Table of Elements
VIb	List of Elements-Alphabetical
VIc	List of Elements-by Z
VII	International Nuclear Structure
	and Decay Data Network
VIII	The Nuclear Data Centers Network
Cent	erfold: Electronic Nuclear Data Access

U.S. NUCLEAR DATA NETWORK

(National coordinator: J. M. Dairiki)

National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000, Upton, NY 11973-5000 **Contact: M. R. Bhat** e-mail: nndcmb@bnl.gov

Nuclear Data Project Oak Ridge National Laboratory Oak Ridge, TN 37831-6371 **Contact: M. J. Martin** e-mail: martinm@orph01.phy.ornl.gov

Isotopes Project Lawrence Berkeley National Laboratory Berkeley, CA 94720 **Contact: J. M. Dairiki** e-mail: dairiki@lbl.gov

Idaho National Engineering Laboratory P.O. Box 1625, Idaho Falls, ID 83415-2114 **Contact: R. G. Helmer** e-mail: rhz@inel.gov

TUNL Nuclear Data Evaluation Project Triangle Universities Nuclear Laboratory P.O. Box 90308, Durham, NC 27708-0308 **Contact: D. R. Tilley** e-mail: ron_tilley@ncsu.edu

Center for Nuclear Information Technology Department of Chemistry San Jose State University San Jose, CA 95192-0101 **Contact: C. A. Stone**

e-mail: stone.c@applelink.apple.com

Division of Nuclear Physics ER-23, U.S. Department of Energy 19901 Germantown Road Germantown, MD 20874-1290 **Contact: R. A. Meyer** e-mail: dick.meyer@oer.doe.gov

INTRODUCTION

This is an updated edition of the 1990 booklet of the same name[†].

This booklet presents selected properties of all known nuclides and their known isomeric states.

The data given here are taken mostly from the adopted properties of the various nuclides as given in the Evaluated Nuclear Structure Data File (ENSDF)[1]. The data in ENSDF are based on experimental results and are published in Nuclear Data Sheets[2] for A \geq 45 and in Nuclear Physics[3,4] for A<45. For nuclides for which either there are no data in ENSDF or those data have since been superseded, the half-life and the decay modes are taken either from recent literature[5] or from other sources[e.g., 6,7,8]. The ground-state mass excesses are from the mass adjustments by G. Audi and A. H. Wapstra[9]. The isotopic abundances are those of N. E. Holden[10].

For other references, experimental data, and information on the data measurements, please refer to the original evaluations [1-4]. The data[1] were updated to **June 30, 1995**.

[†]The first *Nuclear Wallet Cards* was produced by F. Ajzenberg-Selove and C. L. Busch in 1971. The Isotopes Project, Lawrence Berkeley National Laboratory, produced the next edition in 1979 based upon the *Table of Isotopes*, 7th edition (1978)[12]. The third (1985) and the fourth (1990) editions were published by J. K. Tuli, National Nuclear Data Center, Brookhaven National Laboratory.

Column 1, Isotope (Z, El, A):

Nuclides are listed in order of increasing atomic number (Z), and are subordered by increasing mass number (A). All isotopic species are included as well as all isomers with half-life ≥ 0.1 s, and some other isomers which decay by SF or α emissions. A nuclide is included even if only its mass estimate or its production cross section is available. For the latter nuclides T¹/₂ limit is given[8].

Isomeric states are denoted by the symbol "m" after the mass number and are given in the order of increasing excitation energy.

The 235 U thermal fission products, with fractional cumulative yields $\geq 10^{-6}$, are *italicized* in the table. The information on fission products is taken from the ENDF/B-VI fission products file[11].

The names for elements Z=104-109 are those adopted by the American Chemical Society Nomenclature Committee. The symbols Rf (Rutherfordium) and Ha (Hahnium) have, not been accepted internationally due to conflicting claims about the discovery of these elements.

Column 2, $J\pi$:

Spin and parity assignments, without and with parentheses, are based upon strong and weak arguments, respectively. See the introductory pages of any January issue of *Nuclear Data Sheets*[2] for description of strong and weak arguments for $J\pi$ assignments.

Explanation of Table (cont.)

Column 3, Mass Excess, Δ :

Mass excesses, M-A, are given in MeV with $\Delta({}^{12}C) = 0$, by definition. For isomers the values are obtained by adding the excitation energy to the $\Delta(g.s.)$ values. Wherever the excitation energy is not known, the mass excess for the next lower isomer (or g.s.) is given. The values are given to the accuracy determined by uncertainty in $\Delta(g.s.)$ (maximum of three figures after the decimal). The uncertainty is ≤ 9 in the last significant figure. An appended "s" denotes that the value is obtained from systematics.

Column 4, T^½, Γ or Abundance:

The half-life and the abundance (in**bold face**) are shown followed by their units ("%" symbol in the case of abundance) which are followed by the uncertainty, in *italics*, in the last significant figure. For example, 8.1 s 10 means 8.1±1.0 s. For some very short-lived nuclei, level widths rather than half-lives are given. There also, the width is followed by units (e.g., eV, keV, or MeV) which are followed by the uncertainty in *italics*, if known.

Column 5, Decay Mode:

Decay modes are given in decreasing strength from left to right, followed by the percentage branching, if known ("w" indicates a weak branch). The percentage branching is omitted where there is no competing mode of decay or no other mode has been observed.

Explanation of Table (cont.)

The various modes of decay are given below:

β-	β ⁻ decay
ε	ϵ (electron capture), or $\epsilon+\beta^+,$ or β^+ decay
IT	isomeric transition (through γ or conver– sion–electron decay)
n, p, α,	neutron, proton, alpha, decay
SF	spontaneous fission
2β-, 3α,	double β^- decay ($\beta^-\beta^-$), decay through emission of 3 α 's,
$\beta - n, \beta - p, \beta - \alpha, \dots$	delayed n, p, α , emission following β^- decay
ερ, εα, εSF,	delayed p, α, SF, decay following ε or β ⁺ decay

Appendices:

The appendices have been updated to conform to the Fundamental Physical Constants[13]. For properties of the elementary particles and for the astrophysical constants please see the Review of Particle Properties, *Physical Review* D50, 1173 (1994) and its subsequent biennial updates. See also the World Wide Web at URL: http://pdg.lbl.gov/

Acknowledgements

The appendix on Λ hypernuclides has been prepared by R. Chrien, BNL. The author is thankful to many colleagues, especially D. Alburger, R. Casten, R. Chrien, and J. Millener, all at BNL, P. Endt at Utrecht, R. Tilley at TUNL, and G. Audi, O. Bersillon, and J. Blachot in France for many helpful suggestions. Special thanks are due to M. Bhat, T. Burrows, R. Kinsey, and V. McLane for help with scanning recent literature. The help received in production of the booklet from other members of NNDC, particularly, M. Blennau, P. Dixon, Y. Sanborn, and J. Tallarine is gratefully acknowledged. The author is grateful for encouragement and support received from M. Bhat, C. Dunford, and R. Meyer.

This research was supported by the Division of Nuclear Physics, Office of High Energy and Nuclear Physics, US Department of Energy.

References

1. Evaluated Nuclear Structure Data Filea computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory (file as of June 1995).

2. Nuclear Data Sheets – Academic Press, San Diego. Evaluations published by mass number for A = 45 to 266. See page ii of any issue for the index to A-chains.

3. Nuclear Physics – North Holland Publishing Co., Amsterdam – Evaluations by F. Ajzenberg-Selove and by D. R. Tilley, H. R. Weller, C. M. Cheves, and R. M. Chasteler for A = 3 to 20. 4. Energy Levels of A = 21-44 Nuclei (VII), P. M. Endt, *Nuclear Physics* A521, 1 (1990).

5. Nuclear Science Reference Filea bibliographic computer file of nuclear science references continually updated and maintained by the National Nuclear Data Center, Brookhaven National Laboratory. Recent literature scanned by S. Ramavataram.

6. *Table of Isotopes*, 8th edition, R. B. Firestone, *et al.* (under preparation).

7. Spontaneous Fission, D. C. Hoffman, T. M. Hamilton, and M. R. Lane, Rept. LBL-33001 (1992).

8. NUBASE: A Database of Nuclear and Decay Properties, G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Intl. Symposium on Radionuclide Metrology and its Applications (1995).

9. The 1993 Atomic Mass Evaluation, G. Audi and A. H. Wapstra, computerized list of recommended values based on authors' publication *Nuclear Physics* A565, 1 (1993)

10. Table of the Isotopes, N. E. Holden, Rept BNL-61460 (1995) and private communication.

11. Evaluation and Compilation of Fission Product Yields 1993, T. R. England and B. F. Rider; Rept. LA-UR-94-3106 (1994). ENDF/B-VI evaluation; MAT #9228, Revision 1. 12. *Table of Isotopes* (1978), 7th edition, Editors: C. M. Lederer, V. S. Shirley, Authors: E. Browne, J. M. Dairiki, R. E. Doebler, A. A. Shihab-Eldin, J. Jardine, J. K. Tuli, and A. B. Buyrn, John Wiley, New York.

13. The Fundamental Physical Constants, E. R. Taylor and B. N. Taylor, *Physics Today* BG9 (August, 1995).

Isotope				Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
0	n	1	1/2+	8.071	10.4 m 2	β–
1	н	1	1/2 +	7.289	99.985% <i>1</i>	
		2	1+	13.136	0.015% 1	
		3	1/2 +	14.950	12.33 v 6	β-
		4	2-	26.0	5.42 MeV	n
		5		38.5		
		6		41.9		
2	He	3	1/2 +	14.931	0.000137% <i>3</i>	
		4	0+	2.425	99.999863% <i>3</i>	
		5	3/2 -	11.39	0.60 MeV 2	α, n
		6	0+	17.594	806.7 ms 15	β-
		7	(3/2)-	26.11	160 keV <i>30</i>	'n
		8	0+	31.598	119.0 ms 15	β-, β-n 16%
		9	(1/2-)	40.82	≈0.3 MeV	n
		10	0+	48.81	0.3 MeV 2	n
3	Li	4	2-	25.3	6.03 MeV	р
		5	3/2 -	11.68	≈1.5 MeV	α, p
		6	1+	14.086	7.5% <i>2</i>	
		7	3/2 -	14.908	92.5% 2	
		8	2+	20.945	838 ms <i>6</i>	β-, β-2α
		9	3/2-	24.954	178.3 ms 4	β –, β –n 49.5%,
						β–n2α
		10	0.10	33.44	1.2 MeV 3	n
		11	3/2-	40.79	8.5 ms 2	β -, β -n α 0.027%, β -n
4	Be	6	0+	18.375	92 keV <i>6</i>	2p
		7	3/2 -	15.769	53.29 d 7	ε 3
		8	0+	4.942	6.8 eV 17	2α
		9	3/2 -	11.348	100%	
		10	0+	12.607	1.51×10 ⁶ y 6	β–
		11	1/2 +	20.174	13.81 s [°] 8	β -, β - α 3.1%
		12	0+	25.08	23.6 ms 9	β –, β –n<1%
		13	(1/2, 5/2) +	35.16	0.9 MeV 5	n
		14	0+	39.9	4.35 ms 17	β– , β–n 81%, β–2n 5%
5	В	7	(3/2-)	27.87	1.4 MeV 2	р, 2р, 3р
		8	2+	22.921	770 ms <i>3</i>	εα, ε, ε2α
		9	3/2 -	12.416	0.54 keV <i>21</i>	2α, p
		10	3+	12.051	19.9% <i>2</i>	-
		11	3/2 -	8.668	80.1% 2	
		12	1+	13.369	20.20 ms 2	β-, β-3α1.58%
		13	3/2 -	16.562	17.36 ms <i>16</i>	β-
		14	2-	23.66	13.8 ms <i>10</i>	β–
		15		28.97	10.5 ms <i>3</i>	β-
		16	(0-)	37.1s		n
		17	(3/2-)	43.7	5.08 ms 5	β –, β –xn
		18		52.3s		
		19		59.4s		
6	С	8	0+	35.09	230 keV <i>50</i>	2p
		9	(3/2-)	28.914	126.5 ms <i>9</i>	ε, ερ, ε2α

Is	Isotope		Δ	Τ½, Γ, or		
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
6	С	10	0+	15.699	19.255 s <i>53</i>	ε
		11	3/2 -	10.650	20.39 m <i>2</i>	ε
		12	0+	0.000	98.89% <i>1</i>	
		13	1/2 -	3.125	1.11% <i>1</i>	
		14	0+	3.020	5730 y <i>40</i>	β-
		15	1/2 +	9.873	2.449 s 5	β-
		16	0+	13.694	0.747 s <i>8</i>	β-
		17		21.04	193 ms <i>13</i>	β – , β –n 32%
		18	0+	24.92	88 ms +9-8	β-
		18	0+	24.92	66 ms +25-15	β–n 19%
		19		32.8	49 ms 4	β–, β–n 61%
		20	0+	37.6	14 ms <i>6</i>	β -, β -n 72%
		21		46.0s		
		22	0+	52.6s	>200 ns	
7	Ν	10		39.7s		
		11	1/2 +	25.3	1.58 MeV +75-52	?р
		12	1+	17.338	11.000 ms <i>16</i>	ε, ε3α 3.44%
		13	1/2 -	5.345	9.965 m 4	8
		14	1+	2.863	99.634% <i>9</i>	
		15	1/2-	0.101	0.366% <i>9</i>	
		16	2-	5.682	7.13 s 2	β-
		16 m	0-	5.802	7.25 us 6	β IT
		17	1/2 -	7.87	4.173 s 4	$\beta - , \beta - n$
		18	1-	13.12	624 ms <i>12</i>	β-, B-
		19		15.86	0.304 s 16	$\beta - , \beta - n \approx 62.4\%$
		20		21.77	100 ms +30-20	$\beta \beta - n \approx 61\%$
		21		25.23	95 ms <i>13</i>	β β -n 84%
		22		32.1	24 ms 7	β β -n 35%
		23		37.7s	>200 ns	
		24		47.0s		
8	0	12	0+	32.06	0.40 MeV 25	n
-	-	13	(3/2-)	23.111	8.58 ms 5	r E
		14	0+	8.007	70.606 s <i>18</i>	2
		15	1/2-	2.855	122.24 s 16	2
		16	0+	-4.737	99.762% <i>15</i>	-
		17	5/2+	-0.809	0.038% 3	
		18	0+	-0.782	0.200% 12	
		19	5/2 +	3.332	26.91 s <i>8</i>	β-
		20	0+	3.797	13.51 s <i>5</i>	β-
		21 (1	(2.3/2.5/2) +	8.06	3.42 s 10	β-
		22	0+	9.28	2.25 s 15	β-
		23		14.6	82 ms 37	β -, β -n 31%
		24	0+	19.0	61 ms <i>26</i>	β -, β -n 58%
		25		27.1s		1 1
		26	0+	35.2s		
9	F	14	(2-)	33.65		n
	-	15	(1/2+)	16.8	1.0 MeV 2	r D
		16	0-	10.680	40 keV 20	r D
		17	5/2+	1.952	64.49 s 16	r E
		18	1+	0.873	109.77 m 5	ε
		19	1/2 +	-1.487	100%	

Isotope		pe		Δ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
9	F	20	2+	-0.017	11.00 s 2	β-
		21	5/2 +	-0.048	4.158 s 20	β-
		22	4+, (3+)	2.79	4.23 s 4	β-
		23	(3/2, 5/2) +	3.33	2.23 s 14	β-
		24	(1,2,3)+	7.54	0.34 s <i>8</i>	β-
		25		11.27		$\beta - , \beta - n$
		26		18.3		
		27		25.0	>200 ns	
		28		33.2s		
		29		40.3s	>200 ns	
10	No	15		11 16		
10	ne	16	0 .	41.45 93.00	199 koV 37	n
		17	0+ 1/9	23.33	122 KeV 57	p c cp cc
		10	1/2-	10.49	1672 ms 8	ε, εμ, εα
		10	0+ 1/9	J. 319		£
		19	1/2 +	1.731		ε
		۵1	0+	-7.042	90.48% J	
		21	3/2+	-5.732		
		22	0+	-8.024	9.25% 3	0
		23	5/2+	-5.154	37.24 s 12	β-
		24	0+	-5.95	3.38 m 2	β-
		25	(1/2, 3/2) +	-2.06	602 ms <i>8</i>	β-
		26	0+	0.43	0.23 s 6	β-
		27	_	7.09	32 ms 2	β -, β -n
		28	0+	11.3	14 ms <i>10</i>	β -, β -n 16%
		29		18.0	0.2 s 1	β–n?
		30	0+	22.2	>200 ns	
		31		30.8s		
		32	0+	37.2s	>200 ns	
11	Na	17		35.2s		
		18		25.3s		
		19		12.93		
		20	2+	6.845	447.9 ms <i>23</i>	ε
		21	3/2 +	-2.184	22.49 s 4	e
		22	3+	-5.182	2.6019 v 4	e
		23	3/2 +	-9.530	100%	5
		24^{20}	4 +	-8 418	14 9590 h <i>12</i>	ß_
		$24 \mathrm{m}$	1+	-7.946	20.20 ms 7	ΤΤ 99, 95% β- 0, 05%
		25	5/2+	-9.358	59.1 s 6	β_
		26	3+	-6.90	1072 \$ 9	β_
		27	5/2+	-5.58	301 ms 6	$\beta = \beta - n 0 0.08\%$
		28	1+	-1.03	30.5 ms 4	β_{-} β_{-} $n = 0.58\%$
		29	1	2.62	44 9 ms 12	β_
		29	3/2	2.62	44.9 ms 12	$\beta = n 21 5\%$
		20 20	2+	2.02 8.59	48 ms 2	$\beta = \beta - n 30\%$
		00		0.00	10 III3 &	$\beta = 9n + 1 + 17\%$
						$\beta = \alpha 5 5 \times 10^{-50/2}$
		31	3/9+	127	17.0 ms 1	$\beta = \beta_n 270$
		91	J/ & T	16.1	17.0 1115 4	μ^{-} , μ^{-11} 37/0, B_2n 0 0%
		39	(3 - 4)	18 2	13.2 mc 1	$\beta = \frac{10}{8} 0.3/0$
		52	(3-,4-)	10.0	15.2 1118 4	μ-, μ-11 24/0, β 2η 8 %
		33		26	89 mc 1	$\beta = \frac{10}{0}$
		55		<i>۵</i> 0.	0.2 1115 4	μ, μ-11 σω/0, β 9 n 190/
						p=211 12/0

Isotop		pe		Δ	Τ½, Γ, or		
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode	
11	Na	34		33.s	5.5 ms <i>10</i>	β -, β -n, β -2n 57.5%	
		35		41.s	1.5 ms 5	β – , β –n	
12	Mg	19		32.0s			
	8	20	0+	17.57	95 ms +80-50	ε. ε p≥3%	
		21	(3/2, 5/2) +	10.91	122 ms <i>3</i>	ε, ερ 29.3%	
		22	0+	-0.397	3.857 s 9	3	
		23	3/2 +	-5.473	11.317 s <i>11</i>	8	
		24	0+	-13.933	78.99% <i>3</i>		
		25	5/2 +	-13.193	10.00% <i>1</i>		
		26	0+	-16.215	11.01% 2		
		27	1/2 +	-14.587	9.458 m <i>12</i>	β-	
		28	0+	-15.019	20.91 h <i>3</i>	β–	
		29	3/2 +	-10.66	1.30 s <i>12</i>	β-	
		30	0+	-8.88	335 ms <i>17</i>	β–	
		31		-3.22	230 ms <i>20</i>	β– , β–n 1.7%	
		32	0+	-0.80	120 ms <i>20</i>	β – , β –n 2.4%	
		33		5.2	90 ms <i>20</i>	β-, β-n 17%	
		34	0+	8.5	20 ms <i>10</i>	β-, β-n	
		35		16.3s	>200 ns		
		36	0+	20.9s	>200 ns		
13	Al	21		26.1s	<35 ns		
		22		18.18s	70 ms +50-35	ϵ , $\epsilon p > 0\%$, $\epsilon 2p > 0\%$	
		23		6.77	0.47 s <i>3</i>	ε, ερ	
		24	4+	-0.055	2.053 s 4	ε, εα 0.04%	
		24 n	n 1+	0.371	131.3 ms <i>25</i>	IT 82%, ε 18%,	
						εα 0.03%	
		25	5/2 +	-8.916	7.183 s <i>12</i>	ε	
		26	5+	-12.210	7.4×10 ⁵ y <i>3</i>	ε	
		26 n	n 0+	-11.982	6.3452 s <i>19</i>	8	
		27	5/2 +	-17.197	100%		
		28	3+	-16.851	2.2414 m <i>12</i>	β–	
		29	5/2 +	-18.215	6.56 m <i>6</i>	β–	
		30	3+	-15.87	3.60 s <i>6</i>	β-	
		31	(3/2, 5/2) +	-14.95	644 ms 25	β-	
		32	1+	-11.06	33 ms 4	β–	
		33		-8.50	$>1 \ \mu s$	0 0 0 70/	
		34		-2.86	60 ms 18	β -, β -n 27%	
		30		-0.1	150 ms 50	p-, p-n 63%	
		30		5.9	>1 µs		
		১/ ୨୦		9.0	>1 μ S		
		20		13.78	>200 ms		
	~ •	33	0		>200 115		
14	Si	22	0+	32.2s	6 ms 3	ε, ερ	
		23	0	23.8s	>200 ns	77 0 (
		24	0+	10.75	102 ms 35	ε, εp≈7%	
		25	5/2+	3.83	220 ms 3	ε, ερ	
		26	0+	-7.145	2.234 s 13	8	
		27	5/2+	-12.385	4.16 S Z	ε	
		28	U+	-21.493	92.23% I		
		29 20	1/2+	-21.895	4.0/% ZI		
		30	U+	-24.433	3.10% <i>1</i>		

Is	oto	ре		Δ	Т½, Г, or	
Ζ	El	A	Jπ	(MeV)	Abundance	Decay Mode
14	Si	31	3/2+	-22.949	157.3 m <i>3</i>	β–
		32	0+	-24.081	172 y 4	β–
		33		-20.49	6.18 s <i>18</i>	β–
		34	0+	-19.96	2.77 s 20	β–
		35		-14.36	0.78 s 12	β-
		36	0+	-12.4	0.45 s <i>6</i>	β -, β -n < 10%
		37		-6.5	>1 µs	$\beta - n < 15\%$
		38	0+	-3.7	>1 µs	
		39		2.1s	>1 µs	
		40	0+	5.4s	>200 ns	
		41		11.8s	>200 ns	
		42	0+		>200 ns	
15	Р	24		32.0s		
		25		18.9s		
		26	(3+)	11.0s	20 ms +35-15	ε, εp 2%, ε2p
		27	(1/2+)	-0.75	260 ms <i>80</i>	ε, εр 6%
		28	3+	-7.161	270.3 ms 5	3
		29	1/2 +	-16.952	4.140 s <i>14</i>	3
		30	1+	-20.201	2.498 m 4	ε
		31	1/2 +	-24.441	100%	
		32	1+	-24.305	14.262 d <i>14</i>	β-
		33	1/2+	-26.338	25.34 d <i>12</i>	β-
		34	1+	-24.558	12.43 s 8	β-
		35	1/2 +	-24.858	47.3 s 7	β-
		36		-20.25	5.6 s 3	β-
		37		-18.99	2.31 s <i>13</i>	β-
		38		-14.5	0.64 s 14	$\beta - , \beta - n < 10\%$
		39		-12.6	0.16 s + 30 - 10	$\beta - , \beta - n 41\%$
		40		-8.3	200 ms 80	p-, p-n 30%
		41		-4.8	120 ms 20	p-, p-n 30%
		42		0.1S 2.1c	110 ms 30	p-, p-n 50%
		43		5.18	$\sim 200 \text{ mg}$	p-, p-n
		44			>200 ms	
		45			>200 ms	
10	C	40	0	00.0	2200 113	
16	3	20	0+	26.0S		2
		21	0	17.58	195 ms 10	$\varepsilon cn > 0^{0/2}$
		20	5/2+	-3.16	125 ms 10 187 ms 1	ϵ , $\epsilon p > 0/0$
		20	0+	-14 063	107 m 34 1 178 s 5	e e
		31	1/2 +	-19.045	2 572 s 13	e
		32	0+	-26.016	95.02% 9	e
		33	3/2+	-26.586	0.75% 1	
		34	0+	-29.932	4.21% 8	
		35	3/2+	-28.846	87.51 d <i>12</i>	β-
		36	0+	-30.664	0.02% 1	P
		37	7/2-	-26.896	5.05 m <i>2</i>	β–
		38	0+	-26.861	170.3 m 7	β–
		39	(3/2, 5/2, 7/2) -	-23.16	11.5 s 5	β–
		40	0+	-22.8	8.8 s 22	β–
		41		-18.6	>1 µs	
		42	0+	-17.2	0.56 s <i>6</i>	β -, β -n < 4%

Isotope		Δ	Τ½, Γ, or			
ZI	El	Α	Jπ	(MeV)	Abundance	Decay Mode
16 9	S	43		-12.5	220 ms 65	β-, β-n 40%
		44	0+	-10.9s	123 ms <i>10</i>	β β -n 18%
		45		-4.8s	82 ms 13	β-
		46	0+		>200 ns	I.
		47			>200 ns	
		48	0+		>200 ns	
17 (CI	28		26.65		
1, 1	•••	29		13.15		
		30		4.45		
		31		-7.06	150 ms <i>25</i>	ε εn 0.44%
		32	1+	-13.331	298 ms 1	ε. εα 0.01%.
		0.2		101001		$\epsilon_{\rm p}$ 7.0×10 ⁻³ %
		33	3/2 +	-21.003	2.511 s <i>3</i>	е Е
		34	0+	-24.440	1.5264 s <i>14</i>	ε
		34 m	3+	-24.294	32.00 m 4	ε 55.4%. IT 44.6%
		35	3/2 +	-29.014	75.77% <i>5</i>	,
		36	2+	-29.522	3.01×10^5 y 2	β-98.1%, ε 1.9%
		37	3/2 +	-31.761	24.23% ⁵	•
		38	2-	-29.798	37.24 m 5	β–
		38 m	5-	-29.127	715 ms <i>3</i>	ĪT
		39	3/2 +	-29.800	55.6 m <i>2</i>	β–
		40	2-	-27.56	1.35 m <i>2</i>	β–
		41	(1/2, 3/2) +	-27.34	38.4 s <i>8</i>	β–
		42		-25.0	6.8 s <i>3</i>	β–
		43		-24.0	3.3 s 2	β–
		44		-20.0	0.43 s <i>6</i>	β -, β -n < 8%
		45		-18.9	400 ms 43	β-, β-n 24%
		46		-14.8s	0.22 s 4	β-, β-n 60%
		47		-11.2s	>200 ns	β -, β -n \leq 3%
		48			>200 ns	
		49			≥170 ns	
		51			>200 ns	
18 A	Ar	30	0+	20.1s		
		31		11.3s		
		32	0+	-2.18	98 ms 2	ε, ερ
		33	1/2 +	-9.38	173.0 ms <i>20</i>	ε, ε р 38.7%
		34	0+	-18.378	844.5 ms <i>34</i>	8
		35	3/2+	-23.048	1.775 s 4	ε
		36	0+	-30.230		
		3/	3/2 +	-30.948	35.04 d 4	8
		აბ 20	0+ 7/9	-34.713		ß
		39	1/2-	-33.242	20993 00 60090/ 20	p–
		40	0+ 7/9	-33.040	99.0003 % 30	ß
		41	0	-33.007	109.34 m 12 39.0×11	р– В
		42 42	(3/2 5/2)	-34.42	5 37 m 6	μ · β_
		44	$(0, \omega, 0, \omega)$ 0+	-32 26	11 87 m 5	Ρ β_
		45	01	-29.72	$21.48 \le 15$	к В-
		46	0+	-29.72	8.4 s 6	β-
		47	<u> </u>	-25.9		I.
		48	0+	-23.2s		
		49			≥170 ns	

6

Is	otoj	pe		Δ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
18	Ar	50	0+		≥170 ns	
		51			>200 ns	
19	K	32		20.4s		
		33		6.8s		
		34		-1.5s		
		35	3/2 +	-11.17	190 ms <i>30</i>	ε, ερ0.37%
		36	2+	-17.425	342 ms 2	ε, ε р 0.05% ,
						εα 3.4×10 ⁻³ %
		37	3/2 +	-24.799	1.226 s 7	ε
		38	3+	-28.802	7.636 m <i>18</i>	ε
		38 n	n 0+	-28.672	923.9 ms <i>6</i>	ε
		39	3/2 +	-33.807	93.2581% 44	
		40	4-	-33.535	1.277×10 ⁹ y 8	$\beta - 89.28\%$,
					0.0117% <i>1</i>	ε 10.72%
		41	3/2 +	-35.559	6.7302% <i>44</i>	
		42	2-	-35.021	12.360 h <i>3</i>	β-
		43	3/2 +	-36.593	22.3 h <i>1</i>	β–
		44	2-	-35.81	22.13 m <i>19</i>	β–
		45	3/2 +	-36.61	17.3 m <i>6</i>	β–
		46	(2-)	-35.42	105 s <i>10</i>	β-
		47	1/2+	-35.697	17.50 s 24	β-
		48	(2-)	-32.12	6.8 s 2	$\beta_{\beta-}, \beta_{n-1.14\%}$
		49	(3/2+)	-30.32	1.26 s 5	β– , β–n 86 %
		50	(0-, 1, 2-)	-25.4	472 ms 4	β -, β -n 29%
		51	(1/2+,3/2+)		365 ms <i>5</i>	β-, β-n 47%
		52			105 ms 5	β -, β -n > 88%
		53	(3/2+)		30 ms 5	β-, β-n 8 5%
		54			10 ms 5	β– , β–n
20	Ca	34	0+	13.2s		
		35		4.44s	50 ms <i>30</i>	ε, ε2p
		36	0+	-6.44	102 ms 2	ε, εp≈20%
		37	3/2 +	-13.16	181.1 ms <i>10</i>	ε, ε p 76%
		38	0+	-22.059	440 ms 8	ε
		39	3/2 +	-27.276	859.6 ms 14	ε
		40	0+	-34.846	96.941% <i>18</i>	
		41	7/2 -	-35.138	1.03×10 ⁵ y 4	ε
		42	0+	-38.547	0.647% <i>9</i>	
		43	7/2 -	-38.408	0.135% <i>6</i>	
		44	0+	-41.469	2.086% 12	
		45	7/2 -	-40.813	162.61 d <i>9</i>	β-
		46	0+	-43.135	0.004% <i>3</i>	
		47	7/2-	-42.340	4.536 d <i>3</i>	β-
		48	0+	-44.215	>6×10 ¹⁸ y	2β-
					0.187% <i>4</i>	
		49	3/2 -	-41.290	8.718 m <i>6</i>	β–
		50	0+	-39.571	13.9 s 6	β–
		51	(3/2-)	-35.90	10.0 s 8	β–, β–n
		52	0+	-32.5	4.6 s 3	β–
		53	(3/2-,5/2-)	-27.9s	90 ms 15	β -, β -n > 30%
21	Sc	36		13.9s		
		37		2.8s		

Is	otoj	pe		Δ	Т½, Г, or	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
21	Sc	38		-4.9s		
		39		-14.17		
		40	4-	-20.526	182.3 ms 7	ε, ε р0.44% ,
						εα 0.02%
		41	7/2 -	-28.642	596.3 ms <i>17</i>	ε
		42	0+	-32.121	681.3 ms 7	ε
		42 m 7	7+,(5,6)+	-31.505	61.7 s 4	ε
		43	7/2 -	-36.188	3.891 h <i>12</i>	ε
		44	2+	-37.816	3.927 h <i>8</i>	ε
		44 m	6+	-37.545	58.6 h <i>1</i>	IT 98.8%, ε 1.2%
		45	7/2 -	-41.069	100%	
		45 m	3/2 +	-41.057	318 ms 7	IT
		46	4+	-41.759	83.79 d 4	β-
		46 m	1 –	-41.616	18.75 s 4	IT
		47	7/2 -	-44.332	3.3492 d <i>6</i>	β–
		48	6+	-44.493	43.67 h <i>9</i>	β–
		49	7/2 -	-46.552	57.2 m <i>2</i>	β–
		50	5+	-44.54	102.5 s 5	β–
		50 m	(2,3)+	-44.28	0.35 s 4	$IT > 97.5\%, \beta - < 2.5\%$
		51	(7/2)-	-43.22	12.4 s <i>1</i>	β–
		52	3+	-40.5	8.2 s 2	β–
		53		-38.0s	>1 µs	
		54		-34.0	>1 µs	
		55		-30.s	>1 µs	
22	Ti	38	0+	9.1s		
		39		1.2s	26 ms <i>8</i>	
		40	0+	-8.9	50 ms 15	ε, ερ
		41	3/2 +	-15.71s	80 ms 2	ε , $\varepsilon p \approx 100\%$
		42	0+	-25.121	199 ms <i>6</i>	ε
		43	7/2 -	-29.320	509 ms 5	ε
		44	0+	-37.548	49 y <i>3</i>	ε
		45	7/2 -	-39.007	184.8 m 5	ε
		46	0+	-44.125	8.25% 3	
		47	5/2 -	-44.932	7.44% <i>2</i>	
		48	0+	-48.487	73.72% <i>3</i>	
		49	7/2 -	-48.558	5.41% 2	
		50	0+	-51.426	5.18% <i>2</i>	
		51	3/2 -	-49.727	5.76 m <i>1</i>	β-
		52	0+	-49.464	1.7 m <i>1</i>	β-
		53	(3/2)-	-46.8	32.7 s 9	β-
		54	0+	-45.6	>1 µs	
		55		-41.7	>1 µs	
		56	0+	-39.1	>200 ns	
		57		-34.0s	>200 ns	
		58	0+		>150 ns	
23	V	40		10.3s		
		41		-0.2s		
		42		-8.2s	<55 ns	
		43	(7/2-)	-18.0s	>800 ms	3
		44		-23.85s	90 ms 25	ε, εα
		44 m	6+	-23.85s	155 ms	IT?
		45	7/2 -	-31.87	547 ms <i>6</i>	ε

Is	otop)e		Δ	Т½, Г, or	
Ζ	El	Α	Jπ	(MeV)	Abundance	Decay Mode
23	V	46	0+	-37.074	422.37 ms 20	ε
		47	3/2 -	-42.004	32.6 m <i>3</i>	ε
		48	4+	-44.475	15.9735 d <i>25</i>	ε
		49	7/2 -	-47.956	330 d <i>15</i>	ε
		50	6+	-49.218	$1.4 \times 10^{17} \text{ y} 4$	ε 83%,
					0.250% <i>2</i>	β-17%
		51	7/2 -	-52.198	99.750% <i>2</i>	
		52	3+	-51.438	3.743 m 5	β–
		53	7/2 -	-51.845	1.61 m 4	β–
		54	3+	-49.89	49.8 s 5	β–
		55	(7/2-)	-49.1	6.54 s 15	β–
		56		-46.2	>1 µs	
		57		-44.3	>200 ns	
		58		-40.3	>200 ns	
		59		-37.9	>200 ns	β-
		60		-33.1	>200 ns	
		61			>150 ns	
24	Cr	42	0+	6.0s		
		43	(3/2+)	-2.14s	21 ms +4-3	ε, ερ, εα?
		44	0+	-13.5s	53 ms +4-3	εp
		45		-19.4s	50 ms <i>6</i>	ε, εp>27%
		46	0+	-29.47	0.26 s <i>6</i>	8
		47	3/2-	-34.55	500 ms 15	ε
		48	0+	-42.815	21.56 h <i>3</i>	ε
		49	5/2-	-45.326	42.3 m 1	ε
		50	0+	-50.255	>1.8×10 ¹⁷ y	2ε
					4.345% <i>13</i>	
		51	7/2-	-51.445	27.702 d 4	3
		52	0+	-55.413	83.789% <i>18</i>	
		53	3/2-	-55.281	9.501% 17	
		54	0+	-56.929	2.365% 7	0
		55	3/2-	-55.104	3.497 m 3	р– о
		56		-55.289	5.94 m <i>10</i>	β- 0
		5/3/2	-,5/2-,7/2-	52.39	21.1 s 10	р- о
		58 50	0+	-51.9	7.0 ± 3	p-
		59 60	0.	-47.8	$0.74 \ \text{S} \ \text{z}4$	р- в
		00 61	0+	-40.8	0.37 ± 0	р– в
		62	0	-42.0	>200 ms	h–
		02 62	0+	-41.2	>200 IIS	
		64	0+		>1.00 IIS	
95	M	4.4	01	C Ac	γ1 μ5	
23	IVI II	44 15		0.48		
		45	$(4 \pm)$	-12.13	$41 \text{ ms } \pm 7-6$	e en
		40	(++)	-22 3s	>200 ns	c, cp en
		48	4+	_29 29s	158 1 ms 22	e en 0.28%
		10	T	~~.~~	100.1 1115 22	$\epsilon \alpha < 6.0 \times 10^{-4}$ %
		49	5/2 -	-37.61	382.1 ms <i>68</i>	8
		50	0+	-42.622	283.88 ms 46	ε
		50 m	5+	-42.393	1.75 m <i>3</i>	3
		51	5/2 -	-48.237	46.2 m 1	3
		52	6+	-50.701	5.591 d <i>3</i>	ε

Isotope		Δ	Т½, Г, ог		
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
25 Mn	52 m	2+	-50.323	21.1 m <i>2</i>	ε 98.25%, IT 1.75%
	53	7/2 -	-54.684	$3.74 \times 10^{6} \text{ y} 4$	ε
	54	3+	-55.552	312.12 d <i>10</i>	ϵ , $\beta - < 0.001\%$
	55	5/2 -	-57.707	100%	•
	56	3+	-56.906	2.5785 h <i>2</i>	β-
	57	5/2 -	-57.485	85.4 s <i>18</i>	β-
	58	3+	-55.90	65.3 s 7	β-
	58 m	+	-55.90	3.0 s 1	β-
	59	3/2 - 5/2 -	-55.47	4.6 s 1	β-
	60	0+	-52.8	51 s <i>6</i>	β-
	60 m	3+	-52.5	1.77 s 2	β - 88.5%, IT 11.5%
	61	(5/2)-	-51.6	0.71 s <i>1</i>	β-
	62	(3+)	-48.5	0.88 s 15	β–
	63		-46.8	0.25 s 4	β-
	64		-43.1	>200 ns	
	65		-40.9	>200 ns	β–
	66			>150 ns	
26 Fe	45		13.6s		
	46	0+	0.8s	20 ms +20-8	εр?
	47		-6.6s	27 ms +32-10	εр?
	48	0+	-18.1s	≥200 ns	
	49	(7/2-)	-24.6s	75 ms <i>10</i>	ε, εp≤60%
	50	0+	-34.47	150 ms <i>30</i>	ε, εp≈0%
	51	(5/2-)	-40.22	305 ms 5	8
	52	0+	-48.33	8.275 h <i>8</i>	8
	52 m	(12+)	-41.51	45.9 s <i>6</i>	8
	53	7/2-	-50.941	8.51 m <i>2</i>	8
	53 m	19/2 -	-47.901	2.58 m 4	IT
	54	0+	-56.249	5.845% <i>35</i>	
	55	3/2-	-57.475	2.73 y <i>3</i>	8
	56	0+	-60.601	91.754% 36	
	57	1/2-	-60.176	2.119% 10	
	58	0+	-62.149		0
	59	3/2-	-60.659	44.503 d 6	β-
	60		-61.407	1.5×10° y 3	β-
	61	3/2-,5/2-	-58.92	5.98 m b	β-
	62 62	(5/2)	-38.90		р– е
	03	(3/2) -	-55.5	$0.1 S \theta$	p- 0
	04	0+	-34.9	2.0 s 2	p- 0
	05	0	-51.5	0.48λ	μ–
	67	0+	-30.3	>200 ms	ß
	68	0.+	-40.0 -44.2s	2200 HS	β_ β_
	69	0+	-44.23	>150 ns	μ_
97 Co	19		1 80		
~ 1 CO	40 10		1.05 _0.0c		
			-0.05 -17 5e	>200 ns	
	51		-27 59		
	52		-34.329		8 ED
	53	(7/2-)	-42.64	240 ms <i>20</i>	с, ср Е
	53 m	(19/2)	-39.45	247 ms 12	$\epsilon \approx 98.5\%$, $p \approx 1.5\%$
	54	0+	-48.006	193.28 ms 14	E
				10	-

Isot	ope			Δ	Т½, Г, ог	
ΖE	L A		Jπ	(MeV)	Abundance	Decay Mode
27 C	o 54	m	(7)+	-47.806	1.48 m 2	ε
	55	j	7/2 -	-54.024	17.53 h <i>3</i>	ε
	56	;	4+	-56.035	77.27 d <i>3</i>	ε
	57	1	7/2 -	-59.340	271.79 d <i>9</i>	ε
	58	3	2+	-59.842	70.82 d <i>3</i>	ε
	58	ßm	5+	-59.817	9.15 h <i>10</i>	IT
	59)	7/2 -	-62.224	100%	
	60)	5+	-61.645	1925.1 d <i>5</i>	β–
	60) m	2+	-61.585	10.467 m <i>6</i>	IT 99.76%, β -0.24%
	61		7/2 -	-62.895	1.650 h <i>5</i>	β-
	62	2	2+	-61.43	1.50 m 4	β–
	62	2 m	5+	-61.41	13.91 m <i>5</i>	$\beta - > 99\%$, IT < 1%
	63	3	(7/2) -	-61.84	27.4 s 5	β–
	64	Į	1+	-59.79	0.30 s <i>3</i>	β-
	65	5	(7/2) -	-59.16	1.20 s <i>6</i>	β-
	66	6	(3+)	-56.1	0.23 s <i>2</i>	β-
	67	1	(7/2-)	-55.3	0.42 s 7	β-
	68	3		-51.8	0.18 s 10	β-
	69)		-51.0	0.27 s 5	β-
	70)		-46.8s	>200 ns	β-
	71			-45.0s	0.20 s 5	β-
	72	2			>1 µs	
28 N	[i 50)	0+	-3.85	>150 ns	
20 11	51		0	-11.4s	>200 ns	
	52)	0+	-22.655	38 ms 5	ε. ε p 17%
	53	}	(7/2-)	-29.4s	45 ms 15	ε.
	54	ļ	0+	-39.21	10 110 10	E.
	55	5	7/2 -	-45.33	212.1 ms <i>38</i>	£
	56	5	0+	-53.90	6.077 d <i>12</i>	£
	57	,	3/2 -	-56.076	35.60 h <i>6</i>	ε
	58	3	0+	-60.223	68.077% <i>9</i>	-
	59)	3/2 -	-61.151	$7.6 \times 10^4 \text{ y} 5$	ε
	60)	0+	-64.468	26.223% <i>8</i>	
	61		3/2 -	-64.217	1.140% <i>1</i>	
	62	2	0+	-66.743	3.634% 2	
	63	3	1/2 -	-65.509	100.1 y <i>20</i>	β-
	64	Į	0+	-67.096	0.926 [°] % <i>1</i>	
	65	j	5/2 -	-65.123	2.5172 h <i>3</i>	β–
	66	6	0+	-66.03	54.6 h <i>4</i>	β-
	67	1	(1/2-)	-63.74	21 s <i>1</i>	β–
	68	3	0+	-63.49	19 s +3-6	β-
	69)		-60.4	11.4 s <i>3</i>	β-
	70)	0+	-59.5		β-
	71			-55.9	1.86 s 35	β–
	72	2	0+	-54.7	2.06 s 30	β-
	73	3		-50.3s	0.90 s 15	β-
	74	ł	0+	-48.7s	1.1 s 5	β-
	75	5		-44.2s	>1 µs	
	76	6	0+	-42.2s	>150 ns	
	77	1		-37.2s		
	78	3	0+	-35.s		
29 C	u 52	2		-2.6s		

Is	Isotope			Δ Τ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
29	Cu	53		-13.5s		
		54		-21.7s		
		55		-32.1s	>200 ns	ε, ερ
		56		-38.6s	>200 ns	ε.ερ
		57	3/2 -	-47.31	199.4 ms <i>32</i>	E
		58	1+	-51.660	3.204 s 7	ε
		59	3/2 -	-56.352	81.5 s 5	Ê.
		60	2+	-58.341	23.7 m 4	د د
		61	3/2-	-61.980	3.333 h 5	د د
		62	1+	-62.795	9.74 m 2	د د
		63	3/2 -	-65.576	69.17% <i>3</i>	-
		64	1+	-65.421	12.700 h 2	ε 61%. β- 39%
		65	3/2 -	-67.260	30.83% <i>3</i>	, p
		66	1+	-66.254	5.088 m <i>11</i>	β -
		67	3/2-	-67.300	61.83 h <i>12</i>	β_
		68	1+	-65.54	31.1 s 15	β_
		68 m	(6-)	-64.82	3.75 m 5	Γ IT 84% β- 16%
		69	3/2-	-65.740	2.85 m 15	β_
		70	1+	-62.96	4.5 s 10	β_
		70 m	3-4-5-	-62.82	47 \$ 5	β_
		71	(3/2-)	-62 76	195 <i>s 16</i>	β
		72	(0, 2)	-59.95	6651	β
		73	(1)	-59.28	3953	β_
		74	(1 + 3 +)	-55.85	1 594 s 10	β
		75	(1,0))	-54 6s	1.224×3	β
		76 m		-50.7s	$0.641 \le 6$	β_{-} β_{-} $n 3\%$
		76 m		-50.7s	$1.27 \le 30$	β_
		70 m 77		-49.1s	1.27500 0469 s 8	β
		78		-11 9s	0.40030 0.342 s 11	β
		79		-42.7s	188 ms 25	$\beta = \beta - n 55\%$
•••	7	70	0	12.15	100 1115 20	p , p n 00/0
30	Zn	54	0+	-6.6s		
		55	0	-14.9s		
		56	0+	-25.7s	10 10	5.050/
		57	(7/2-)	-32.7s	40 ms 10	ε, εp≥65%
		58	0+	-42.29	65 ms 9	ε
		59	3/2-	-47.26	182.0 ms 18	ε, ερ 0.1%
		6U 01	0+	-54.18	2.38 m 5	ε
		61	3/2-	-56.34	89.1 S Z	ε
		62	0+	-61.17	9.186 h 13	ε
		63	3/2-	-62.210	38.47 m 5	ε
		64	0+	-66.000		
		65	5/2-	-65.908	244.26 d <i>26</i>	ε
		66	0+	-68.897	27.9% <i>Z</i>	
		67	5/2-	-67.877	4.1% 1	
		68	U+	-/0.004	18.8% 4	0
		69	1/2 - 0/2	-68.415	56.4 m 9	p-
		69m	9/2+	-67.976	13.76 h Z	11 99.97%, β - 0.03%
		70	0+	-69.560	$>5 \times 10^{14} \text{ y}$	
		~ 1	1 /0	07.00	U.6% I	0
		/1	1/2 - 0/2	-67.32	z.45 m <i>10</i>	р– 9 тт со ого:
		/1m	9/2+	-67.16	3.96 h 5	p−, 11≤0.05%
		12	0+	-68.126	46.5 h <i>l</i>	р–

Isotope Δ T½, Γ, or	
Z EL A J π (MeV) Abundance Decay Mode	
30 Zn 73 (1/2)65.41 23.5 s 10 β-	
73 m (7/2+) -65.21 5.8 s 8 β -, IT	
74 0+ -65.71 95.6 s 12 β -	
75 $(7/2+)$ -62.47 10.2 s 2 β -	
76 0+ -62.0 5.7 s 3 β -	
77 (7/2+) -58.6 2.08 s 5 β -	
77 m $(1/2-)$ -57.8 1.05 s 10 IT > 50%, β -< 50%	6
78 0+ -57.2 1.47 s 15 β -	
79 (9/2+) $-53.4s$ 0.995 s 19 β -, β -n 1.3%	
80 0+ -51.8 0.545 s 16 β -, β -n 1%	
81 -46.1s 0.29 s 5 β -, β -n 7.5%	
82 $0+$ -42.1s	
31 Ga 56 -4.7s	
57 -16.48	
58 -24.08	
59 -34.1s	
60 -40.0s	
61 $(3/2-)$ -47.3s 0.15 s 3 ϵ	
62 0+ -52.00 116.12 ms 23 ε	
63 $3/2-5/2-56.7$ 32.4 s 5 ϵ	
64 0+ -58.835 2.630 m 11 ε	
65 3/262.653 15.2 m 2 ε	
66 0+ -63.722 9.49 h 7 ε	
67 3/266.877 3.2612 d <i>6</i> ε	
68 1+ -67.083 67.629 m 24 ε	
69 3/269.321 60.108% <i>6</i>	
70 1+ -68.905 21.14 m 3 β -99.59%, ϵ 0.4	1%
71 3/270.135 39.892% 6	
72 368.584 14.10 h 2 β-	
72 m (0+) -68.464 39.68 ms 13 IT	
73 $3/2-$ -69.704 4.86 h 3 $\beta-$	
74 (3-) -68.05 $8.12 \text{ m } 12 \beta-$	
74 m (0) -67.99 9.5 s 10 1175%, β -<50%	
$75 - 3/268.464 - 126 S Z - \beta - 76 - (9 - 9 - 1) - 66.90 - 29.6 - 6 - 9$	
70 (2+,3+) -00.20 32.0 S 0 p- 77 (2/2) 65.87 12.2 c 2 8	
77 (3/2-) -03.07 13.28.2 p-	
70 (3/2) -625 2847 s 3 B B B 0.080%	
80 (3) -50.1 1.607 s 11 B ₋ B ₋ n 0.80%	
81 (5/2_) _58.0 1.221 s.5 B_ B_n 12.3%	
$82 (123) -529s 0.509 s 2 B_{-} B_{-} 223\%$	
83 -495s -0.31s 1 - 8- 8-n.40%	
84 -44 4s 85 ms 10 B- B-n 70%	
29 Co 59 Or 9 4c	
54 Ge $0+$ -0.48 50 -17 0s	
$60 0 \pm -27.8s$	
61 (3/2) = -33.7c = 40 mc 15 = cm - 20%	
$62 0+ -49.9 \circ 0.11 \circ 6 e^{-60/0}$	
63 -46.98 0.095 8 + 23 - 20 8?	
$64 0+ -54 4 63 7 \leq 25 \epsilon$	
$65 (3/2)56.4 30.9 \text{ s} 5 \varepsilon$	

Is	Isotope			Δ	Т½, Г, ог	
Ζ	El	Α	Jπ	(MeV)	Abundance	Decay Mode
32	Ge	67	1/2-	-62.654	18.9 m <i>3</i>	ε
		68	0+	-66.977	270.82 d <i>27</i>	ε
		69	5/2 -	-67.094	39.05 h <i>10</i>	ε
		70	0+	-70.561	21.23% 4	
		71	1/2-	-69.905	11.43 d <i>3</i>	ε
		72	0+	-72.585	27.66% <i>3</i>	
		73	9/2 +	-71.297	7.73% <i>1</i>	
		73 m	1/2 -	-71.230	0.499 s 11	IT
		74	0+	-73.422	35.94% <i>2</i>	
		75	1/2-	-71.856	82.78 m 4	β–
		75 m	7/2+	-71.716	47.7 s 5	IT 99.97%, β - 0.03%
		76	0+	-73.213	7.44% <i>2</i>	
		77	7/2+	-71.214	11.30 h <i>1</i>	β–
		77 m	1/2-	-71.054	52.9 s <i>6</i>	β– 79% , IT 21%
		78	0+	-71.862	88.0 m <i>10</i>	β-
		79	(1/2)-	-69.49	18.98 s <i>3</i>	β-
		<i>79</i> m	(7/2+)	-69.30	39.0 s 10	β-96%, IT 4%
		80	0+	-69.45	29.5 s 4	β-
		81	(9/2+)	-66.3	7.6 s 6	β-
		81 m	(1/2+)	-65.6	7.6 s <i>6</i>	β–
		82	0+	-65.5	4.60 s 35	β–
		83	(5/2+)	-61.0s	1.85 s 6	β–
		84	0+	-58.4s	0.947 s 11	β-, β-n 10.8%
		85		-53.4s	0.54 s 5	β-, β-n 14%
		86	0+	-50.0s	>150 ns	
33	As	60		-6.4s		
		61		-18.1s		
		62		-25.0s		
		63		-33.8s		
		64		-39.7s		
		65		-47.1s	$0.19 \ s + 11 - 7$	ε
		66		-51.8s	$0.10 \ s + 7 - 5$	ε
		67	(5/2-)	-56.6	42.5 s 12	ε
		68	3	-58.9	151.6 s <i>8</i>	ε
		69	5/2-	-63.08	15.2 m <i>2</i>	ε
		70	4(+)	-64.34	52.6 m <i>3</i>	ε
		71	5/2-	-67.893	65.28 h <i>15</i>	ε
		72	2 -	-68.229	26.0 h <i>1</i>	ε
		73	3/2-	-70.956	80.30 d <i>6</i>	ε
		74	2-	-70.859	17.77 d <i>2</i>	ε 66%, β-34%
		75	3/2-	-73.032	100%	_
		76	2-	-72.289	1.0778 d <i>20</i>	β-
		77	3/2-	-73.916	38.83 h 5	β-
		78	2-	-72.816	90.7 m <i>2</i>	β-
		79	3/2-	-73.636	9.01 m 15	β-
		80	1+	-72.12	15.2 s 2	β– 2
		81	3/2-	-72.533	33.3 s <i>8</i>	β– 2
		82	(1+) (5)	-70.24	19.1 s 5	β– 0
		δZm	(5-)	-/0.24	13.6 s 4	p–
		83 (5/2-,3/2-)	-69.9	13.4 S 3	p-
		04 05	(3)- (2/9)	-00.1S	4.U2 S J 2.002 c 12	p-, $p-$ II U. $20%$
		00	(3/2-)	-03.38	2.002 S 13	p-,p-11 39.4%

Isotope		pe		Δ	Τ½, Γ, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
33	As	86		-59.4s	0.945 s 8	β-, β-n 33%
		87	(3/2-)	-56.3s	0.49 s 4	β–, β–n 15.4%
		88		-51.6s	>150 ns	
		89			>150 ns	
34	Se	65		-32.9s	<50 ms	ε
		66	0+	-41.7s		
		67		-46.5s	107 ms <i>35</i>	ε, ερ
		68	0+	-54.1s	35.5 s 7	E
		69	(3/2 -)	-56.30	27.4 s 2	ε, ερ 0.05%
		70	0+	-61.9s	41.1 m 3	ε
		71	5/2 -	-63.1s	4.74 m 5	£
		72	0+	-67.89	8.40 d <i>8</i>	ε
		73	9/2 +	-68.22	7.15 h <i>8</i>	E
		73 m	3/2 -	-68.19	39.8 m <i>13</i>	- ΙΤ 72.6%.ε27.4%
		74	0+	-72 213	0.89% 2	
		75	5/2+	-72 169	119 779 d 4	8
		76	0+	-75, 251	9 36% <i>11</i>	C C
		77	1/2_	_74 599	7 63% 6	
		77 m	1/≈ 7/9⊥	-74 437	1736s5	ІТ
		79 79	0	77 025	99 78% 0	11
		70	0+ 7/9	75 017	<6 5×10 ⁵ v	ß
		79 70m	1/2+	-75.917	$\leq 0.3 \times 10$ y	μ-
		79111 00	0	-75.821	J. J. III 1 10 G1% 10	11 99.94%, p= 0.00%
		00 Q1	0+ 1/9	76 390	19.01 / 0 10	ß
		01 81m	7/2	-70.389	57.98 m 2	μ - 17 00 05% B 0 05%
		01111 09	0.	-70.280	$1 1 \times 10^{20} \text{ m}$ 2 1	11 99.95%, p= 0.05%
		02	0+	-77.595	8 73% 6	∠p–
		83	9/2 +	-75 340	22 3 m 3	β_
		83m	1/2_	-75 112	701s4	β_
		81	1/~ 0+	_75.95	31 m 1	β_
		85	$(5/2_{\perp})$	-79.43	31769	β_ β_
		86	(J/2 +) ∩⊥	-70 54	153 c 0	β_
		87	(5/2)	66 58	5 20 c 11	Р В Вр О 36%
		07	(3/2+)	-00.38	1.23×11	$\beta = \beta = 0.00\%$
		00 00	(5/2)	-03.87	1.55×0	$\beta = \beta = 10.33\%$
		00	(3/2+)	-59.05	150 ng	p-, p-n7.8%
		90 Q1	0+	-50.45	2130 HS	B_ B_n 91%
	n	51		-30.33	0.2730	p-, p-n 21/0
35	Br	68		-38.9s		
		69?		-46.7s	<100 ns	р
		70		-51.6s	79.1 ms <i>8</i>	ε
		70 m	((-)	-51.6s	2.2 s 2	ε
		71	(5/2)-	-56.6s	21.4 s 6	ε
		72	3+	-59.2	78.6 s 24	ε
		72 m	1–	-59.1	10.6 s <i>3</i>	IT≈100%, ε
		73	1/2-	-63.6	3.4 m <i>2</i>	8
		74	(0-)	-65.31	25.4 m <i>3</i>	3
		74 m	4(+)	-65.29	46 m 2	3
		75	3/2 -	-69.14	96.7 m <i>13</i>	ε
		76	1 –	-70.288	16.2 h 2	ε
		76 m	(4)+	-70.186	1.31 s 2	$IT > 99.4\%, \epsilon < 0.6\%$
		77	3/2 -	-73.234	57.036 h <i>6</i>	ε
		77 m	9/2+	-73.128	4.28 m 10	IT

Isoto	pe	Δ	Τ½, Γ , or	
Z El	A J	π (MeV)	Abundance	Decay Mode
35 Br	78 1	+ -73.452	6.46 m 4	$\epsilon \ge 99.99\%$, $\beta_{-} < 0.01\%$
	79 3/2	276.068	50.69% 7	p _0101/0
	79m 9/2	2 + -75.860	4.86 s 4	ІТ
	80 1	+ -75.889	17.68 m 2	$\beta = 91.7\%$. $\epsilon 8.3\%$
	80m 5	75.803	4.4205 h 8	IT
	81 3/2	277.974	49.31% 7	
	82 5	77.496	35.30 h 2	β–
	82 m 2	77.450	6.13 m 5	r IT 97.6%. β -2.4%
	83 3/2	279.008	2.40 h 2	β-
	84 2	77.78	31.80 m <i>8</i>	β-
	84m (5-,	6-) -77.46	6.0 m 2	β-
	85 3/2	278.61	2.90 m <i>6</i>	β-
	86 (2	-) -75.64	55.1 s 4	β-
	87 3/2	273.85	55.60 s 15	β -, β -n 2.52%
	88 (1,2	2-) -70.73	16.34 s <i>8</i>	β -, β -n 6.58%
	89 (3/2-,	(5/2-) -68.56	4.40 s 3	β -, β -n 13.8%
	90	-64.61	1.92 s 2	β – , β –n 25.2%
	91	-61.55	0.541 s 5	β-, β-n 20%
	<i>92</i> (2	-) -56.62	0.343 s 15	β-, β-n 33.1%
	<i>93</i> (5/2	2-) -53.0s	102 ms	β-, β-n 77%
	94		70 ms <i>20</i>	β-, β-n 30%
36 Kr	69			
	70 0	+ -41.0s		
	71	-46.1s	97 ms <i>9</i>	ε, ερ
	72 0	+ -54.1	17.2 s <i>3</i>	8
	73 5/2	256.9	27.0 s <i>12</i>	ε, ε р 0.68%
	74 0	+ -62.17	11.50 m <i>11</i>	ε
	75 (5/2	(2) + -64.24	4.3 m 2	ε
	76 0	+ -68.98	14.8 h <i>1</i>	ε
	77 5/2	2 + -70.170	74.4 m 6	ε
	78 0	+ -74.158	$\geq 2.0 \times 10^{21} \text{ y}$	
			0.35% <i>2</i>	
	79 1/2	274.442	35.04 h <i>10</i>	ε
	79m 7/2	2 + -74.312	50 s <i>3</i>	IT
	80 0	+ -77.893	2.25% 2	
	81 7/2	2 + -77.693	2.29×10 ³ y 11	E
	81m 1/2	277.502	13.10 s 3	TT, ε 2.5×10 ⁻³ %
	82 0	+ -80.588		
	83 9/2	2+ -79.981		IT
	83m 1/2	z = -79.939	1.83 h Z	11
	$\delta 4 = 0$	+ -82.430	37.0% 3	Q
	$\frac{35}{25m} \frac{9}{1}$	2 + -01.4/0 0 01 170	3934.4 U 14 4 400 h 0	p- 8 78 60/ IT 91 40/
		2 01.173	4.400 II 0 17 90/ 9	p= 78.0%, 11 21.4%
	00 0 97 5/1	+ -03.201	17.3% 2 76.2 m 6	ß
		ωτ -00.700 - 70.60	10.3 III 0 9 81 h 2	μ- β_
	80 (2/2 ·	-7679	$\begin{array}{c} 2.04 \\ 3 \\ 15 \\ m \end{array}$	μ- β_
	90 (3/2+,	-710.72	32 39 c 9	Р В-
	<i>91</i> (5/9	(2+) = 71.35	8 57 s 4	Р В-
	<i>92</i> 0	+ -68.83	1.840 s 8	$\beta = \beta - n 0.03\%$
	<i>93</i> (1/2	(2+) -64.1	1.286 s <i>10</i>	β -, β -n 2.01%

Isot	ope		Δ	Т½, Г, ог	
ΖE	ΙA	Jπ	(MeV)	Abundance	Decay Mode
36 K	r 94	0+	-61.2s	0.20 s 1	β -, β -n 5.7%
	95		-56.1s	0.78 s <i>3</i>	β-
	96	0+	-53.3s	>50 ms	I
	97			>150 ns	β–
37 R	b 72		-38.1s		
0. 10	73		-46.38		
	74	(0+	-51.7	64.9 ms 5	3
	75	(3/25)	(2-) -57.220	19.0 s <i>12</i>	е Е
	76	1(-	-60.477	36.5 s <i>6</i>	3
	77	$\frac{-}{3/2}$	64.826	3.78 m 4	ε
	78	0(+) -66.934	17.66 m <i>8</i>	ε
	78	m 4(-) -66.831	5.74 m <i>5</i>	ε90%, IT 10%
	79	5/2	+ -70.793	22.9 m 5	8
	80	1+	-72.170	33.4 s 7	ε
	81	3/2	75.455	4.576 h <i>5</i>	ε
	81	m 9/2	+ -75.369	30.5 m <i>3</i>	IT 97.6%, ε2.4%
	82	1+	-76.187	1.273 m <i>2</i>	ε
	82	m 5–	-76.118	6.472 h <i>6</i>	ε, IT<0.33%
	83	5/2	79.071	86.2 d 1	ε
	84	2-	-79.748	32.77 d 14	ε 96.2%, β-3.8%
	84	m 6-	-79.284	20.26 m 4	IT
	85	5/2	82.165	72.165% <i>20</i>	
	86	2-	-82.745	18.631 d <i>18</i>	β-99.995%, ε.5.2×10 ⁻³ %
	86	m 6-	-82.189	1.017 m <i>3</i>	IT
	87	3/2	84.593	4.75×10^{10} y 4	β-
				27.835% <i>20</i>	
	88	2-	-82.602	17.78 m <i>11</i>	β–
	89	3/2	81.703	15.15 m <i>12</i>	β–
	90	0-	-79.351	158 s 5	β–
	90	m 3-	-79.244	258 s 4	$\beta - 97.4\%$, IT 2.6%
	91	3/2(-) -77.788	58.4 s 4	β–
	<i>92</i>	0-	-74.81	4.492 s 20	β – , β –n 0.01%
	93	5/2	72.70	5.84 s 2	β-, β-n1.35%
	94	3(-) -68.53	2.702 s 5	β-, β-n 10.01%
	95	5/2	65.86	377.5 ms <i>8</i>	β-, β-n 8 .73%
	96	2+	-61.23	202.8 ms <i>33</i>	β – , β –n 14%
	97	3/2	+ -58.38	169.9 ms 7	β -, β -n 25.1%
	98	(1,0)) -54.27	114 ms 5	β– , β–n 13.6%, β–2n 0.05%
	98	m (4,5	5) -54.00	96 ms <i>3</i>	β –, β –n?
	99	(5/2	+) -50.9	50.3 ms 7	β-, β-n 20.7%
	100)	-46.7s	51 ms <i>8</i>	β – , β –n 5.6%
	101		-43.6	32 ms 4	β–, β–n 31%
	102			37 ms <i>5</i>	β-, β-n 1 8 %
38 S	r 74	0+			
	75		-46.6s	>150 ns	ε, εр
	76	0+	-54.4s	8.9 s <i>3</i>	ε -
	77	(5/2+, 7)	(2+) -58.0	9.0 s 2	ϵ , $\epsilon p < 0.25\%$
	78	0+	-63.172	2.5 m <i>3</i>	ε
	79	3/2(-) -65.475	2.25 m 10	ε
	80	0+	-70.302	106.3 m 15	3

Is	Isotope			Δ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
38	Sr	81	1/2 -	-71.524	22.3 m 4	ε
		82	0+	-76.007	25.55 d <i>15</i>	ε
		83	7/2 +	-76.795	32.41 h <i>3</i>	8
		83 m	1/2 -	-76.536	4.95 s <i>12</i>	IT
		84	0+	-80.643	0.56% <i>1</i>	
		85	9/2 +	-81.100	64.84 d <i>2</i>	ε
		85 m	1/2 -	-80.861	67.63 m 4	ΙΤ 86.6%, ε 13.4%
		86	0+	-84.519	9.86% <i>1</i>	
		87	9/2 +	-84.876	7.00% <i>1</i>	
		87 m	1/2 -	-84.487	2.827 h <i>1</i>	ΙΤ 99.7%, ε 0.3%
		88	0+	-87.918	82.58% <i>1</i>	<i>.</i>
		89	5/2 +	-86.205	50.53 d 7	β-
		90	0+	-85.941	28.78 v 4	β-
		91	5/2 +	-83.649	9.63 h 5	β-
		92	0+	-82.92	2.71 h <i>1</i>	β-
		93	5/2 +	-80.16	7.423 m <i>24</i>	β_
		94	0+	-78.837	75.3 s 2	β_
		95	1/2 +	-75.16	23.90 s 14	β_
		96	0+	-72.98	1.07 s 1	β_
		97	1/2 +	-68.80	429 ms 5	$\beta - \beta \beta - n < 0.05\%$
		98	0+	-66.61	0.653 s 2	$\beta = \beta = n 0.25\%$
		<u>99</u>	3/2+	-62.2	0.269 s 1	$\beta = \beta = n 0.1\%$
		100	0+	-60.2	202 ms 3	$\beta = \beta - n 0.98\%$
		101	(5/2)	-55.4	118 ms 3	$\beta - \beta \beta - n 2 \beta 52\%$
		102	(0, 2)	-53.1	69 ms 6	$\beta - \beta = 0.5$
20	\mathbf{v}	77		16 Qs		P , P
33	•	78		-52 65	>150 ns	
		70	(5/2 +)	-58.03	2130 HS	e en
		80	(3/2+)	-50.4 _61.2s	35 6 2	с, ср с
		81	(5, 4, 5) $(5/2 \pm)$		79 / s 13	C C
		82	(J/&+) 1⊥	-68.2	95 s 3	C C
		83	$(0/2_{\perp})$	-00.2 _72.33	708 m 6	C C
		83m	(3/2)	-79.97	2 85 m 2	с с 60% IT 40%
		81 81	(3/2-)	719	2.05 m 2	2 00/0, 11 40/0
		04 81 m	(5)	-74.2	4.032	e
		85	$(1/2)_{-}$	-77.85	268 h 5	C C
		85 m	(1/≈) 9/2⊥	-77.83	4 86 h 13	s IT < 2 0×10 ⁻³ %
		86	<u>4</u> _	-79.28	14 74 h 2	e, 11 < 2. 0/10 /0
		86 m	т (8_)	-79.06	14.74 II 2 18 m 1	נ די 0,0,31% פי 0,60%
		87	(0+) 1/2-	-83 015	70 8 h 3	e
		87m	1/2 - 0/2 +	-82 634	13 37 h 3	с IT 08 / 3% с 1 57%
		88	<i>1</i> _	-84 295	106 65 d A	c
		89	т 1/2_	_87 701	100.05 u 4 100%	C
		89m	1/ <i>‰</i> 0/2⊥	-86 793	16.06 s <i>4</i>	IT
		90	9_ 2_	-86 187	64 10 h &	β_
		90 m	~- 7⊥	-85 805	3911 h 5	μ- Ττ β_1 &ν10- ³ %
		90 III 91	1/2-	-86 340	58 51 d B	11, μ= 1.0×10 /0 β_
		91m	¶/2⊥	-85 702	1971 m 1	μ ΙΤ β-ν1 5%
		<i>99</i>	2_ 2_	-84 831	354 h 1	β_
		02 Q2	~- 1/2_	_84 94	10 18 h 8	Р В_
		93m	1/2- 7/2⊥	-04.24	0.82 c 1	Р - ТТ
		91 91	<i>11⊷</i> ⊤ 2_	-89 218	187m 1	β_
		01	~	0~.010	10.7 111 1	Ч

Isotope		ре		Δ	Т½, Г, or	
Z	El	Ā	Jπ	(MeV)	Abundance	Decay Mode
39	Y	95	1/2-	-81.239	10.3 m <i>1</i>	β–
		96	0-	-78.35	5.34 s 5	β-
		<i>96</i> m	(8)+	-78.35	9.6 s 2	β-
		97	(1/2-)	-76.26	3.75 s <i>3</i>	β -, β -n 0.058%
		<i>97</i> m	(9/2)+	-75.59	1.17 s <i>3</i>	$\beta - > 99.3\%$, IT < 0.7%, $\beta - n < 0.08\%$
		97m 98	(27/2-)	-72.74	142 ms 8	$T > 80\%, \beta - < 20\%$
		98m	$(0)^{-}$	-72.44 -72.44	20 s 2	$\beta = 0.06 \text{ IT} < 20\%$
		00 m	(1,0)	12.11		$\beta = 0.000, 11 < 2000, \beta = 0.000, \beta = 0.000$
		99	(5/2+)	-70 20	1 470 s 7	$\beta = \beta - n + 1 + 9\%$
		100	(0/2)	-67 30	735 ms 7	β_{-} β_{-} $n = 1 - 0.02\%$
		100 100m	(3, 4, 5)	-67.30	094 s 3	β_ , β Π1.02/0
		101	(5, 4, 5) (5/2)	64 01	1.0450	P B B n 1 0 4%
		101	(J/L+)	-04.91	440 ms 13	p-, p-111.9470 B
		102	high	-01.85	0.30 5 1	р– в
		102	mgn	-01.85	0.3034	þ–
		103		-36.05	0.23×3	
		104		-34.98	>150 ms	
	_	105			>150 115	
40	Zr	80	0+	-55.3s	>150 ns	
		81	0	-58.9	15 s 5	ε, ερ
		82	0+	-64.2	32 s 5	8
		83	(1/2-)	-66.46	44 S I	ε, ερ
		84	0+	-71.5s	25.9 m 8	ε
		85	7/2+	-73.2	7.86 m 4	8 1777 - 10.000/ 000/
		85 m	(1/2-)	-72.9	10.9 s 3	$11 \le 92\%, \ \epsilon > 8\%$
		86	0+	-77.81	16.5 h <i>1</i>	ε
		87	(9/2) +	-79.349	1.68 h <i>1</i>	ε
		87 m	(1/2) -	-79.013	14.0 s 2	11
		88	0+	-83.63	83.4 d 3	ε
		89	9/2+	-84.869	78.41 h <i>12</i>	8
		89 m	1/2-	-84.281	4.18 m <i>1</i>	ΤΤ 93.77%, ε 6.23%
		90	0+	-88.769	51.45% <i>3</i>	
		90 m	5-	-86.450	809.2 ms <i>20</i>	IT
		91	5/2+	-87.893	11.22% 4	
		92	0+	-88.456	17.15% <i>2</i>	
		93	5/2+	-87.119	1.53×10° y <i>10</i>	β–
		94 0 ž	0+	-87.268	17.38% 4	
		95	5/2+	-85.659	64.02 d 5	β-
		96	0+	-85.441	3.9×10 ¹³ y 9 2.80% 2	2β-
		97	1/2 +	-82.950	16.90 h 5	β–
		<i>98</i>	0+	-81.27	30.7 s 4	β–
		99	(1/2+)	-77.77	2.1 s 1	β–
		100	0+	-76.61	7.1 s 4	β–
		101	(3/2+)	-73.46	2.1 s 3	β–
		102	0+	-71.74	2.9 s 2	β–
		103	(5/2)	-68.4	1.3 s 1	β-
		104	0+	-66.3s	1.2 s 3	β-
		105		-62.4s	≈1 s	β-
		106	0+	-60.2s	>150 ns	
		107			>150 ns	

Is	Isotope			Δ	Т½, Г, or	
Ζ	El	Α	Jπ	(MeV)	Abundance	Decay Mode
41	Nb	82		-53.0s	>150 ns	
		83	(5/2+)	-59.0	4.1 s 3	ε
		84	(3+)	-61.9s	12 s <i>3</i>	ε, ερ
		85	(9/2+)	-67.2	20.9 s 7	ε
		86	(5+)	-69.83	88 s 1	ε
		87	(1/2-)	-74.18	3.7 m <i>1</i>	ε
		87 m	(9/2+)	-74.18	2.6 m <i>1</i>	ε
		88	(8+)	-76.4s	14.5 m <i>1</i>	ε
		88 m	(4-)	-76.4s	7.8 m <i>1</i>	ε
		89	(1/2) –	-80.58	1.18 h <i>10</i>	8
		89 m	(9/2+)	-80.58	1.9 h 2	ε
		90	8+	-82.658	14.60 h 5	ε
		90 m	4-	-82.533	18.81 s 6	IT
		91	9/2 +	-86.639	6.8×10^2 v 13	8
		91 m	1/2 -	-86.535	60.86 d <i>22</i>	IT 93%.ε7%
		92	(7) +	-86.450	3.47×10^7 v 24	$\epsilon \cdot \beta - < 0.05\%$
		92 m	(2) +	-86.315	10.15 d <i>2</i>	ε
		93	9/2 +	-87.210	100%	-
		93 m	1/2 -	-87.179	16.13 v 14	ІТ
		94	(6) +	-86.366	2.03×10^4 v 16	β_
		94 m	3+	-86.325	6.263 m 4	Γ ΙΤ 99.5%, β-0.5%
		95	9/2 +	-86.783	34.975 d 7	β_
		95 m	1/2 -	-86.547	86.6 h 8	$[T 94.4\%, \beta - 5.6\%]$
		96	6+	-85.605	23.35 h 5	β-
		97	9/2 +	-85.608	72.1 m 7	β-
		<i>97</i> m	1/2 -	-84.865	52.7 s 18	ÍT
		98	1+	-83.527	2.86 s 6	β-
		<i>98</i> m	(5+)	-83.443	51.3 m 4	β^{-} 99.9%. IT < 0.2%
		99	9/2 +	-82.33	15.0 s 2	β-
		<i>99</i> m	1/2 -	-81.96	2.6 m 2	$\beta^{-} > 96.2\%$. IT < 3.8%
		100	1+	-79.94	1.5 s 2	β-
		<i>100</i> m	(4+.5+)	-79.46	2.99 s 11	β-
		101	+	-78.94	7.1 s 3	β-
		<i>102</i> m	1+	-76.35	1.3 s 2	β-
		<i>102</i> m		-76.35	4.3 s 4	β-
		103	(5/2+)	-75.32	1.5 s 2	β-
		104	(1+)	-72.2	4.8 s 4	β - , β - n 0.71%
		<i>104</i> m	()	-72.0	0.92 s 4	β-
		105	(5/2+)	-70.86	2.95 s <i>6</i>	β_
		106		-67.0s	1.02 s 5	β_
		107		-65.0s	330 ms <i>50</i>	β_
		108		-61.0s	0.17 s 2	•
		109			0.6 s <i>3</i>	
		110			>150 ns	
42	Mo	84	0+	-55 8s	>150 ns	
-~		85		-59.1s	>150 ns	
		86	0+	-65.05	19.6 s 11	٤
		87	(7/2+)	-67.7	14.5 \$ 3	~ ε. ε n >0%
		88	0+	-72.70	8.0 m 2	E, CP. 070
		89	(9/2+)	-75.00	2.04 m 11	2
		89 m	(1/2-)	-74.62	190 ms 15	ĪT
		90	0+	-80.169	5.67 h 5	е Е

Is	Isotope			Δ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
42	Mo	91	9/2 +	-82.21	15.49 m <i>1</i>	ε
		91 m	1/2 -	-81.55	65.0 s 7	IT 50.1%, ε 49.9%
		92	0+	-86.806	14.84% <i>4</i>	
		93	5/2 +	-86.805	4.0×10^3 y 8	ε
		93 m	21/2 +	-84.380	6.85 h 7	ΙΤ 99.88%, ε 0.12%
		94	0+	-88.411	9.25% 3	
		95	5/2 +	-87.709	15.92% 5	
		96	0+	-88.792	16.68% 5	
		97	5/2+	-87.542	9.55% 3	
		98	0+	-88.113	24.13% 7	
		99	1/2 +	-85.967	65.94 h <i>1</i>	β-
		100	0+	-86.185	$1.2 \times 10^{19} \text{ v} + 3-2$	2ß-
		100	0	001100	9.63% <i>3</i>	~P
		101	1/2 +	-83.512	14.61 m <i>3</i>	β–
		102	0+	-83.56	11.3 m 2	β-
		103	(3/2+)	-80.85	67.5 s 15	β-
		104	0+	-80.33	60 s 2	β-
		105	(3/2+)	-77.34	35.6 s 16	β-
		106	0+	-76.26	8.4 s 5	β-
		107		-72.9	3.5 s 5	β-
		108	0+	-71.3s	1.09 s 2	β-
		109	0.1	-67.48	0.53 \$ 6	β-
		110	0+	-65.78	0.30 s 4	β-
		111	0.1	00115	>150 ns	P
		112	0+		>150 ns	
		113	0.1		>150 ns	
12	Тс	86		52 1c	>150 ns	
4 J	IC	87		-53.15 50.1s	>150 ms	
		88	(6 7)	-55.15	>150 IIS 6 4 c 8	C
		80	(0+, 7+)	-02.03	12 8 c 0	c
		09 80m	$(\frac{9}{2}+)$	-07.5	12.059	2
		00	(1/2 -)	-07.3	12.980 97c 2	2
		90 00m	17	-71.03	0.7 S 2 10 2 s 1	c
		01	(0/2)	-70.55	$31/m^2$	c
		01m	(3/2) + (1/2)	-70.0	3.14 m 2	c IT $< 1%$
		91 III 02	(1/2) = (9)	-73.0	3.3 m 1	E, 11<1/0
		92	(0) + 0/2 +	-78.54	4.25 m 15 9 75 h 5	c
		93 03m	5/2+ 1/9	-03.004	2.75 m 5	с IT 76 7% с 93 3%
		0 <i>1</i>	7	-00.212 8/ 155	43.3 m 10	11 70.7%, <i>2 2</i> 3.3%
		94 04m	(2)	-84.133	520 m 10	c = 1T < 0.19
		94 III 05	(2) + 0/2 + 0/2	-04.000	200b 1	£, 11<0.1/0
		95 05 m	$\frac{9}{2} + \frac{1}{9}$	-80.018	61 d 2	сос 190/ IT 2 990/
		95 III 06	7	-03.979	01 U 2 198 d 7	£ 90.12/0, 11 3.00/0
		90 06 m	7 + 4 -	-03.019	4.20 U 7	E IT 0.9% c 9%
		90 m 07	4+ 0/2	-05.705	$26\times 10^{6} + 10^{10}$	11 30/0, 8 2/0
		31 07m	3/2 + 1/9	-01.661 Q7 191	$2.0 \times 10^{-1} \text{ y } 4$	ε ΙΤ ε < Ο 9404
		97111 09	1/2 - (6)	-01.124	συ.ια <i>ιυ</i> 1 ο _γ ιοθ - ο	11, ε<υ.34% β
		90 00	$(0)^+$	-00.429 Q7 991	4.2×10° y 3 9 111∨105 - 10	в h–
		99 00	ジ/ム+ 1/9	-01.324 Q7 101	$\begin{array}{c} \text{a.iiiXIU} \text{y} I\mathcal{L} \\ \text{a.ii} \text{b} 1 \end{array}$	μ- ττ β 2 7×10-30/
		99111 100	1/2- 1.	-01.101 QC 017	0.01 II <i>1</i> 15 0 c <i>1</i>	11, μ- 3.7×10 -% β
		100	1+	-00.01/	10.0 S <i>1</i> 14.99 m 1	p– g
		101	(9/2)+ 1	-00.34	14.22 III <i>I</i> 5 90 ~ 15	b– h–
		102	1+	-04.308	J.20 S 1J	h–

Isotope			Δ	Т½, Г, ог	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
43 Tc	<i>102</i> m	(4,5)	-84.568	4.35 m 7	β-98%, IT 2%
	103	5/2 +	-84.60	54.2 s <i>8</i>	β–
	104	(3+)	-82.49	18.3 m <i>3</i>	β-
	105	(5/2+)	-82.29	7.6 m <i>1</i>	β–
	106	(1, 2)	-79.78	35.6 s <i>6</i>	β-
	107		-79.1	21.2 s <i>2</i>	β-
	108	(2+)	-75.9	5.17 s 7	β-
	109		-74.87s	0.87 s 4	β-
	110		-71.4s	0.92 s <i>3</i>	β-
	111		-69.8s	0.30 s <i>3</i>	β–
	112		-65.9s	0.28 s 4	β-
	113		-64.0s	130 ms <i>50</i>	β–
	114			>150 ns	
	115			>150 ns	
44 Ru	87			>1.5 µs	
	88	0+		>150 ns	
	89		-59.5s		
	90	0+	-65.4s	13 s 5	3
	91	(9/2+)	-68.6	9 s 1	ε
	91 m	(1/2-)	-68.6	7.6 s <i>8</i>	$\epsilon > 0\%$, $\epsilon p > 0\%$, IT
	92	0+	-74.4s	3.65 m 5	ε
	93	(9/2) +	-77.27	59.7 s <i>6</i>	ε
	93 m	(1/2)-	-76.53	10.8 s <i>3</i>	ε7 8 %, IT 22%,
					ε р 0.01%
	94	0+	-82.56	51.8 m <i>6</i>	ε
	95	5/2+	-83.45	1.643 h <i>14</i>	8
	96 97	0+	-86.067	5.52% 6	
	97	5/2+	-86.107	2.9 d 1	ε
	98	0+	-88.225		
	99	$\frac{5}{2} +$			
	100	0+ 5/9	-89.219	12.0% 1	
	101	$\frac{3}{2} +$			
	102	0+ 2/2	-89.099	31.0% & 20.26 d 2	ß
	103	3/2 +		19.20 u 2 19.70 9	h–
	104	0+ 3/2	-00.092	10.7/0 2 111 h 2	ß
	105	0⊥ 0	-86 324	373 50 d 15	р- ß_
	107	$(5/2)_{\perp}$	-83.9	375 m 5	β_
	107	0+	-83 7	4.55 m 5	β_
	100	(5/2+)	-80.85	345 s 10	ρ β_
	110	(0, 2, 1) 0+	-80.1	14 6 s 10	β_
	111	01	-76.85	2.12 s 7	β β_
	112	0+	-75.98	1.75 \$ 7	β_
	113	U .	-72.2s	0.80 s 5	β-
	114	0+	-70.8s	0.57 s 5	β_
	115	U .	-66.8s	0.40 s 10	$\beta - \beta \beta - n$
	116	0+	-65.2s	>150 ns	. / .
	117	-		>150 ns	
	118	0+		>150 ns	
45 Rh	89			>1.5	
10 101	90			>1.0 μ S	
	91			>150 ns	
				~ 100 115	

Isotope			Δ	Т½, Γ, or		
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
45	Rh	92		-63.4s	>150 ns	
		93		-69.2s		
		94 m	(8+)	-72.9s	25.8 s 2	8
		94 m	(3+)	-72.9s	70.6 s <i>6</i>	ε
		95	(9/2) +	-78.3	5.02 m <i>10</i>	ε
		95 m	(1/2)-	-77.8	1.96 m 4	IT 88%, ε 12%
		96	(6+)	-79.62	9.90 m <i>10</i>	8
		96 m	(3+)	-79.57	1.51 m <i>2</i>	IT 60%, ε 40%
		97	9/2 +	-82.58	30.7 m <i>6</i>	ε
		97 m	1/2 -	-82.32	46.2 m <i>16</i>	ε94.4%, IT 5.6%
		98	(2)+	-83.17	8.7 m <i>2</i>	8
		98 m	(5+)	-83.17	3.5 m <i>3</i>	$\epsilon > 0\%$, IT
		99	1/2 -	-85.51	16.1 d 2	8
		99 m	9/2 +	-85.45	4.7 h <i>1</i>	$\epsilon > 99.84\%$,
		100		05 50		IT<0.16%
		100	1-	-85.59	20.8 h 1	E TT 00 00/ - 1 70/
		100m	(5+)	-85.59	4.6 m 2	$11 \approx 98.3\%, \ \epsilon \approx 1.7\%$
		101	1/2 - 0/2	-87.41	3.3 y 3	
		101m	9/2+		4.34 d <i>I</i>	£ 93.6%, 11 b.4%
		102	(1-, 2-)		207 d 3	$\epsilon 80\%, \beta = 20\%$
		102m	6(+)	-86.635	≈2.9 y	£ 99.73%, 110.23%
		103	1/2 - 7/2	-88.023		TT
		10311	1/2+	-07.903	30.114 III 9	
		104 104m	1+		42.384	p = 99.35%, E 0.45%
		104m	3+	-80.822	4.34 III 3 25 26 h 6	11 99.87%, p- 0.13%
		105 105 m	1/2 + 1/9	-07.040	35.30 H 0	μ- ττ
		10511	1/2-	-07.710	≈40 S	L L B
		100 106m	$(6)_{\pm}$	-86.226	$23.00 \ \text{s} \ \text{o}$	β_ β_
		107	(0) + 7/9 +	-86.86	151 m ∠ 91 7 m ∕	β_ β_
		107 108m	1.	-85.0	21.7 m 4 16.8 s 5	β
		108m	(5+)	-85.0	60m 3	β
		10011	7/2+	-85.01	80 s 2	β
		110m	1+	-82 9	32s2	р В_
		110m	(>4)	-82.9	28 5 s 15	β_ β_
		111	$(\frac{1}{7})$	-82.38	11 s <i>1</i>	β_ β_
		112m	1+	-79.58	3.8 \$ 6	Р В-
		112m	>4	-79.58	6.8 s 2	Р В-
		113		-78.85	2.80 s 12	β-
		114	(1+)	-75.6s	1.85 s 5	β-
		114m	(≥4)	-75.6s	1.85 s 5	β-
		115	(7/2+)	-74.4	0.99 s 5	β-
		116m	1+	-71.1s	0.68 s <i>6</i>	β-
		116m	(5, 6, 7)	-71.1s	0.9 s 4	β–
		117	(7/2+)	-69.5s	0.44 s 4	β–
		118	. /	-65.7s	>150 ns	
		119		-63.9s	>150 ns	
		120			>150 ns	
		121			>150 ns	
46	Pd	91			>1.5 µs	
		92	0+		>150 ns	
		93			60 s <i>20</i>	єр?

Is	Isotope		Δ	Т½, Г, ог		
Ζ	El	A	Jπ	(MeV)	Abundance	Decay Mode
46	Pd	94	0+	-66.3s	9.0 s 5	8
		95		-70.2s		
		95 m	(21/2+)	-68.2s	13.3 s <i>3</i>	$\epsilon \ge 91.3\%, IT \le 9.7\%,$
						ε р 0.9%
		96	0+	-76.2	122 s <i>2</i>	ε
		97	(5/2+)	-77.8	3.10 m <i>9</i>	ε
		98	0+	-81.29	17.7 m <i>3</i>	ε
		99	(5/2) +	-82.15	21.4 m <i>2</i>	ε
		100	0+	-85.23	3.63 d <i>9</i>	ε
		101	(5/2+)	-85.43	8.47 h <i>6</i>	ε
		102	0+	-87.926	1.02% <i>1</i>	
		103	5/2 +	-87.480	16.991 d <i>19</i>	8
		104	0+	-89.392	11.14% 8	
		105	5/2 +	-88.414	22.33% 8	
		106	0+	-89.905	27.33% 3	
		107	5/2 +	-88.372	6.5×10 ⁶ y <i>3</i>	β–
		107m	11/2 -	-88.157	21.3 s 5	IT
		108	0+	-89.521	26.46% 9	
		109	5/2 +	-87.603	13.7012 h <i>24</i>	β-
		109m	11/2 -	-87.414	4.696 m <i>3</i>	IT
		110	0+	-88.35	11.72% <i>9</i>	
		111	5/2 +	-86.03	23.4 m <i>2</i>	β–
		111m	11/2 -	-85.86	5.5 h <i>1</i>	IT 73%, β– 27%
		112	0+	-86.34	21.03 h <i>5</i>	β–
		113	(5/2) +	-83.69	93 s <i>5</i>	β–
		113m	(9/2-)	-83.69	0.4 s 1	IT
		113?		-83.69	≥100 s	
		114	0+	-83.49	2.42 m <i>6</i>	β-
		115	(5/2+)	-80.40	25 s 2	β-
		115m	(11/2-)	-80.31	50 s 3	β-92%, IT 8%
		116	0+	-79.95	11.8 s 4	β-
		117	(5/2+)	-76.5s	4.3 s <i>3</i>	β-
		118	0+	-75.5	1.9 s <i>1</i>	β-
		119		-72.0s	0.92 s <i>13</i>	β-
		120	0+	-70.8s	0.5 s 1	β–
		121	0	-66.9s	>150 ns	
		122	0+		>150 ns	
		123			>150 ns	
47	Ag	94			10 ms	
		94 m	(9+)		0.42 s 5	ε, ερ
		95			2.0 s 1	ε, ερ
		96	(8+,9+)	-64.6s	5.1 s 4	ε, ε ρ 8 %
		97	(9/2+)	-70.8s	19 s <i>2</i>	8
		98	(5+)	-72.9	46.7 s 9	8
		99	(9/2) +	-76.7	124 s <i>3</i>	8
		99 m	(1/2-)	-76.2	10.5 s 5	IT
		100	(5)+	-78.15	2.01 m 9	8
		100m	(2)+	-78.14	2.24 m <i>13</i>	ε, ΙΤ
		101	9/2+	-81.2	11.1 m <i>3</i>	8
		101m	1/2-	-81.0	3.10 s 10	IT
		102	5+	-82.00	12.9 m <i>3</i>	8
		102m	2+	-81.99	7.7 m <i>5</i>	ε 51%, IT 49%

Isotope			Δ	Т½, Γ , ог		
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
47	Ag	103	7/2 +	-84.79	65.7 m 7	ε
	0	103m	1/2 -	-84.66	5.7 s <i>3</i>	IT
		104	5+	-85.113	69.2 m <i>10</i>	8
		104m	2+	-85.106	33.5 m <i>20</i>	ϵ 99.93%, IT < 0.07%
		105	1/2 -	-87.07	41.29 d 7	ε
		105m	7/2+	-87.04	7.23 m <i>16</i>	IT 99.66%, ε 0.34%
		106	1+	-86.939	23.96 m 4	$\epsilon 99.5\%, \beta - < 1\%$
		106m	6+	-86.849	8.28 d 2	ε
		107	1/2 -	-88.405	51.839% 7	
		107m	7/2 +	-88.312	44.3 s 2	IT
		108	1+	-87.603	2.37 m 1	$\beta - 97.15\%, \epsilon 2.85\%$
		108m	6+	-87.494	418 y <i>21</i>	ε91.3%, IT 8.7%
		109	1/2 -	-88.719	48.161% 7	
		109m	7/2+	-88.631	39.6 s 2	IT
		110	1+	-87.457	24.6 s 2	$\beta - 99.7\%, \epsilon 0.3\%$
		110m	6+	-87.339	249.79 d <i>20</i>	β - 98.64%, IT 1.36%
		111	1/2 -	-88.217	7.45 d <i>1</i>	β-
		111m	7/2+	-88.157	64.8 s <i>8</i>	IT 99.3%, $\beta - 0.7\%$
		112	2(-)	-86.62	3.130 h <i>9</i>	β-
		113	1/2 -	-87.03	5.37 h <i>5</i>	β-
		113m	7/2+	-86.99	68.7 s 16	IT 64%, β– 36%
		114	1+	-84.94	4.6 s 1	β–
		114 m	(≤6+)	-84.75	1.5 ms 5	IT
		115	1/2 -	-84.99	20.0 m 5	β–
		<i>115</i> m	7/2+	-84.95	18.0 s 7	β– 79% , IT 21%
		116	(2)-	-82.56	2.68 m 10	β-
		<i>116</i> m	(5+)	-82.48	8.6 s <i>3</i>	β– 94%, IT 6%
		117	(1/2-)	-82.24	72.8 s +20-7	$\beta - \approx 100\%$
		<i>117</i> m	(7/2+)	-82.21	5.34 s 5	β–94%, IT 6%
		118	1(-)	-79.6	3.76 s 15	β-
		<i>118</i> m	4(+)	-79.5	2.0 s 2	β– 59%, IT 41%
		119m	(7/2+)	-78.56	2.1 s <i>1</i>	β-
		119m	(1/2-)	-78.56	6.0 s 5	β-
		120	3+	-75.8	1.23 s <i>3</i>	β -, β -n \leq 0.003%
		<i>120</i> m	6-	-75.6	0.32 s 4	$\beta - \approx 63\%$, IT $\approx 37\%$
		121	(7/2+)	-74.5	0.78 s <i>1</i>	β -, β -n 0.08%
		122	(3+)	-71.4s	0.48 s <i>8</i>	β -, β -n 0.186%
		123	(7/2+)	-70.0s	0.309 s 15	β -, β -n 0.55%
		124	(1, 2, 3) +	-66.6s	0.54 s <i>8</i>	β -, β -n \geq 0.1%
		125			156 ms 7	
		126			97 ms <i>8</i>	
		127			109 ms <i>15</i>	
48	Cd	97 m			3 s + 4 - 2	ε, ερ
		98	0+	-67.5s	9.2 s <i>3</i>	ε
		99	(5/2+)	-69.9s	16 s 3	ε, ερ0.17%,
						$\epsilon \alpha < 1.0 \times 10^{-4}\%$
		100	0+	-74.3	49.1 s 5	8
		101	(5/2+)	-75.7	1.2 m <i>2</i>	ε
		102	0+	-79.42	5.5 m <i>5</i>	ε
		103	(5/2) +	-80.65	7.3 m <i>1</i>	8
		104	0+	-83.976	57.7 m <i>10</i>	3
		105	5/2 +	-84.33	55.5 m 4	ε

Isoto	ppe		Δ	Т½, Г, or		
Z El	Â	Jπ	(MeV)	Abundance	Decay Mode	
48 Cd	106	0+	-87.134	1.25% 4		
	107	5/2 +	-86.988	6.50 h <i>2</i>	ε	
	108	0+	-89.253	0.89% <i>2</i>		
	109	5/2 +	-88.506	462.6 d 4	ε	
	110	0+	-90.349	12.49% <i>12</i>		
	111	1/2 +	-89.254	12.80% <i>8</i>		
	111m	11/2 -	-88.858	48.54 m 5	IT	
	112	0+	-90.581	24.13% 14		
	113	1/2 +	-89.049	9.3×10^{15} y 19	β-	
				12.22% [°] 8		
	113m	11/2 -	-88.785	14.1 y 5	β-99.86%, IT 0.14%	
	114	0+	-90.021	28.73% <i>28</i>	•	
	115	1/2 +	-88.090	53.46 h <i>10</i>	β-	
	115m	11/2 -	-87.910	44.6 d <i>3</i>	β-	
	116	0+	-88.719	7.49% <i>12</i>	•	
	117	1/2 +	-86.425	2.49 h 4	β-	
	<i>117</i> m	(11/2) -	-86.289	3.36 h <i>5</i>	β-	
	118	0+	-86.71	50.3 m <i>2</i>	β-	
	119	3/2 +	-83.90	2.69 m 2	β-	
	<i>119</i> m	(11/2 -)	-83.76	2.20 m 2	β-	
	120	0+	-83.97	50.80 s 21	β-	
	121	(3/2+)	-80.9	13.5 s 3	β-	
	<i>121</i> m	(11/2-)	-80.7	8.3 s <i>8</i>	β-	
	122	0+	-80.6s	5.24 s 3	β-	
	123	(3/2) +	-77.31	2.10 s 2	β-	
	123m	(11/2-)	-77.00	1.82 s 3	β –. IT	
	124	0+	-76.71	1.24 s 5	β_	
	125	(3/2+)	-73.32	0.65 s 2	β-	
	125m	(11/2)	-73.27	0.57 s 9	β-	
	126	0+	-72.33	0.506 s 15	β-	
	127	(3/2+)	-68.53	0.43 s <i>3</i>	β-	
	128	0+	-67.3	0.34 s <i>3</i>	β-	
	129			0.27 s 4	β-	
	130	0+		0.20 s 4	$\beta - \beta = n \approx 4\%$	
40 In	0.0			×15 ug	1 * 1	
49 11	00		60.95	>1.5 μs		
	100		-00.35	61 c 0	s sn	
	100		-03.75 68.4s	16 6 3	ϵ , ϵp $\epsilon \sim 100\%$ cm	
	101	(5)	-00.43	1035 24 s 4	ε~100%, εμ	
	102	(0/2)	-70.5	2454 65s7	e	
	103	$(3/2)^+$	-74.00	1.8 m 2	e	
	104 104m	(0+)	-70.1	1.0 m z 15.7 s 5	ε ΙΤ 80% ε 20%	
	10411	(0/2)	-70.0	13.7×3 5 07 m 7	11 80/0, 8 20/0	
	105 105m	(3/2+)	-79.40	18 s 6	е ТТ	
	10511	7	-70.01	4050 69m 1	11	
	100	(3 + (3 +))	-00.01	0.2 III I 5 9 m 1	c	
	10011	0/9	-00.30 92 FC	$\begin{array}{c} \mathbf{J} \cdot \boldsymbol{\omega} \mathbf{III} I \\ 39 4 \mathbf{m} 9 \end{array}$	c	
	107	J/2+ 1/9	-00.00 _89.89	501 c C	с IT	
	10/11	1/んー 7 -	-02.00 _81 11	JU.45 U 58 Am 19	1 I C	
	100	1+ 9.	-04.11	20.6 m 7	c	
	100	$\omega + 0/2$	-04.U0 96 10F	აუ. ს III / ქეს 1	ک د	
	109	リ/ム+ 1/9	-00.400 05 005	4.6 II I 1 9 1 m 7	с ТТ	
	10310	1/2-	-00.000	1.34 111 /	11	
Is	Isotope		Δ	Τ½, Γ, or		
----	---------	--------------	-------------	------------------	----------------------------	---
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
49	In	109m	(19/2+)	-84.383	0.21 s <i>1</i>	IT
		110	7+	-86.47	4.9 h <i>1</i>	 ε
		110m	2+	-86.41	69.1 m 5	ε
		111	9/2 +	-88.388	2.8047 d 5	ε
		111m	1/2 -	-87.851	7.7 m <i>2</i>	IT
		112	1+	-87.994	14.97 m <i>10</i>	ε 56%. β-44%
		112m	4+	-87.837	20.56 m <i>6</i>	IT
		113	9/2 +	-89.365	4.29% <i>2</i>	
		113m	1/2-	-88.973	1.6582 h <i>6</i>	IT
		114	1+	-88.568	71.9 s <i>1</i>	$\beta = 99.5\%$ $\epsilon 0.5\%$
		114m	5+	-88.378	49.51 d <i>1</i>	ΙΤ 95.6%. ε 4.4%
		115	9/2 +	-89.536	4.41×10^{14} v 25	β-
					95.71% <i>2</i>	F
		115m	1/2-	-89.200	4.486 h 4	IT 95%, β- 5%
		116	1+	-88.249	14.10 s 3	$\beta = 99, 97\%, \epsilon < 0, 06\%$
		116m	5+	-88.122	54.29 m 17	β-
		116m	8-	-87.959	2.18 s 4	
		117	9/2 +	-88.941	43.2 m <i>3</i>	β_
		117m	1/2-	-88.626	116.2 m <i>3</i>	$\beta = 52.9\%$. IT 47.1%
		118	1+	-87.228	5.0 s 5	β-
		118m	5+	-87.168	4.45 m 5	β_
		118m	8-	-87.028	8.5 \$ 3	F IT 98.6% β-1.4%
		119	9/2+	-87.702	2.4 m 1	β_
		119m	1/2 -	-87.391	18.0 m <i>3</i>	β = 94.4%. IT 5.6%
		120	1+	-85.73	3.08 s 8	β-
		120	(3, 4, 5) +	-85.73	46.2 s 8	β_
		120	(8–)	-85.73	47.3 s 5	β_
		121	9/2 +	-85.84	23.1 s 6	β_
		<i>121</i> m	1/2 -	-85.52	3.88 m 10	$\beta = 98.8\%$, IT 1.2%
		122	1+	-83.58	1.5 s <i>3</i>	β-
		<i>122</i> m	5+	-83.58	10.3 s 6	β-
		<i>122</i> m	8-	-83.38	10.8 s 4	β_
		123	9/2 +	-83.43	5.98 s <i>6</i>	β-
		<i>123</i> m	1/2-	-83.10	47.8 s 5	β_
		124	3+	-80.88	3.17 s 5	β_
		<i>124</i> m	(8-)	-80.69	3.4 s 5	β-
		125	9/2(+)	-80.48	2.36 s 4	β–
		<i>125</i> m	1/2(-)	-80.12	12.2 s 2	β–
		126	3(+)	-77.81	1.60 s 10	β-
		<i>126</i> m	7,8,9	-77.71	1.64 s 5	β-
		127	(9/2+)	-76.99	1.09 s 1	β -, β -n \leq 0.03%
		<i>127</i> m	(1/2-)	-76.53	3.66 s 4	β-, β-n 0.69%
		128	(3)+	-74.36	0.84 s 6	β-
		128	(3+)	-74.36	0.84 s 6	$\beta - n \le 0.038\%$
		<i>128</i> m	(8)-	-74.04	0.72 s 1	β -, β -n \leq 0.038%
		129	(9/2+)	-73.0	0.61 s 1	β -, β -n 0.23%
		<i>129</i> m	(1/2-)	-72.6	1.23 s <i>3</i>	$\beta - \approx 100\%, \beta - n 3.6\%$
		130	1(-)	-69.99	0.26 s 1	β–, β–n 1.01%
		<i>130</i> m	(10-)	-69.94	0.55 s 1	β -, β -n \leq 1.65%
		<i>130</i> m	(5+)	-69.59	0.542 s 9	β -, β -n \leq 1.65%
		131	(9/2+)	-68.20	0.28 s 3	β -, β -n \leq 2%
		<i>131</i> m	(1/2-)	-67.84	0.35 s 5	$\beta - \geq 99.98\%$, $\beta - n \leq 2\%$

Isotope	Δ	Т½, Г, ог	
Z ELÂ J	π (MeV)	Abundance	Decay Mode
49 In 131m (1/2	2-) -67.84	0.35 s 5	$IT \leq 0.02\%$
<i>131</i> m (21/	(2+) -63.93	0.32 s <i>6</i>	$\beta - > 99\%$, IT < 1%,
			β–n 0.03%
<i>132</i> (7	-) -63.0	0.201 s <i>13</i>	β –, β –n 6.2%
133		180 ms <i>20</i>	β -, β -n
50 Sn 100 0	+ -56.58	1.0 s + 8 - 3	e
101	-59.65	3 \$ 1	e en
102 0	+ -64.78	>200 ns	с, ср
102 0	-66.98	7 s 3	٤
104 0	+ -71.6	20.8 s 5	£
105	-73.23	31 \$ 6	ε. ε n
106 0	+ -77.43	115 s 5	ε, ε _μ
107 (5/2	(2+) -78.56	2.90 m 5	ε
108 0	+ -82.01	10.30 m <i>8</i>	8
109 5/2	(+) -82.635	18.0 m <i>2</i>	ε
110 0	+ -85.83	4.11 h <i>10</i>	8
111 7/3	2+ -85.943	35.3 m <i>6</i>	8
112 0	+ -88.658	0.97% <i>1</i>	
113 1/2	2+ -88.329	115.09 d 4	ε
113m 7/2	2+ -88.252	21.4 m 4	IT 91.1%, ε 8.9%
114 0	+ -90.557	0.65% <i>1</i>	
115 1/2	2+ -90.031	0.34% <i>1</i>	
116 0	+ -91.523	14.54% <i>11</i>	
117 1/2	2+ -90.397	7.68% 7	
117m 11/	290.082	13.60 d 4	IT
118 0	+ -91.652	24.22% 11	
119 1/2	2+ -90.066	8.58% 4	
119m 11/	289.976	293.1 d 7	IT
120 0	+ -91.102	32.59% <i>10</i>	
121 3/2	2+ -89.201	27.06 h 4	β-
121m 11/	289.195	55 y <i>5</i>	IT 77.6%, β–22.4%
122 0	+ -89.944	4.63% <i>3</i>	0
123 11/		129.2 d 4	β-
<i>123</i> m 3/3	2+ -87.794	40.06 m <i>1</i>	β-
124 U	+ -88.230	5.79% 5	0
125 11/		9.64 d 3	p–
125m 3/1		9.52 m 3	p-
120 0	+ -80.02	≈1×10° y	p-
127 (11)	(2-) -83.31	2.10 II 4	p– 0
12/III (3/1 120 0	(2+) -83.30	4.13 III 3 50.07 m 14	p-
120 0 128m (7)	+ -03.34	59.07 III 14 65 c 5	μ- τπ
120m (1 120 (3/9	-31.24	0.3×3	β_
129 (37)	(2-) -80.6	6.0 m 1	μ- β_~100%
12.0m (11/	2-) -80.0	0.5 11 1	IT 0.0002%
<i>130</i> 0	+ -80.24	3.72 m 4	β-
<i>130</i> m (7	-) -78.30	1.7 m <i>1</i>	β-
131 (3/2	2+) -77.38	56.0 s 5	β-
<i>131</i> m (11/	2-) -77.14	58.4 s 5	β -, IT \leq 4.0 \times 10 ⁻⁴ %
<i>132</i> 0	+ -76.62	39.7 s 5	β-
133 (7/2	$(z_{-}) = -71.1$	1.20 s 5	$\beta - , \beta - n 0.0294\%$
<i>134</i> 0	+ -67.2s	1.12 s <i>8</i>	β–, β–n 17%

Isotope	Δ	Т½, Г, or	
ΖΕΓΑ Jπ	(MeV)	Abundance	Decay Mode
50 Sn <i>135</i>		>150 ns	
136 0+		>150 ns	
137		>150 ns	
51 Sh 103		×1.5 µs	
JI SU 103 104	50 Oc	$>1.5 \ \mu S$	c.
104	-53.05 -63.9s	$13 \le 2$	c c
105	-66 4s	1.5 5 2	ε
107	-70.7s		
107	-72 55	70s5	6
100 (5/2 +	-76.25	17.0 s 7	e e
110 3+	-77.58	23.0 s 4	ε
111 (5/2+	-80.8s	75 s 1	ε
112 3+	-81.60	51.4 s 10	ε
113 5/2 +	-84.42	6.67 m 7	ε
114 3+	-84.7	3.49 m <i>3</i>	ε
115 5/2 +	-87.00	32.1 m 3	ε
116 3+	-86.816	15.8 m <i>8</i>	ε
116m 8-	-86.433	60.3 m <i>6</i>	ε
117 5/2+	-88.640	2.80 h 1	ε
118 1+	-87.995	3.6 m <i>1</i>	ε
118m 8-	-87.745	5.00 h 2	ε
119 5/2+	-89.472	38.19 h <i>22</i>	ε
120 1+	-88.421	15.89 m 4	ε
120m 8-	-88.421	5.76 d <i>2</i>	ε
121 5/2+	-89.589	57.21% 5	
122 2-	-88.324	2.7238 d <i>2</i>	β-97.59%, ε2.41%
122m (8)-	-88.160	4.191 m <i>3</i>	IT
123 7/2+	-89.222	42.79% 5	
124 3-	-87.618	60.20 d <i>3</i>	β–
124m 5+	-87.607	93 s 5	IT 75%, β–25%
124m 8-	-87.581	20.2 m <i>2</i>	IT
125 7/2+	-88.262	2.7582 y <i>11</i>	β–
126 (8)-	-86.40	12.46 d <i>3</i>	β–
126 m (5)+	-86.38	19.15 m <i>8</i>	β– 86 %, IT 14%
126 m (3)-	-86.36	≈11 s	_
127 7/2+	-86.709	3.85 d 5	β-
128 8-	-84.61	9.01 h 3	
<i>128</i> m 5+	-84.61	10.4 m 2	β - 96.4%, 11.3.6%
129 7/2+	-84.63	4.40 h <i>l</i>	β – β – β – β
129m (19/2-	-) -82.77	17.7 m 1	$\beta = 85\%$, 11 15%
130 (8–)	-82.39	39.5 m 8	β-
I30m (5)+	-82.39	6.3 m Z	β-
131 (1/2+122 (1/2))	-82.02	23.03 m 4	р– е
132 (4+)	-79.92	2.79 III 5	μ– 0
132M (8-)	-/9.92	4.10 III J 25 m 1	μ– β
133 (1/2+12/m) (0)	-/0.90 7/0		μ- β
134111 (U-) 124m (7)	-/4.0	0.70 S U 10.99 c 0	μ- β_ β_n 0 0010/
104111 (7-) 125 (7/9)	-74.0	10.22 S 9 1 669 s 10	μ^{-} , μ^{-11} U.U31% B_ B_n 17 6%
126	, -03.7 _65.1c	1.002 S 10 0.89 s 9	$\beta_{-}, \beta_{-11}, 17.0\%$
127	-03.15	0.02 5 2 \150 mg	μ=, μ=11 ~4/0
137		>150 118 >150 ne	
100		~100 113	

Isotope			Δ	Т½, Г, ог		
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
51	Sb	139			>150 ns	
52	Te	106	0+	-58.0s	60 us +30-10	α
		107		-60.5s	3.1 ms <i>1</i>	α70%,ε30%
		108	0+	-65.7	2.1 s 1	ε 51%, α 49%
		109		-67.58	4.6 s 3	ε 96%, α 4%
		110	0+	-72.28	18.6 s 8	$\varepsilon \approx 100\%$,
						$\alpha \approx 3.0 \times 10^{-3}$ %
		111		-73.47	19.3 s 4	ε, ερ
		112	0+	-77.3	2.0 m 2	ε 3
		113	(7/2+)	-78.3s	1.7 m <i>2</i>	ε
		114	0+	-81.9s	15.2 m 7	3
		115	7/2+	-82.4	5.8 m <i>2</i>	3
		115m	(1/2) +	-82.3	6.7 m 4	ε≤100%, IT
		116	0+	-85.32	2.49 h 4	3
		117	1/2 +	-85.11	62 m 2	ε
		117m	(11/2-)	-84.81	103 ms <i>3</i>	IT
		118	0+	-87.72	6.00 d 2	ε
		119	1/2 +	-87.179	16.03 h <i>5</i>	3
		119m	11/2 -	-86.918	4.70 d 4	ε, IT 8.0×10 ⁻³ %
		120	0+	-89.40	0.096% <i>2</i>	
		121	1/2 +	-88.55	16.78 d <i>35</i>	3
		121m	11/2 -	-88.26	154 d 7	IT 88.6%, ε 11.4%
		122	0+	-90.303	2.603% 4	
		123	1/2 +	-89.171	$>1 \times 10^{13}$ y	ε
					0.908% Ž	
		123m	11/2 -	-88.923	119.7 d <i>1</i>	IT
		124	0+	-90.524	4.816% 6	
		125	1/2 +	-89.028	7.139% <i>6</i>	
		125m	11/2 -	-88.883	57.40 d 15	IT
		126	0+	-90.071	18.952% <i>11</i>	
		127	3/2 +	-88.290	9.35 h 7	β–
		127m	11/2 -	-88.202	109 d 2	IT 97.6%, β -2.4%
		128	0+	-88.993	$7.7 \times 10^{24} \text{ y} 4$	2β-
					31.687% <i>11</i>	
		129	3/2 +	-87.005	69.6 m <i>3</i>	β-
		129m	11/2 -	-86.899	33.6 d 1	IT 64%, β– 36%
		130	0+	-87.353	2.7×10^{21} y 1	2β-
					33.799% <i>10</i>	
		131	3/2+	-85.211	25.0 m 1	β–
		<i>131</i> m	11/2 -	-85.029	30 h 2	β -77.8%, IT 22.2%
		132	0+	-85.21	3.204 d <i>13</i>	β–
		133	(3/2+)	-82.96	12.5 m <i>3</i>	β-
		<i>133</i> m	(11/2-)	-82.63	55.4 m 4	β - 82.5%, IT 17.5%
		134	0+	-82.4	41.8 m <i>8</i>	β-
		135	(7/2-)	-77.83	19.0 s 2	β-
		136	0+	-74.42	17.5 s 2	β -, β -n 1.3%
		137	(7/2–)	-69.6	2.49 s 5	β -, β -n 2.69%
		138	0+	-65.9s	1.4 s 4	β-, β-n6.3%
		139			>150 ns	
		140	0+		>150 ns	
		141			>150 ns	
		142	0+		>150 ns	

Isotope			Δ	Т½, Г, or		
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
53	Ι	108		-52.6s	36 ms <i>6</i>	α 91%
		109		-57.6	100 μs <i>5</i>	р
		110		-60.3s	0.65 s 2	ε 83%, α 17%, ερ 11%, εα 1.1%
		111	(5/2+)	-65.0s	2.5 s 2	ε 99.9% , α≈0.1%
		112	. ,	-67.1s	3.42 s 11	ε, α≈0.0012%, εα, εp
		113	5/2 +	-71.12	6.6 s <i>2</i>	ϵ^{-1} , α 3. 3×10 ⁻⁷ %
		114	(1+)	-72.8s	2.1 s 2	ε, ερ
		114m	(7)	-72.5s	6.2 s	IT
		115	(5/2+)	-76.4s	1.3 m <i>2</i>	ε
		116	1+	-77.6	2.91 s 15	ε
		117	(5/2) +	-80.45	2.22 m 4	ε
		118	2-	-80.67	13.7 m <i>5</i>	ε
		118m	(7-)	-80.57	8.5 m <i>5</i>	$\epsilon < 100\%$. IT > 0%
		119	5/2+	-83.67	19.1 m 4	ε
		120	2-	-83.78	81.0 m <i>6</i>	ε
		120m	>3	-83.78	53 m 4	ε
		121	5/2 +	-86.28	2.12 h <i>1</i>	ε
		122	1+	-86.069	3.63 m <i>6</i>	ε
		123	5/2 +	-87.929	13.27 h <i>8</i>	£
		124	2-	-87.364	4.1760 d <i>3</i>	Ē
		125	5/2+	-88.842	59.408 d <i>8</i>	Ē
		126	2-	-87.916	13.11 d 5	ϵ 56.3%, β -43.7%
		127	5/2 +	-88.988	100%	
		128	1+	-87.743	24.99 m <i>2</i>	β-93.1%, ε6.9%
		129	7/2 +	-88.503	1.57×10^7 y 4	β-
		130	5+	-86.932	12.36 h <i>́3</i>	β_
		130m	2+	-86.892	9.0 m <i>1</i>	IT 84%, β– 16%
		131	7/2 +	-87.444	8.02070 d <i>11</i>	β-
		132	4+	-85.70	2.295 h <i>13</i>	β_
		<i>132</i> m	(8-)	-85.58	1.387 h <i>15</i>	IT 86%, β–14%
		133	7/2+	-85.88	20.8 h 1	β-
		<i>133</i> m	(19/2 -)	-84.24	9 s 2	ÍT
		134	(4)+	-83.95	52.5 m <i>2</i>	β–
		<i>134</i> m	(8)-	-83.64	3.60 m <i>10</i>	ΙΤ 97.7%, β-2.3%
		135	7/2+	-83.79	6.57 h <i>2</i>	β-
		136	(1-)	-79.50	83.4 s 10	β-
		<i>136</i> m	(6–)	-78.86	46.9 s 10	β_
		137	(7/2+)	-76.50	24.5 s <i>2</i>	$\beta - , \beta - n 6.97\%$
		138	(2-)	-72.30	6.49 s 7	β -, β -n 5.5%
		139	(7/2+)	-68.84	2.280 s 11	β - , β - n 10%
		140	(3)	-64.2s	0.86 s 4	β -, β -n 9.3%
		141		-60.5s	0.43 s <i>2</i>	β -, β -n 22%
		142			≈0.2 s	β-
		143			>150 ns	F
		144			>150 ns	
51	۲a	110	0 :	_51 7s		a
J-1	ле	111	UT	-51.75 -51 As	071 5 20	α α
		119	0 .	-54.45	0.145 2U 97 c Q	ω c 00 16% ~ 0 940/
		112 112	0+	-JJ.J _62 06	6.150 971 s Q	c JJ. 10/0, U. U. 04/0 c 00 07% cn 1 9%
		113		-02.00	2.14 5 0	ε 99.97%, εμ 4.2%, α 0.04%

Is	oto	ре		Δ	Т½, Г, ог	
Z	El	Ā	Jπ	(MeV)	Abundance	Decay Mode
54	Xe	114	0+	-66.9s	10.0 s 4	ε
		115	(5/2+)	-68.4s	18 s 4	ε, ερ
		116	0+	-72.9s	59 s <i>2</i>	8
		117	5/2(+)	-74.0	61 s 2	ε, εp 2.9×10 ⁻³ %
		118	0+	-78.	3.8 m <i>9</i>	8
		119	(5/2+)	-78.7	5.8 m <i>3</i>	ε
		120	0+	-81.82	40 m 1	ε
		121	5/2(+)	-82.55	40.1 m <i>20</i>	ε
		122	0+	-85.17	20.1 h <i>1</i>	8
		123	(1/2) +	-85.25	2.08 h 2	ε
		124	0+	-87.658	0.10% <i>1</i>	
		125	(1/2) +	-87.190	16.9 h <i>2</i>	ε
		125m	(9/2)-	-86.937	57 s 1	IT
		126	0+	-89.174	0.09% <i>1</i>	
		127	1/2 +	-88.325	36.3446 d <i>28</i>	ε
		127m	9/2 -	-88.028	69.2 s <i>9</i>	IT
		128	0+	-89.861	1.91% <i>3</i>	
		129	1/2 +	-88.697	26.4% 6	
		129m	11/2 -	-88.461	8.88 d 2	IT
		130	0+	-89.881	4.1% <i>1</i>	
		131	3/2 +	-88.415	21.2% 4	
		131m	11/2 -	-88.251	11.934 d <i>21</i>	IT
		132	0+	-89.279	26.9% 5	
		133	3/2 +	-87.648	5.2475 d <i>5</i>	β-
		<i>133</i> m	11/2 -	-87.415	2.19 d <i>1</i>	IT
		134	0+	-88.124	10.4% <i>2</i>	
		<i>134</i> m	7–	-86.159	290 ms 17	IT
		135	3/2 +	-86.44	9.14 h <i>2</i>	β-
		<i>135</i> m	11/2 -	-85.91	15.29 m 5	IT, $\beta - 0.004\%$
		136	0+	-86.424	$>9.3\times10^{19}$ y	2β-?
			~ / 2		8.9% 1	0
		137	7/2-	-82.378	3.818 m <i>13</i>	β-
		138	0+	-80.12	14.08 m 8	β-
		139	3/2-	-75.65	39.68 s 14	β-
		140	0+	-/3.00	13.60 s <i>10</i>	β-
		141	5/2+	-68.32	1.73 s I	$\beta = , \beta = n 0.043\%$
		142	0+ 5/9	-65.5	$1.24 \ \text{S} \ \text{Z}$	p-, p-n 0.41%
		143	$\frac{3}{2}$	-00.48	$0.30 \ S \ J$	p- 0
		144	0+	-57.58	1.13×20	p- B B n
		145	0		0.985	p-, p-n
		140	0+		>150 ms	
	~	147			>150 115	0
55	Cs	112		-46.3s	0.5 ms 1	p?
		113	<i>(</i> ,)	-51.7	33 µs 7	$\mathbf{p} \approx 100\%$
		114	(1+)	-54.6s	0.57 s 2	ε ≈ 100%, εp 7%, εα 0.16%, α 0.02%
		115		-59.7s	1.4 s 8	ϵ , $\epsilon p \approx 0.07\%$
		116m	(1+)	-62.4	0.70 s 4	ϵ , $\epsilon \alpha > 0\%$, $\epsilon p > 0\%$
		116m	\geq 5+	-62.4	3.85 s 13	ϵ , $\epsilon \alpha > 0\%$, $\epsilon p > 0\%$
		117m		-66.48	6.5 s 4	ε
		117m		-66.48	8.4 s 6	ε
		118	2	-68.43	14 s 2	ϵ , $\epsilon p < 0.04\%$,
					39	$\epsilon lpha < 2.4 imes 10^{-3}\%$

Is	oto	ре		Δ	Т½, Г, ог	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
55	Cs	118m	6,7,8	-68.43	17 s 3	ε, εp<0.04%, εα<2.4×10 ⁻³ %
		119	9/2 +	-72.34	43.0 s 2	ε
		119m	3/2(+)	-72.34	30.4 s 1	ε
		120	high	-73.90	57 s <i>6</i>	ε, εp≤1.0×10 ⁻⁵ %
		120	2	-73.90	64 s 3	ε
		121	3/2(+)	-77.15	128 s 4	ε
		121m	9/2(+)	-77.08	122 s <i>3</i>	ε83%, IT17%
		122	1+	-78.12	21.2 s 2	ε
		122m	8-	-78.04	3.70 m <i>11</i>	ε
		122m	(5)-	-77.99	0.36 s 2	IT
		123	1/2 +	-81.05	5.87 m <i>5</i>	ε
		123m	(11/2)-	-80.90	1.64 s <i>12</i>	IT
		124	1+	-81.74	30.9 s 5	ε
		124m	(7)+	-81.28	6.3 s 2	IT
		125	(1/2+)	-84.098	45 m <i>1</i>	ε
		126	1+	-84.35	1.63 m <i>3</i>	ε
		127	1/2(+)	-86.245	6.25 h <i>10</i>	3
		128	1+	-85.931	3.66 m <i>2</i>	ε
		129	1/2 +	-87.502	32.06 h <i>6</i>	ε
		130	1+	-86.898	29.21 m 4	ε 98.4%, β-1.6%
		130m	5 –	-86.735	3.46 m <i>6</i>	IT 99.84%, ε 0.16%
		131	5/2 +	-88.063	9.689 d <i>16</i>	ε
		132	2+	-87.160	6.479 d 7	ε 98.13%, β-1.87%
		133	7/2+	-88.075	100%	
		134	4+	-86.896	2.0648 y <i>10</i>	β -, ϵ 3.0 $ imes$ 10 ⁻⁴ %
		134m	8-	-86.757	2.903 h 8	IT
		135	7/2+	-87.586	2.3×10 ⁶ y 3	β-
		<i>135</i> m	19/2 -	-85.953	53 m <i>2</i>	IT
		136	8-	-86.343	19 s 2	β -, IT>0%
		136	5+	-86.343	13.16 d <i>3</i>	β–
		137	7/2+	-86.550	30.07 y <i>3</i>	β-
		138	3-	-82.893	33.41 m <i>18</i>	β-
		<i>138</i> m	6-	-82.813	2.91 m <i>8</i>	ΙΤ 81%, β– 19%
		139	7/2+	-80.706	9.27 m 5	β-
		140	1-	-77.06	63.7 s 3	β-
		141	7/2+	-74.47	24.94 s 6	β -, β -n 0.035%
		142	0-	-70.52	1.70 s 2	β -, β -n 0.091%
		143	3/2+	-67.71	1.78 s <i>1</i>	β -, β -n 1.62%
		144		-63.32	1.01 s <i>1</i>	β -, β -n 3.2%
		144m	(≥4)	-63.32	<1 s	β-
		145	3/2+	-60.16	0.594 s 13	β -, β -n 14.3%
		146	1 -	-55.66	0.321 s <i>2</i>	β -, β -n 14.2%
		147	(3/2+)	-52.2	0.235 S 3	$\beta - , \beta - n 28.5\%$
		148		-4/.5	140 ms 12	p–, p–n 25.1%
		149		-44.25	> 50 ms	
		150			>50 ms	
		191			>50 ms	
56	Ba	114	0+		0.4 s + 3-2	ε, α<0.11%, ${}^{12}C<0.02\%$
		115		-48.7s	0.4 s 2	ε
		116	0+	-54.3s	1.35 s <i>15</i>	8

Is	oto	ре		Δ	Т½, Г, ог	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
56	Ba	117	(3/2)	-57.0s	1.75 s 7	ε , $\varepsilon \alpha > 0\%$, $\varepsilon p > 0\%$
		118	0+	-62.0s	5.2 s 2	ε
		119	(5/2+)	-64.	5.4 s 3	ε, εp>0%
		120	0+	-68.9	32 s 5	ε
		121	5/2(+)	-70.3	29.5 s 5	ε, ε ρ 0.02 %
		122	0+	-74.3s	1.95 m <i>15</i>	ε
		123	5/2 +	-75.6s	2.7 m 4	ε
		124	0+	-79.09	11.9 m <i>10</i>	ε
		125	1/2(+)	-79.5	3.5 m 4	ε
		126	0+	-82.68	100 m <i>2</i>	ε
		127	1/2(+)	-82.8	12.7 m 4	ε
		127m	7/2(-)	-82.7	1.9 s 2	IT
		128	0+	-85.41	2.43 d 5	ε
		129	1/2 +	-85.07	2.23 h <i>11</i>	ε
		129m	7/2 +	-85.06	2.17 h 4	$\epsilon > 0\%$
		130	0+	-87.271	0.106% <i>2</i>	
		131	1/2 +	-86.693	11.50 d <i>6</i>	ε
		131m	9/2-	-86.506	14.6 m <i>2</i>	IT
		132	0+	-88.439	0.101% <i>3</i>	
		133	1/2 +	-87.558	3854 d 4	ε
		133m	11/2 -	-87.270	38.9 h <i>1</i>	IT 99.99%, ε 0.01%
		134	0+	-88.954	2.417% 27	
		135	3/2 +	-87.855	6.592% <i>18</i>	
		135m	11/2 -	-87.587	28.7 h 2	IT
		136	0+	-88.891	7.854% <i>36</i>	
		136m	7–	-86.860	0.3084 s 19	IT
		137	3/2 +	-87.726	11.23% 4	
		<i>137</i> m	11/2 -	-87.064	2.552 m <i>1</i>	IT
		138	0+	-88.266	71.70% <i>7</i>	
		139	7/2-	-84.918	83.06 m <i>28</i>	β–
		140	0+	-83.278	12.752 d <i>3</i>	β–
		141	3/2 -	-79.73	18.27 m 7	β–
		142	0+	-77.825	10.6 m 2	β–
		143	5/2 -	-73.95	14.33 s <i>8</i>	β–
		144	0+	-71.78	11.5 s 2	β – , β –n 3.6%
		145	5/2-	-68.05	4.31 s <i>16</i>	β–
		146	0+	-65.04	2.22 s 7	β–
		147	(3/2-)	-61.49	0.893 s <i>1</i>	β – , β –n 0.06%
		148	0+	-58.0	0.607 s 25	β -, β -n \leq 0.4%
		149		-54.0s	0.344 s 7	β – , β –n 0.43%
		150	0+	-50.7s	0.3 s	$\beta-$
		151			>150 ns	
57	La	118		-49.8s		
		119		-54.8s		
		120		-57.7s	2.8 s 2	ε, ερ
		121		-62.4s	5.3 s 2	Э
		122		-64.5s	8.7 s 7	ε, ερ
		123		-68.7s	17 s <i>3</i>	3
		124	(7+)	-70.3s	29 s <i>2</i>	3
		125	(11/2-)	-73.9s	76 s <i>6</i>	3
		126		-75.1s	54 s 2	$\varepsilon > 0\%$
		127	(3/2+)	-78.1s	3.8 m 5	ε

Is	oto	ре		Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
57	La	127m	(11/2 -)	-78.1s	5.0 m <i>5</i>	IT?
		128	4-,5-	-78.8	5.0 m <i>3</i>	8
		129	3/2 +	-81.35	11.6 m <i>2</i>	ε
		129m	11/2 -	-81.18	0.56 s 5	IT
		130	3(+)	-81.7s	8.7 m <i>1</i>	ε
		131	3/2 +	-83.7	59 m <i>2</i>	8
		132	2-	-83.73	4.8 h 2	8
		132m	6-	-83.54	24.3 m 5	IT 76%, ε 24%
		133	5/2 +	-85.3	3.912 h <i>8</i>	3
		134	1+	-85.24	6.45 m <i>16</i>	3
		135	5/2+	-86.65	19.5 h <i>2</i>	ε
		136	1+	-86.02	9.87 m <i>3</i>	ε
		136m		-85.79	114 ms 3	IT
		137	7/2+	-87.13	6×10^4 y 2	ε
		138	5+	-86.529	$1.05 \times 10^{11} \text{ y } 2$	ε 66.4%,
					0.0902% <i>2</i>	β-33.6%
		139	7/2+	-87.235	99.9098% <i>2</i>	
		140	3-	-84.325	1.6781 d <i>3</i>	β–
		141	(7/2+)	-82.942	3.92 h <i>3</i>	β–
		142	2-	-80.037	91.1 m 5	β–
		143	(7/2)+	-78.19	14.2 m <i>1</i>	β-
		144	(3–)	-74.90	40.8 s 4	β–
		145		-72.98	24.8 s 20	β–
		146	2-	-69.16	6.27 s 10	β-
		<i>146</i> m	(6–)	-69.16	10.0 s <i>1</i>	β-
		147 (3/2+,5/2+	-67.24	4.015 s 8	β -, β -n 0.04%
		148	(2–)	-63.2	1.428 s <i>12</i>	β -, β -n 0.15%
		149		-61.3s	1.05 s 3	β -, β -n 1.4%
		150		-57.2s	0.86 s 5	β –, β –n 2.7%
		151		-54.6s	>150 ns	
		152			>150 ns	
		153			>150 ns	
58	Ce	121		-52.5s		
		122	0+	-57.7s	8.7 s 7	ε, ερ
		123	(5/2)	-60.1s	3.8 s	ε, ερ
		124	0+	-64.7s	6 s 2	3
		125	(5/2+)	-66.6s	9.0 s 6	ε, ερ
		126	0+	-70.7s	50 s <i>3</i>	$\varepsilon > 0\%$
		127		-72.0s	32 s 4	3
		128	0+	-75.6s	≈3 m	3
		129		-76.3s	3.5 m <i>3</i>	3
		130	0+	-79.5s	25 m <i>2</i>	8
		131	(7/2+)	-79.7	10.2 m <i>3</i>	ε
		131m	(1/2+)	-79.7	5.0 m <i>10</i>	ε
		132	0+	-82.4s	3.51 h <i>11</i>	ε
		133	9/2-	-82.4s	4.9 h <i>4</i>	ε
		133m	1/2 +	-82.4s	97 m 4	3
		134	0+	-84.7	3.16 d 4	ε
		135	1/2(+)	-84.63	17.7 h 2	ε
		135m	11/2(-)	-84.18	20 s 1	IT
		136	0+	-86.49	0.19% <i>1</i>	
		137	3/2 +	-85.90	9.0 h <i>3</i>	3

Isotope		ре		Δ	Т½, Γ, or	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
58	Ce	137m	11/2 -	-85.65	34.4 h <i>3</i>	IT 99.22%, ε 0.78%
		138	0+	-87.57	0.25% <i>1</i>	
		139	3/2 +	-86.957	137.640 d <i>23</i>	8
		139m	11/2 -	-86.203	54.8 s 10	IT
		140	0+	-88.087	88.48% <i>10</i>	
		141	7/2 -	-85.444	32.501 d <i>5</i>	β–
		142	0+	-84.542	$>5 \times 10^{16}$ y	2β -?
					11.08% <i>10</i>	
		143	3/2 -	-81.616	33.039 h <i>6</i>	β–
		144	0+	-80.441	284.893 d <i>8</i>	β-
		145	(3/2-)	-77.10	3.01 m <i>6</i>	β-
		146	0+	-75.70	13.52 m <i>13</i>	β-
		147	(5/2-)	-72.18	56.4 s 10	β-
		148	0+	-70.4	56 s <i>1</i>	β–
		149		-66.80	5.3 s 2	β-
		150	0+	-65.0	4.0 s 6	β-
		151		-61.5s	1.02 s 6	β-
		152	0+	-59.0s	1.4 s 2	β-
		153		-55.0s	>150 ns	F
		154	0+		>150 ns	
		155			>150 ns	
50	Dn	191			1408	C
33	FI	121			1.4 5 0	٤
		122				
		123		53 Oc	19c 9	c cn
		124		-57.85	1.2 5 2	ε, εμ
		120		-37.88	21c2	c > 0% cp
		120		-00.35	3.1×3	ε>0/0, εμ
		1.20		-04.45	21 c 2	
		120		-00.38	3.152	$\varepsilon, \varepsilon \rho$
		120		-70.0S	24 S J 10 0 c 1	£ > 0/0
		121	(2/2)	-71.45	40.054	٤ د
		131 121m	(3/2+)	-74.3	1.JJ III J	E IT 0.5% c 5%
		122	(11/2-)	-74.3	J.782	11 95/0, 8 5/0
		122	5/2(1)	-73.38 78.1s	1.0 m 3	٤ د
		133	3/2(+) 9	-78.15 78.5s	17 m 2	c
		134 134m	(5-)	-78.55	$\sim 11 \text{ m}$	c
		13411	(3-) 3/2(+)	-70.55	$\sim 11 \text{ m}$	c c
		136	3/2(+) 9	-00.5 81 37	12.1 m <i>1</i>	c
		130	2 T 5 / 2 1	-01.37	1 9 8 h 9	c
		137	J/2+	-03.20	1.20 II 5	c
		138m	1+ 7_	-89 77	2 1 2 h 1	c
		13011	5/2+	-81 828	2.12 ll 4 1 1 h 1	c
		140	J/&⊤ 1⊥	-84.620	3 30 m 1	c
		141	5/2+	-86 025	100%	C C
		141	9_	-83 707	1912h /	ß_00,08%, ∈0,02%,
		146 119m	د – 5 –	-03.131 -83 703	13.12 II 4 14.6 m = 5	μ- 33.30/0, ε U.U&70 IT
		146111	J− 7/9 ¦	-03.133 _83.077	14.0 III J 12.57 A 9	н В_
		143	0_		17.98 m 5	Р В_
		144 111m	0- 3	-80.739	79m 2	μ_ μ_ μ_
		144111	3- 7/9 :	-00.700	1.2 III J 5 081 h 10	11 99.93/0, μ- 0.07% β_
		14J 116	(2)	-13.030	3.304 II 10 91.15 m 10	в h_
		140	(~)-	-10.14	~4.1J III 10	h_

Isoto	ppe	Δ	Т½. Г. or	
Z El	Α Jπ	(MeV)	Abundance	Decay Mode
59 Pr	147 (3/2)	-75 47	13.4 m <i>A</i>	б
55 11	147 (3727) 148 1-	-72 5	2 27 m 4	ρ β_
	140 1 148m (4)	-72.4	2.27 m 4	β_
	149 (5/2+)	-70.99	2.26 m 7	β
	$150 (0)^{-1}(1)^{-1}$	-68.00	6 19 s <i>16</i>	β β_
	150 (1) 151 (3/2- 5/2-)	-66 79	18 90 s 7	β β_
	151 (0.2, 0.2) 152 (4-)	-63 5s	3 63 s <i>12</i>	β_
	153	-61.55	4352	β β_
	154 (3+2+)	-57.78	2.3×1	β β_
	155	-55.38		٢
60 N <i>č</i>	197	-55 48	18 s /	e en
00 110	128 O ₊	-60.2s	1.0 5 4	c, cp
	129 (5/2+)	-62.2s	49s 2	e en
	130 (0/2+)	-66 3s	28 s 3	с, ср с
	$130 0^{+}$ 131 (5/2)	-67.9	20 s 0 27 s 2	e en
	131 (0/2) 132 0+	-71 6s	1 75 m <i>17</i>	с, ср с
	133	-72.55	70×10	e
	133m (9/2-)	-72.55	<2 m	e
	134 0+	-75.88	8.5 m 15	e E
	$135 \frac{9}{2}(-)$	-76.2s	12.4 m 6	E E
	135m	-76.2s	5.5 m 5	е Е
	136 0+	-79.16	50.65 m <i>33</i>	ε
	137 1/2+	-79.51	38.5 m 15	ε
	137m 11/2-	-78.99	1.60 s 15	IT
	138 0+	-82.0s	5.04 h <i>9</i>	ε
	139 3/2+	-82.04	29.7 m 5	3
	139m 11/2-	-81.81	5.50 h <i>20</i>	ε 88.2%, IT 11.8%
	140 0+	-84.48	3.37 d 2	ε
	141 3/2 +	-84.202	2.49 h <i>3</i>	ε
	141m 11/2-	-83.445	62.0 s <i>8</i>	IT, $\epsilon < 0.05\%$
	142 0+	-85.959	27.13% <i>12</i>	
	143 7/2-	-84.011	12.18% <i>6</i>	
	144 0+	-83.757	2.29×10^{15} y 16	α
			23.80% <i>12</i>	
	145 7/2-	-81.441	8.30% 6	
	146 0+	-80.935	17.19% <i>9</i>	0
	147 5/2 - 148 0	-/8.156		р–
	140 0+	-//.41/	J./0 % J 1 790 ト <i>1</i>	Q
	149 5/2 - 150 0	-74.383	1.720 II I	p- 28 2
	150 0+	-73.093	>1.1×10 y 5 64% 3	2p- :
	151 (3/2) +	-70.956	12.44 m 7	β–
	152 0+	-70.16	11.4 m 2	β_
	153 (1/2:5/2)	-67.1s	28.9 s 4	β_
	154 0+	-65.6s	25.9 s 2	β–
	155	-62.0s	8.9 s 2	β–
	156 0+	-60.1s	5.47 s 11	β-
	157	-56.1s		-
61 Pn	n 130	-55.5s	2.2 s 5	ε, ερ
	131	-59.8s	· ··· ·	· 1
	132 (3+)	-61.7s	6.3 s 7	ϵ , $\epsilon p \approx 5.0 \times 10^{-5}$ %
	133	-65.5s	12 s <i>3</i>	- 3

Ise	otope		Δ	Т½, Г, ог	
Z	ELA	Jπ	(MeV)	Abundance	Decay Mode
61	Pm 134	(2+)	-66.9s	≈5 s	3
	134m	(5+)	-66.9s	22 s 1	ε
	135	(11/2 -)	-70.1s	40 s <i>3</i>	ε
	136	(2+)	-71.3	47 s 2	ε
	136	5(+), 6-	-71.3	107 s <i>6</i>	ε
	137	11/2 -	-73.9s	2.4 m <i>1</i>	ε
	138	1+	-75.1s	10 s 2	ε
	138m	(3+)	-75.1s	3.24 m 5	ε
	138m	(5-)	-75.1s	3.24 m	ε
	139	(5/2) +	-77.52	4.15 m 5	ε
	139m	(11/2) -	-77.33	180 ms <i>20</i>	IT, ε?
	140	1+	-78.39	9.2 s 2	ε
	140m	8-	-78.39	5.95 m <i>5</i>	ε
	141	5/2 +	-80.49	20.90 m 5	ε
	142	1+	-81.09	40.5 s 5	ε
	143	5/2 +	-82.970	265 d 7	ε
	144	5 –	-81.425	363 d <i>14</i>	ε
	145	5/2 +	-81.278	17.7 y 4	ε, α 3×10 ⁻⁷ %
	146	3–	-79.463	5.53 y <i>5</i>	ε 66%, β-34%
	147	7/2+	-79.052	2.6234 y <i>2</i>	β–
	148	1 –	-76.878	5.370 d <i>9</i>	β–
	148m	6-	-76.740	41.29 d <i>11</i>	$\beta-95\%$, IT 5%
	149	7/2+	-76.075	53.08 h <i>5</i>	β-
	150	(1–)	-73.61	2.68 h <i>2</i>	β –
	151	5/2+	-73.399	28.40 h 4	$\beta-$
	152	1+	-71.27	4.12 m <i>8</i>	$\beta-$
	<i>152</i> m	4-	-71.12	7.52 m <i>8</i>	$\beta-$
	<i>152</i> m	(8)	-71.10	13.8 m <i>2</i>	$\beta - \approx 100\%$, IT $\approx 0\%$
	153	5/2-	-70.67	5.4 m <i>2</i>	β–
	154	(0,1)	-68.4	1.73 m <i>10</i>	β-
	<i>154</i> m	(3,4)	-68.4	2.68 m 7	β-
	155	(5/2-)	-67.0s	41.5 s 2	β-
	156	4(-)	-64.22	26.70 s <i>10</i>	β-
	157	(5/2–)	-62.2s	10.56 s <i>10</i>	β-
	158		-59.0s	4.8 s 5	β–
	159		-56.58		
62	Sm 131	_		1.2 s 2	ε, εp>0%
	132	0+		4.0 s 3	ε, ερ
	133	(5/2+)	-57.1s	2.9 s 2	ε, ερ
	134	0+	-61.5s	10 s <i>1</i>	ε
	135	(7/2+)	-63.0s	10 s 2	ε, ερ
	136	0+	-66.8s	47 s 2	ε
	137	(9/2-)	-67.9s	45 s <i>I</i>	ε
	138	0+	-/1.2s	3.1 m 2	ε
	139	(1/2)+	-/Z.I	2.5/m 10	E
	139m	(11/2) - 0	-/1.6	IU./S ΰ	11 93.7%, E 6.3%
	140	U+ 1/9	-/J.4S	14.82 m IZ	દ
	141	1/2+ 11/9	-13.94	10.2 m 2	ይ 200 ይ00∕ ፲፹ 0 21 0∕
	141M	11/2-	-/3.//	22.0 M 2	ε 99.09%, 11 U.31%
	142	U+ 2/2	-10.99 70 597	12.49 M J	ε
	143 112m	3/2+ 11/9	-19.321	0.03 III 1 66 c 9	ະ [TQQ 76%, ດີດ 9.40/
	140111	11/6-	-10.113	00 3 <i>2</i>	11 33.70/0, 2 0.2470

Is	oto	ре		Δ	Т½, Г, or	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
62	Sm	144	0+	-81.975	3.1% <i>1</i>	
		145	7/2-	-80.661	340 d <i>3</i>	ε
		146	0+	-81.005	10.3×10 ⁷ y 5	α
		147	7/2 -	-79.276	1.06×10^{11} y 2	α
					15.0% 2	
		148	0+	-79.346	7×10 ¹⁵ y <i>3</i>	α
					11.3% <i>1</i>	
		149	7/2 -	-77.146	$>2 \times 10^{15} \text{ y}$	α?
					13.8% <i>1</i>	
		150	0+	-77.061	7.4% <i>1</i>	
		151	5/2 -	-74.586	90 y <i>8</i>	β-
		152	0+	-74.772	26.7% <i>2</i>	
		153	3/2 +	-72.569	46.27 h <i>1</i>	β-
		154	0+	-72.465	22.7% <i>2</i>	
		155	3/2 -	-70.201	22.3 m <i>2</i>	β-
		156	0+	-69.372	9.4 h 2	β-
		157	(3/2-)	-66.8	482 s 4	β-
		158	0+	-65.3s	5.30 m <i>3</i>	β-
		159	(5/2-)	-62.2s	11.37 s <i>15</i>	β-
		160	0+	-60.3s	9.6 s <i>3</i>	β-
		161		-56.8s		
63	Eu	134			0.5 s <i>2</i>	ε.εp>0%
		135		-54.3s	1.5 s 2	8
		136	(7+)	-56.4s	3.3 s <i>3</i>	ε. ερ 0.09%
		136	(3+)	-56.4s	3.7 s <i>3</i>	ε. ερ 0.09%
		137	(11/2-)	-60.4s	11 s 2	8
		138	(6–)	-62.0s	12.1 s 6	8
		139	(11/2) -	-65.4s	17.9 s 6	8
		140	1+	-67.0s	1.51 s 2	8
		140m	(5-)	-66.8s	125 ms <i>2</i>	IT, ε<1%
		141	5/2+	-70.4	41.4 s 7	8
		141m	11/2 -	-70.3	2.7 s <i>3</i>	IT 87%, ε13%
		142	1+	-71.63	2.4 s 2	8
		142m	8-	-71.63	1.22 m <i>2</i>	ε
		143	5/2 +	-74.36	2.57 m <i>3</i>	ε
		144	1+	-75.65	10.2 s <i>3</i>	8
		145	5/2 +	-78.001	5.93 d 4	8
		146	4-	-77.127	4.59 d <i>3</i>	8
		147	5/2 +	-77.554	24.1 d 6	ε,α2.2×10 ⁻³ %
		148	5 –	-76.24	54.5 d <i>5</i>	ε,α9.4×10 ⁻⁷ %
		149	5/2 +	-76.454	93.1 d 4	8
		150	5(-)	-74.800	36.9 y <i>9</i>	8
		150m	0-	-74.758	12.8 h <i>1</i>	β-89%, ε11%,
						$\text{IT} \le 5.0 \times 10^{-8}\%$
		151	5/2 +	-74.663	47.8% 15	
		152	3-	-72.898	13.537 y <i>6</i>	ε 72.1%, β-27.9%
		152m	0-	-72.852	9.3116 h <i>13</i>	β-72%, ε2 8 %
		152m	8-	-72.750	96 m <i>1</i>	IT
		153	5/2 +	-73.377	52.2% 15	_
		154	3-	-71.748	8.593 y 4	$\beta - 99.98\%, \epsilon 0.02\%$
		154m	(8–)	-71.603	46.3 m 4	IT
		155	5/2 +	-71.828	4.7611 y <i>13</i>	β–

Iso	tope		Δ	Т½, Γ, or	
Ζŀ	ELĀ	Jπ	(MeV)	Abundance	Decay Mode
63 E	E u 156	0+	-70.094	15.19 d <i>8</i>	β_
	157	5/2 +	-69.471	15.18 h <i>3</i>	β_
	158	(1-)	-67.21	45.9 m 2	β-
	159	5/2+	-66.057	18.1 m <i>1</i>	β-
	160	1(-)	-63.4s	38 s 4	β-
	161		-61.8s	26 s 3	β-
	162		-58.6s	10.6 s <i>10</i>	β-
	163		-56.5s		1
6A C	d 137		-51 68	7 5 3	c
04 0	138	0+	-55 9s	130	C
	130	01	-57.7s	49s 10	e en
	140	0+	-61 5s	15 8 s <i>1</i>	с, ср с
	141	(1/2+)	-63.1s	14 s 4	e en 0.03%
	141m	(1/2)	-62.8s	24 5 5 5	ε 89% IT 11%
	142	0+	-67.1s	70286	e 00/0, 11 11/0
	143	(1/2)+	-68.4	39 5 2	e e
	143m	(11/2)	-68.2	112 s 2	е Е
	144	0+	-71.9s	4.5 m <i>1</i>	е Е
	145	1/2 +	-72.95	23.0 m 4	ε
	145m	11/2 -	-72.20	85 s <i>3</i>	IT 94.3%. ε 5.7%
	146	0+	-76.097	48.27 d 10	8
	147	7/2 -	-75.367	38.06 h <i>12</i>	ε
	148	0+	-76.279	74.6 y <i>30</i>	α
	149	7/2 -	-75.135	9.28 d <i>10</i>	ϵ , $lpha$ 4.3 $ imes$ 10 $^{-4}\!\%$
	150	0+	-75.771	1.79×10 ⁶ y 8	α
	151	7/2-	-74.199	124 d <i>1</i>	ε,α1.0×10 ⁻⁶ %
	152	0+	-74.716	1.08×10 ¹⁴ y 8	α
				0.20% <i>1</i>	
	153	3/2-	-72.892	241.6 d 2	ε
	154	0+	-73.716	2.18% 3	
	155	3/2-	-72.080	14.80% 5	
	156	0+	-72.545	20.47% 4	
	157	3/2-	-70.834	15.65% 3	
	158	0+	-70.700	24.84% <i>IZ</i>	0
	109	3/2-	-08.372	18.4/9 h 4	p–
	100	0+ 5/9	-07.952	266 m 5	ß
	101	$\frac{5}{2}$	-05.510	3.00 III 3	μ– β
	162	(5/2)	-04.250	68 c 3	μ– β
	164	(J/2-) 0+	-59.7s	45 s 3	β_ β_
	165	01	-56 55	1030	Ρ
05 7	100 Th 100		49.4-		
03 1	140	F	-40.45	94 9 9	a n 0 260/
	140	5 (5/9)	-51.S	2.4 S 2 2 5 c 2	ε, μυ. 20%
	141 1/1m	(J/L^{-})	-54.85	5.5 S 2 7 9 s 6	e c
	14111	1⊥	-57.05 -57.1s	597 ms 17	$c = cn \approx 3 0 \times 10^{-70/2}$
	146 149m	(5-)	-56 8c	303 ms 7	ε , $\varepsilon p \sim 3.0 \times 10^{-10}$
	143	(11/2)	-61.0s	12 s 1	ε, ε _μ , τι
	143m	(5/2+)	-61.05	<21 s	ĪT
	144	(1+)	-63.0s	≈1 s	 Е
	144m	(6–)	-62.6s	4.25 s 15	ΙΤ 66%, ε 34%
	145	(1/2+)	-66.4	31.6 s 6	ε?

Isoto	Isotope		Δ	Т½, Г, or	
Z El	A	Jπ	(MeV)	Abundance	Decay Mode
65 Th	145m	(11/2)	-66.4	29.5 s 15	£
00 10	146	1+	-68.0	8 s 4	e
	146m	5-	-68.0	24.1 s 5	е Е
	146m	(10+)	-67.2	1.18 ms 2	C
	147	(1/2+)	-70.76	1.7 h <i>1</i>	8
	147m	(11/2)-	-70.70	1.92 m 7	8
	148	2-	-70.59	60 m 3	8
	148m	9+	-70.50	2.30 m <i>10</i>	8
	149	1/2 +	-71.499	4.118 h 25	ε 83.3%, α 16.7%
	149m	11/2 -	-71.463	4.16 m 4	ϵ 99.98%, α 0.02%
	150	(2-)	-71.115	3.48 h <i>16</i>	$\varepsilon, \alpha < 0.05\%$
	150m	(9+)	-70.645	5.8 m <i>2</i>	ε ≈ 100%
	151	1/2(+)	-71.633	17.609 h <i>1</i>	ε, α 0.0095%
	151m	(11/2-)	-71.533	25 s 3	IT 93.8%, ε 6.2%
	152	2-	-70.73	17.5 h <i>1</i>	$\epsilon, \alpha < 7.0 \times 10^{-7}\%$
	152m	8+	-70.22	4.2 m <i>1</i>	IT 78.8%, ε 21.2%
	153	5/2 +	-71.322	2.34 d <i>1</i>	8
	154	0	-70.15	21.5 h 4	ϵ , $\beta - < 0.1\%$
	154m	3-	-70.15	9.4 h 4	ε 78.2%, IT 21.8%,
					$\beta - < 0.1\%$
	154m	7–	-70.15	22.7 h 5	ε98.2%, IT 1.8%
	155	3/2 +	-71.26	5.32 d <i>6</i>	ε
	156	3-	-70.101	5.35 d <i>10</i>	ε, β-
	156m	(7–)	-70.051	24.4 h <i>10</i>	IT
	156m	(0+)	-70.013	5.3 h <i>2</i>	ε, ΙΤ
	157	3/2 +	-70.774	99 y <i>10</i>	ε
	158	3-	-69.480	180 y <i>11</i>	ε 83.4%, β-16.6%
	158m	0-	-69.370	10.70 s <i>17</i>	IT, $\beta - < 0.6\%$,
	1	0.40		4.0.0.0/	$\epsilon < 0.01\%$
	159	3/2+	-69.542	100%	0
	160	3-	-67.846	72.3 d <i>2</i>	β-
	161	3/2+	-67.471	6.88 d 3	β-
	162	1-	-65.68	7.60 m 15	β-
	163	3/2+		19.5 m 3	β-
	104	(3+)	-02.1	3.0 III I	β- 0
	105	(3/2+)	-00.78	2.11 III 10	p–
	167		-57.75		
	107		-33.85		
66 Dy	141	(9/2-)	-45.5s	0.9 s 2	ε, ερ
	142	0+	-50.2s	2.3 s 3	ε, εp≈8.0×10 %
	143	0.	-52.2S	$3.9 \ \text{s} \ 4$	ε, ερ
	144	(1/2)	-30.85	$9.1 \ S \ 4$	ε, ερ
	145 145m	(1/2+)	-30.78	10.5×10	ε
	145111	(11/2 -)	-30.78		ε
	140 146m	10+	-02.9	150 ms 20	е IT
	14011	1/9±	-55.5	100 ms 20 10 c 10	r c cn > 0%
	147m	11/2-	-63 63	τυ 3 10 55 7 c 7	ε, εμ < 0/0 ε 65% ΙΤ 25%
	148	0+	-67 91	31 m 1	e 0070, 11 0070
	149	(7/2)	-67 69	4.20 m 14	e
	149m	(27/2)	-65.03	$0.490 \le 15$	- IT 99,3% г.0.7%
	150	0+	-69.321	7.17 m 5	ε 64%, α 36%

Is	Isotope			Δ	Т½, Г, or	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
66	Dy	151	7/2(-)	-68.762	17.9 m <i>3</i>	ε 94.4%, α5.6%
		152	0+	-70.128	2.38 h 2	ε 99.9%, α0.1%
		153	7/2(-)	-69.151	6.4 h <i>1</i>	ε 99.991%,
						$\alpha 9.4 \times 10^{-3}$ %
		154	0+	-70.400	3.0×10^6 y 15	α
		155	3/2-	-69.16	9.9 h <i>2</i>	ε
		156	0+	-70.534	0.06% <i>1</i>	
		157	3/2 -	-69.432	8.14 h 4	ε
		157m	11/2 -	-69.233	21.6 ms <i>16</i>	IT
		158	0+	-70.417	0.10% <i>1</i>	
		159	3/2 -	-69.177	144.4 d 2	ε
		160	0+	-69.682	2.34% 5	
		161	5/2 +	-68.065	18.9% <i>1</i>	
		162	0+	-68.190	25.5% 2	
		163	5/2 -	-66.390	24.9% <i>2</i>	
		164	0+	-65.977	28.2% <i>2</i>	
		165	7/2 +	-63.621	2.334 h 1	β–
		165m	1/2 -	-63.513	1.257 m <i>6</i>	ΙΤ 97.76%. β-2.24%
		166	0+	-62.593	81.6 h <i>1</i>	β_
		167	(1/2-)	-59.94	6.20 m <i>8</i>	β_
		168	0+	-58.55	8.7 m 3	β_
		169	(5/2-)	-55.6	39 5 8	β_
07	π.	1 4 0	(0/2)	49.9-		٣
67	HO	143		-42.2S	07.1	
		144		-45.0S	0.7 S 1	ε, ερ
		145	(10)	-49.65	0.0	
		146	(10+)	-52.2s	3.6 S 3	ε, ερ
		14/	(11/2-)	-56.25	5.8 S 4	ε, ερ
		148	1+	-58.55	2.2 s 11	8
		148m	6-	-58.55	9.3 s <i>z</i>	ε, ερ 0.08%
		149	(11/2)	-61.67	21.1 s <i>2</i>	ε
		149m	(1/2+)	-61.62	56 s 3	ε
		150	2-	-62.1s	72 s 4	ε
		150m	(9)+	-61.3s	23.3 s 3	ε
		151	(11/2-)	-63.63	35.2 s 1	ε 78%, α 22%
		151m	(1/2+)	-63.59	47.2 s 10	<i>α</i> ≈80%, ε?
		152	2-	-63.65	161.8 s 3	ε 88%, α 12%
		152m	9+	-63.49	50.0 s 4	ε 89.2%, α 10.8%
		153	11/2 -	-65.023	2.02 m 3	ε 99.95%, α 0.05%
		153m	1/2 +	-64.955	9.3 m <i>5</i>	ε 99.82%, α 0.18%
		154	(2)-	-64.648	11.76 m <i>19</i>	ε 99.98%, α 0.02%
		154m	8+	-64.328	3.10 m <i>14</i>	ϵ , α < 1 . 0×10 ⁻³ % ,
						IT≈0%
		155	5/2+	-66.06	48 m 1	ε
		156	(5+)	-65.5s	56 m <i>1</i>	ε
		156m	(2+)	-65.4s	9.5 s <i>15</i>	IT
		157	7/2-	-66.89	12.6 m <i>2</i>	8
		158	5+	-66.18	11.3 m 4	3
		158m	2-	-66.11	28 m <i>2</i>	IT > 81%, $\epsilon < 19\%$
		158m	(9+)	-66.00	21.3 m <i>23</i>	$\epsilon \approx 93\%$
		159	7/2-	-67.339	33.05 m <i>11</i>	ε
		159m	1/2 +	-67.133	8.30 s <i>8</i>	IT
		160	5+	-66.39	25.6 m <i>3</i>	ε

Isotope		ре		Δ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
67	Ho	160m	2-	-66.33	5.02 h 5	IT 65%, ε 35%
		160m	(9+)	-66.22	3 s	IT
		161	7/2 -	-67.206	2.48 h 5	ε
		161m	1/2 +	-66.995	6.76 s 7	IT
		162	1+	-66.050	15.0 m <i>10</i>	ε
		162m	6-	-65.944	67.0 m 7	IT 62%, ε 38%
		163	7/2 -	-66.387	4570 y <i>25</i>	8
		163m	1/2 +	-66.089	1.09 s 3	IT
		164	1+	-64.990	29 m <i>1</i>	ε 60%, β-40%
		164m	6-	-64.850	37.5 m +15-5	IT
		165	7/2 -	-64.907	100%	
		166	0-	-63.080	26.763 h <i>4</i>	β-
		166m	(7)-	-63.074	1.20×10 ³ y <i>18</i>	β-
		167	7/2 -	-62.292	3.1 h <i>1</i>	β-
		168	3+	-60.08	2.99 m 7	β-
		168m	(6+)	-60.03	132 s 4	$T \ge 99.5\%, \beta \le 0.5\%$
		169	7/2-	-58.81	4.7 m <i>1</i>	β-
		170	(6+)	-56.25	2.76 m 5	β_
		170m	(1+)	-56.13	43 s 2	β_
		171	(7/2)	-54.5	53 s <i>2</i>	β_
		172			25 s <i>3</i>	β-
68	Er	145		-39.35		
•••		146	0+	-44.85	$1.7 \le 6$	ε εn>0%
		147	(11/2)	-47.1s	2.5 \$ 2	ε , $\varepsilon p > 0\%$
		147m	(1/2+)	-47.1s	≈2.5 s	ϵ , $\epsilon p > 0\%$
		148	0+	-51.8s	4.6 \$ 2	e, ep. 5.0
		149	(1/2+)	-53.98	4 \$ 2	ε εn 7%
		149m	(11/2)	-53.28	8.9 5 2	ε 96.5% IT 3.5%
			(11/4)	00125		εp 0. 18%
		150	0+	-58.0s	18.5 s 7	8
		151	(7/2-)	-58.48	23.5 s 13	ε
		151m	(27/2)	-55.88	0.58 s 2	Τ 95.3%, ε 4.7%
		152	0+	-60.55	10.3 s 1	α 90% ε 10%
		153	(7/2-)	-60.46	37.1 s.2	α 53% ε 47%
		154	(1/2)	-62 617	373 m 9	ε 99 53% α 0 47%
		155	7/2-	-62.22	5.3 m <i>3</i>	ε 99, 98%, α 0, 02%
		156	0+	-64.1s	19.5 m <i>10</i>	$\epsilon \cdot \alpha 5 \times 10^{-6}$ %
		157	3/2 -	-63.42	18.65 m 10	$\epsilon \approx 100\%, \alpha < 0.02\%$
		157m	(9/2+)	-63.27	76 ms 6	IT
		158	(0, 2)	-65.3s	2 29 h 6	8
		159	3/2-	-64.571	36 m 1	e
		160	0+	-66.06	28 58 h 9	e
		161	3/2-	-65 203	321h3	e
		162	0+	-66.345	0.14% 1	C
		163	5/2-	-65 177	75.0 m <i>A</i>	c
		164	0+	-65 952	1.61% 2	C
		165	5/2 -	-64 521	10 36 h <i>A</i>	٤
		166	0,2- 0+	-64 934	33 6% 9	C
		167	7/9⊥	-63 200	22.95% 15	
		167m	1/2-	-63 001	2 260 c 6	ТТ
		168	∩⊥	-62 000	26 8% 9	11
		169	1/9-	_60 Q21	9 10 d 2	ß_
		100	116	00.001	0.10 u &	Ч

Isoto	Isotope		Δ	Т½, Г, or		
Z El	Α	Jπ	(MeV)	Abundance	Decay Mode	
68 Er	· 170	0+ –	60.118	14.9% <i>2</i>		
	171 5	/2	57.728	7.516 h <i>2</i>	β–	
	172	0+ –	56.493	49.3 h <i>3</i>	β–	
	173 (7	/2-) -	53.7s	1.4 m <i>1</i>	β–	
	174	0+ –	-52.1s	3.3 m <i>2</i>	β–	
69 Tn	1 46 (5-	- 6-) -	30.8s f	32 ms + 19 - 14	n	
00 1 1	146m (1	(0+) –	30.8s	206 ms 25	P	
	147 (1	1/2-) -	36.45	0 559 s 26	β ε≈90% n≈10%	
	147m		36.4s	0.39 ms <i>8</i>	n	
	148m (1	0+) -	39.85	0.7 s 2	۲ ۶	
	149 (1)	1/2-) -	44.45	0.9 s 2	ε. ε р 0.2%	
	150 (6-) -	47.1s	2.2 s 2	ε	
	151 (1	1/2-) -	50.9s	4.17 s 10	ε	
	151m (1	/2+) -	50.9s	6.6 s 14	ε	
	152 (2-) –	51.9s	8.0 s 10	ε	
	152m (9)+ –	51.9s	5.2 s <i>6</i>	ε	
	153 (1)	1/2-) -	54.00	1.48 s 1	α91%,ε9%	
	153m (1	/2+) –	53.96	2.5 s 2	α95%,ε5%	
	154 (2-) –	54.6s	8.1 s <i>3</i>	ε 56%, α 44%	
	154m (9+) –	54.6s	3.30 s 7	α90%, ε10%, IT	
	155 (1)	1/2-) -	56.64	21.6 s 2	ε 98.1%, α 1.9%	
	155m (1	/2+) –	56.60	45 s 3	$\epsilon > 92\%$, $\alpha < 8\%$	
	156	2	56.89	83.8 s <i>18</i>	ε99.94%, α0.06%	
	156m	-	56.89	19 s <i>3</i>	α?	
	157 1	/2+ –	58.9	3.63 m <i>9</i>	ε	
	158	2	58.8s	3.98 m <i>6</i>	ε	
	159 5	/2+ –	60.7	9.13 m <i>16</i>	3	
	160	1	60.2	9.4 m <i>3</i>	ε	
	160m	5 –	60.1	74.5 s <i>15</i>	IT 8 5%, ε 15%	
	161 7	/2+ –	62.04	30.2 m <i>8</i>	ε	
	162	1	61.54	21.70 m <i>19</i>	8	
	162m	5+ -	61.47	24.3 s 17	ΙΤ 82%, ε 18%	
	163 1	/2+ -	62.738	1.810 h 5	ε	
	164	1+ -	61.99	2.0 m 1	E TT 000/ - 000/	
	164	0	61.99	5.1 m <i>1</i>	$11 \approx 80\%, \ E \approx 20\%$	
	100 1	/2+ -	61 80	30.00 fl 3	ε	
	100	ム+ - /9	·01.09 69.551	7.70 fl 3 0.95 d 2	E	
	107 1	/2,+ -	61 220	9.25 U 2 02 1 d 2	ε ο 00 000/ β 0 010/	
	160 1	ט+ – עין און און און און און און און און און או	61 282	93.1 U 2 100%	e 99.99%, p- 0.01%	
	170	1	59 804	1286d 3	B_99 85% c 0 15%	
	171 1	/2+ -	59 219	1.92×1	β 00.00/0, ε 0.10/0 β_	
	172	2	57.383	63.6 h 2	β β_	
	173 (1	/2+) -	56.262	8.24 h <i>8</i>	β_	
	174 (4)	53.87	5.4 m 1	β_	
	175 (1/2-	(+,3/2+) -	52.32	15.2 m 5	β-	
	176 (4+) -	49.6s	1.9 m <i>1</i>	β-	
	177 (1	/2+) -	47.8s	85 s + 10 - 15	β–	
70 YH	148	0+ –	30.55		-	
	149		33.75			
	150	0+ –	-39.0s			
	151 (1	/2+) –	41.7s	1.6 s <i>1</i>	ε, ερ	
					•	

Isotope			Δ	Т½, Γ, or		
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
70	Yb	151m	(11/2-)	-41.7s	1.6 s <i>1</i>	ε, εр
		152	0+	-46.4s	3.04 s 6	ε, ερ
		153	(7/2-)	-47.3s	4.2 s 1	α 50%, ε 50%
		154	0+	-50.1s	0.404 s 14	α92.8%,ε7.2%
		155	(7/2-)	-50.7s	1.75 s 5	α89%,ε11%
		156	0+	-53.31	26.1 s 7	ε 90%, α 10%
		157	7/2 -	-53.41	38.6 s 10	ε99.5%, α0.5%
		158	0+	-56.021	1.49 m <i>13</i>	ϵ , $\alpha \approx 2.1 \times 10^{-3}$ %
		159	5/2(-)	-55.7	1.58 m <i>14</i>	ε
		160	0+	-58.2s	4.8 m 2	ε
		161	3/2 -	-57.9s	4.2 m 2	ε
		162	0+	-59.8s	18.87 m <i>19</i>	3
		163	3/2 -	-59.4	11.05 m <i>25</i>	ε
		164	0+	-61.0s	75.8 m <i>17</i>	8
		165	5/2 -	-60.18	9.9 m <i>3</i>	ε
		166	0+	-61.590	56.7 h <i>1</i>	ε
		167	5/2 -	-60.596	17.5 m <i>2</i>	ε
		168	0+	-61.577	0.13% <i>1</i>	
		169	7/2+	-60.373	32.026 d 5	ε
		169m	1/2-	-60.348	46 s 2	IT
		170	0+	-60.772	3.05% 6	
		171	1/2-	-59.315	14.3% <i>2</i>	
		172	0 +	-59.264	21.9% <i>3</i>	
		173	5/2-	-57.560	16.12% <i>21</i>	
		174	0+	-56.953	31.8% 4	0
		175	1/2-	-54.704	4.185 G <i>I</i>	p–
		176m	(9)		12.7% Z	
		17011	(0/2)	-52.447	11.453 1011b2	$11 \ge 90\%$, p-<10%
		177m	(3/2+)	-30.992		μ= τπ
		178	(1/2 -)	-30.001	74 m 3	ß
		170	$(1/2_{-})$	-45.70	80m 1	μ- β_
		180	(1/2 -)	-40.73	2.0 m 4	β_ β_
~ 1	-	150	U I	05 1	2.4 m 5	P 900/
71	Lu	150	(11/9)	-25.15	35 ms 10	p 80%
		151	(11/2-)	-30.75	90 ms 10	p / 0%
		152	(3-,0-)	-34.18	0.781	ε, εμ 15% n ²
		155 154m	(11/2-)	-38.38	1 1 9 5 9	μ: c ~ 100%
		154m 155 (1	(7 +)	-40.05	1.1250 140 ms 20	e ~ 100/0
		155 (1)	(11/2)	-42.75	68 ms 5	α 70% c 21%
		155m	(11/2)	-42.75	260 ms 7	$\alpha \sim 100\%$
		156m	(20/2-)	-40.53 -43 9s	0.179 s 13	$\alpha > 75\% c < 25\%$
		156m		-43.53 -43.9s	0.73 \$ 15	$\alpha \approx 95\%$ $\epsilon \approx 5\%$
		150 m	(2+3/2+)	-46 48	74×14	$\alpha^{2} \epsilon^{2}$
		157 (1	(11/2-)	-46 45	50×4	ε 94% α 6%
		158	(****)	-47.38	10.4 s 1	ε 99.09% α 0.91%
		159		-49.68	12.1 s 10	ϵ , α 0.04%
		160		-50.3s	36.1 s 3	$\varepsilon, \alpha \leq 1.0 \times 10^{-4}\%$
		160m		-50.3s	40 s 1	ε≤100%, α?
		161	(5/2+)	-52.6s	72 s	8
		162	(1–)	-52.6s	1.37 m <i>2</i>	ε
		162m	(4-)	-52.6s	1.5 m	ε ≤ 100%

Isoto	pe		Δ	Τ½, Γ, or	
Z El	Â	Jπ	(MeV)	Abundance	Decay Mode
71 Lu	162m		-52.6s	1.9 m	$\epsilon \leq 100\%$
	163	(1/2-)	-54.8	238 s <i>8</i>	ε
	164		-54.7s	3.14 m <i>3</i>	ε
	165	(7/2+)	-56.26	10.74 m <i>10</i>	ε
	165?	1/2 +	-56.26	12 m	
	166	(6–)	-56.1	2.65 m <i>10</i>	3
	166m	(3–)	-56.1	1.41 m <i>10</i>	ε 58%, IT 42%
	166m	(0–)	-56.1	2.12 m <i>10</i>	$\epsilon > 80\%$, IT < 20%
	167	7/2 +	-57.5	51.5 m <i>10</i>	ε
	168	(6–)	-57.10	5.5 m <i>1</i>	ε
	168m	3+	-56.88	6.7 m 4	$\epsilon > 95\%$, IT < 5%
	169	7/2+	-58.079	34.06 h <i>5</i>	ε
	169m	1/2-	-58.050	160 s <i>10</i>	IT
	170	0+	-57.31	2.00 d <i>3</i>	ε
	170m	(4)-	-57.22	0.67 s 10	IT
	171	7/2+	-57.836	8.24 d <i>3</i>	ε
	171m	1/2-	-57.765	79 s <i>2</i>	IT
	172	4-	-56.744	6.70 d <i>3</i>	ε
	172m	1–	-56.702	3.7 m <i>5</i>	IT
	173	7/2+	-56.889	1.37 y <i>1</i>	ε
	174	(1)-	-55.579	3.31 y <i>5</i>	ε
	174m	(6)-	-55.408	142 d <i>2</i>	IT 99.38%, ε 0.62%
	175	7/2+	-55.174	97.41% 2	
	176	7–	-53.391	$3.73 \times 10^{10} \text{ y} 5$	β-
				2.59% <i>2</i>	
	176m	1–	-53.268	3.6832 h 7	β-99.91%, ε0.1%
	177	7/2+	-52.392	6.734 d <i>12</i>	β-
	177m	23/2-	-51.422	160.4 d <i>3</i>	β - 78.3%, IT 21.7%
	178	1(+)	-50.346	28.4 m <i>2</i>	β-
	178m	(9–)	-50.226	23.1 m <i>3</i>	β-
	179	7/2(+)	-49.067	4.59 h <i>6</i>	β–
	179m	1/2(+)	-48.475	3.1 ms 9	IT
	180	(3)+	-46.69	5.7 m <i>1</i>	β-
	181	(7/2+)	-44.9s	3.5 m <i>3</i>	β-
	182	(0,1,2)		2.0 m <i>2</i>	β-
	183	(7/2+)		58 s 4	β-
	184	high		20 s 3	β-
	184m	low		?	β–
72 Hf	154	0+	-33.3s	2 s 1	$\epsilon \approx 100\%$, $\alpha \approx 0\%$
	155		-34.7s	0.89 s 12	ε,α
	156	0+	-38.0s	25 ms 4	α≥ 81 %
	157		-39.0s	110 ms <i>6</i>	α86%,ε14%
	158	0+	-42.2s	2.86 s 18	ε 56%, α 44%
	159		-43.0s	5.6 s 4	ε 59%, α 41%
	160	0+	-45.98	13.0 s <i>15</i>	ε 97.7%, α2.3%
	161		-46.27	16.8 s <i>8</i>	$\epsilon \ge 99.71\%, \ \alpha \le 0.29\%$
	162	0+	-49.18	37.6 s <i>8</i>	ε 99.99%,
					$\alpha \ 6.3 \times 10^{-3}\%$
	163		-49.3s	40.0 s 6	ε
	164	0+	-51.8s	111 s <i>8</i>	ε
	165	(5/2-)	-51.7s	76 s 4	ε
	166	0+	-53.8s	6.77 m <i>30</i>	ε

Is	Isotope			Δ	Τ½, Γ, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
72	Hf	167	(5/2-)	-53.5s	2.05 m 5	ε
		168	0+	-55.3s	25.95 m <i>20</i>	ε
		169	(5/2)-	-54.81	3.24 m 4	ε
		170	0+	-56.2s	16.01 h <i>13</i>	ε
		171	(7/2+)	-55.4s	12.1 h 4	ε
		172	0+	-56.39	1.87 y <i>3</i>	ε
		173	1/2 -	-55.3s	23.6 ĥ <i>1</i>	ε
		174	0+	-55.851	2.0×10^{15} y 4	α
					0.162% <i>3</i>	
		175	5/2 -	-54.488	70 d <i>2</i>	ε
		176	0+	-54.582	5.206% 5	
		177	7/2 -	-52.890	18.606% <i>4</i>	
		177m	23/2+	-51.575	1.08 s 6	IT
		177m	37/2 -	-50.150	51.4 m <i>5</i>	IT
		178	0+	-52.445	27.297% 4	
		178m	8-	-51.298	4.0 s 2	IT
		178m	16+	-49.999	31 y <i>1</i>	IT
		179	9/2 +	-50.473	13.629% <i>6</i>	
		179m	1/2 -	-50.098	18.67 s 4	IT
		179m	25/2 -	-49.367	25.05 d <i>25</i>	IT
		180	0+	-49.790	35.100% 7	
		180m	8-	-48.648	5.5 h <i>1</i>	IT 99.7%, β–0.3%
		181	1/2 -	-47.414	42.39 d <i>6</i>	β_
		182	0+	-46.060	9×10 ⁶ y 2	β–
		182m	8-	-44.887	61.5 m <i>15</i>	β–58%, IT 42%
		183	(3/2-)	-43.29	1.067 h <i>17</i>	β–
		184	0+	-41.50	4.12 h 5	β–
		184m	8-	-41.50	48 s 10	β–
		185			3.5 m <i>6</i>	β-
73	Та	156	(2-)	-26.4s	0.11 s +6-3	ε50%, p50%
		157		-29.7s	5.3 ms <i>18</i>	$\alpha > 77\%$
		158		-31.3s	36.8 ms <i>16</i>	α93%,ε7%
		159		-34.5s	0.57 s <i>18</i>	α 80%, ε 20%
		160		-35.9s	1.5 s 2	ε 66%, α 34%
		161		-38.77	3.00 s 15	$\epsilon \approx 95\%$, $\alpha \approx 5\%$
		162		-39.9s	3.60 s 15	ε 99.92%, α 0.08%
		163		-42.51	11.0 s <i>8</i>	$\boldsymbol{\epsilon} \approx 99.72\%, \ \boldsymbol{\alpha} \approx 0.28\%$
		164	(3+)	-43.2s	14.2 s <i>3</i>	ε
		165		-45.8s	31.0 s <i>15</i>	ε
		166	(2)+	-46.1s	31.5 s <i>20</i>	ε
		167		-48.5s	1.33 m 7	ε
		168	(2-, 3+)	-48.6s	2.0 m <i>1</i>	ε
		169	(5/2-)	-50.4s	4.9 m <i>4</i>	ε
		170	(3+)	-50.2s	6.76 m <i>6</i>	ε
		171	(5/2-)	-51.7s	23.3 m <i>3</i>	ε
		172	(3+)	-51.5	36.8 m <i>3</i>	ε
		173	5/2-	-52.5s	3.14 h <i>13</i>	3
		174	3(+)	-52.01	1.05 h 3	3
		175	7/2+	-52.5s	10.5 h 2	3
		176	(1)-	-51.5	8.09 h 5	3
		177	7/2+	-51.724	56.56 h <i>6</i>	3
		178	1+	-50.5	9.31 m <i>3</i>	ε

Iso	tope		Δ	Τ½, Γ, or	
ZI	ELA	Jπ	(MeV)	Abundance	Decay Mode
73 T	a 178	(7)-	-50.5	2.36 h <i>8</i>	3
	178m	(15 -)	-49.1	60 ms 5	IT
	179	7/2 +	-50.362	1.82 y <i>3</i>	ε
	179m	(25/2+)	-49.044	9.0 ms 2	IT
	179m	(37/2+)	-47.721	52 ms <i>3</i>	IT
	180	1+	-48.936	8.152 h <i>6</i>	ε 86%, β-14%
	180m	9-	-48.861	$>1.2 \times 10^{15} \text{ y}$	β-?,ε?
	181	7/2 +	-48.441	99.988% <i>2</i>	
	182	3-	-46.433	114.43 d <i>3</i>	β-
	182m	5+	-46.417	283 ms <i>3</i>	IT
	182m	10-	-45.913	15.84 m <i>10</i>	IT
	183	7/2+	-45.296	5.1 d <i>1</i>	β-
	184	(5–)	-42.84	8.7 h <i>1</i>	β-
	185	(7/2+)	-41.40	49.4 m <i>15</i>	β-
	186	2,3	-38.61	10.5 m <i>5</i>	β–
	187		-36.9s		
74 V	V 158	0+	-24.3s	0.9 ms <i>3</i>	α
	159		-25.8s	7.3 ms 27	$\alpha \approx 99.5\%, \ \epsilon \approx 0.5\%$
	160	0+	-29.5s	81 ms 15	$\alpha \ge 54\%$
	161		-30.7s	410 ms 40	$\alpha \approx 82\%$, $\epsilon \approx 18\%$
	162	0+	-34.1s	1.39 s 4	ε 53%, α 47%
	163		-35.1s	2.75 s <i>25</i>	ε 59%, α 41%
	164	0+	-38.28	6.4 s <i>8</i>	ϵ 97.4%, α 2.6%
	165		-38.81	5.1 s 5	ϵ , $\alpha < 0.2\%$
	166	0+	-41.90	18.8 s 4	$\epsilon 99.97\%, \alpha 0.04\%$
	167		-42.2s	19.9 s 5	α, ε
	168	0+	-44.8s	51 s 2	$\varepsilon \approx 100\%$,
					α 3.2×10 ⁻³ %
	169	(5/2-)	-44.9s	80 s <i>6</i>	ε
	170	0+	-47.2s	2.42 m 4	ε
	171	(5/2-)	-47.2s	2.38 m 4	ε
	172	0+	-49.0s	6.6 m <i>9</i>	ε
	173	5/2-	-48.5s	7.6 m <i>2</i>	ε
	174	0+	-50.2s	31 m <i>1</i>	ε
	175	(1/2-)	-49.6s	35.2 m <i>6</i>	ε
	176	0+	-50.7s	2.5 h <i>1</i>	ε
	177	(1/2-)	-49.7s	135 m 3	ε
	178	0+	-50.4	21.6 d 3	ε
	179	(1/2) - (1/2)	-49.30	37.05 m 16	E IT 00 799/ - 0 999/
	1/9m	(1/2) - 0	-49.08	6.40 m /	11 99.72%, 80.28%
	100 100m	0+ o	-49.044	0.120% 1 5.47 mg 0	IT
	100111	0/2	-40.114	5.47 IIIS 9 191 9 d 9	11
	101	9/2+	-40.233	121.2 U 2 96 108% 90	ε
	102	0+ 1/9	-40.240	$11 \times 10^{17} \text{ m}$	
	103	1/2-	-40.300	14 9110 <i>y</i>	
	182m	11/9+	-46 057	14.J14/0 4 59 c ?	ІТ
	18/	11/&+ Λ_	-40.007 -45 706	3×10 ¹⁷ v	α?
	104	UT	-45.700	20 649% g	α:
	185	3/9	-13 380	751d2	ß_
	185m	11/9⊥	-43 109	167 m ?	ч ТТ
	186	0+	-19 519	98 196% 37	11

Isoto		ре		Δ	Т½, Г, or	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
74	W	187	3/2 -	-39.907	23.72 h <i>6</i>	β–
		188	0+	-38.669	69.4 d 5	β-
		189	(3/2-)	-35.5	11.5 m <i>3</i>	β-
		190	0+	-34.3	30.0 m 15	β–
75	Re	160		-17.2s	0.64 ms <i>8</i>	p 89% . α 11%
		161		-20.8s	15 ms 4	$\alpha \approx 100\%$
		162		-22.6s	0.10 s <i>3</i>	$\varepsilon < 97\%, \alpha > 3\%$
		163		-26.0s	260 ms 40	α 64%, ε 36%
		164		-27.5s	0.88 s 24	$\alpha \approx 58\%$, $\varepsilon \approx 42\%$
		165		-30.69	2.4 s 6	ε 87%, α 13%
		166		-31.9s	2.8 s 3	α
		167	(1/2)	-34.8s	3.4 s 4	$\alpha \approx 100\%$
		167	(1/2)	-34.8s	6.2 s 5	$\epsilon \approx 99\%$, $\alpha \approx 1\%$
		168 (5	(6+, 6+, 7+)	-35.8s	4.4 s 1	$\epsilon \approx 100\%$,
						$\alpha \approx 5.0 \times 10^{-3}$ %
		169		-38.3s	8.1 s 5	$\epsilon \approx 100\%$,
						$\alpha \approx 1.0 \times 10^{-4}\%$
		169m		-38.3s	16.3 s <i>8</i>	$\alpha \approx 100\%$
		170	(5+)	-39.0s	9.2 s 2	ε
		171	(9/2-)	-41.5s	15.2 s 4	ε
		172m	(5)	-41.6s	15 s <i>3</i>	ε
		172m	(2)	-41.6s	55 s <i>5</i>	3
		173	(5/2-)	-43.7s	1.98 m <i>26</i>	ε
		174		-43.7s	2.40 m 4	ε
		175	(5/2-)	-45.3s	5.89 m <i>5</i>	ε
		176	3(+)	-45.1s	5.3 m <i>3</i>	3
		177	(5/2-)	-46.3s	14 m <i>1</i>	ε
		178	(3+)	-45.8	13.2 m 2	ε
		1/9	(3/2)+	-46.59	19.5 m <i>I</i>	ε
		101	(1) - 5/2	-45.84	2.44 m 0 10.0 h 7	ε
		101	$\frac{3}{2} + \frac{7}{2}$	-40.31	19.9 fl 7	ε
		102 199m	7 + 9 .	-43.4	04.0 II J 19.7 h 2	ε
		102111	2+ 5/9	-45.4	14.7 H 2 70 0 d 14	ε
		103	3/2 + 3()	-43.810	70.0 u 14 38 0 d 5	د د
		104 184m	3(-)	-44.223	160 d 8	ε ΙΤ 75 Λ% ε 9Λ 6%
		185	5/2+	-43 822	37 40% 2	11 70.4/0, C 24.0/0
		186	1-	-41.930	89.25 h 7	β- 93.1%
		186	1-	-41.930	90.64 h <i>9</i>	ε 6.9%
		186m	(8+)	-41.781	2.0×10^5 y 5	IT, $\beta - < 10\%$
		187	5/2 +	-41.218	4.35×10^{10} y 13	β-,
					62.60% <i>2</i>	$\alpha < 1.0 \times 10^{-4}\%$
		188	1 –	-39.018	17.021 h <i>25</i>	β–
		188m	(6)-	-38.846	18.59 m 4	IT
		189	5/2+	-37.979	24.3 h 4	β-
		190	(2)-	-35.6	3.1 m <i>3</i>	β-
		190m	(6-)	-35.4	3.2 h 2	β - 54.4%, IT 45.6%
		191 (3	3/2+,1/2+)	-34.35	9.8 m 5	β-
		192		-31.7s	16 s <i>1</i>	β–
		193		-30.3s		
76	Os	162	0+	-15.1s	1.9 ms 7	α
		163		-16.7s	?	α, ε

Is	Isotope			Δ	Т½, Γ, or	
Ζ	El	A	Jπ	(MeV)	Abundance	Decay Mode
76	Os	164	0+	-20.6s	41 ms <i>20</i>	$\alpha \approx 98\%$, $\varepsilon \approx 2\%$
		165		-21.9s	73 ms <i>8</i>	$\alpha > 60\%, \ \epsilon < 40\%$
		166	0+	-25.6s	194 ms <i>17</i>	α 72%, ε 18%
		167		-26.7s	0.83 s 12	α 67%, ε 33%
		168	0+	-30.04	2.2 s 1	ε 51%, α 49%
		169		-30.7	3.4 s 2	ε 89%, α 11%
		170	0+	-33.93	7.1 s 2	ε 88%, α 12%
		171	(5/2-)	-34.48	8.0 s 7	ε 98.3%. α1.7%
		172	0+	-37.28	19.2 s 5	ε 99.8%, α 0.2%
		173	(5/2-)	-37.58	16 s 5	ε 99.98%. α 0.02%
		174	0+	-39.9s	44 s <i>4</i>	ε 99.98%, α 0.02%
		175	(5/2-)	-40.0s	1.4 m <i>1</i>	£
		176	0+	-41.9s	3.6 m 5	8
		177	(1/2-)	-41.8s	2.8 m 3	e
		178	(1/2)	-43.4	50m 4	e
		179	(1/2-)	-42.98	6.5 m 3	e
		180	(1/2)	-44 4s	21.5 m 4	e
		181	1/2-	-43.6s	105 m 3	e
		181m	(7/2) -	-43.55	2 7 m 1	e
		182	(1/2)	-44 54	22 10 h 25	e
		183	9/2-	-43.75	130h 5	c
		183m	1/2_	-43.73	00h 3	с с 85% IT 15%
		184	0+	-44 255	5.6×10^{13} v	c 00/0, 11 10/0
		104	01	11.200	0.020% 3	
		185	1/2-	-42 809	936d 5	c
		186	0+	-42.005	$2.0 \times 10^{15} \text{ v}$ 11	3
		100	01	45.000	1 58% 10	u
		187	1/9_	-11 991	1.50% 10	
		188	0+	-41.221	13 3% 9	
		180	3/2_	-38 088		
		180m	0/2	-38.057	58b 1	тт
		100	0	-30.337	96 1% 1	11
		100m	(10)	-38.708	0.0 m 1	тт
		101	(10) = 0/2	-37.003	5.5 m 1 15 / d 1	ß
		101m	$\frac{3}{2}$	-30.330	13.4 u 1 12.10 h 5	р- тт
		109	3/2 - 0		1 1 1 1 1 1 1 1 1 1	11
		102m	(10)	-33.867	41.0 /0 J	IT \ 87% B < 13%
		102	(10-)	-33.306	30.11 h <i>1</i>	R
		101	0	-33.330	$60 \sqrt{2}$	р- р
		194	0+	-32.430	0.0 y 2 6.5 m	в р–
		106	0	-29.7	0.5 m 34.0 m 2	р– В
	_	150	0+	-20.50	54.5 III 2	h-
77	lr	166		-13.5s	>5 ms	α 99%
		167		-17.1s	>5 ms	α≤100%, p
		168		-18.7s	?	α≤100%
		169		-21.99	0.4 s 1	α≈100%, ε, p
		170		-23.3s	1.05 s <i>15</i>	α75%,ε25%
		171		-26.3s	1.5 s <i>1</i>	α≈100%, ε, p
		172	(3+)	-27.3s	4.4 s 3	$\epsilon 98\%, \alpha \approx 2\%$
		172m	(7+)	-27.2s	2.0 s 1	ε 77%, α 23%
		173m(3/2+, 5/2+)	-30.1s	9.0 s <i>8</i>	$\epsilon > 93\%$, $\alpha < 7\%$
		173m	(11/2-)	-30.1s	2.20 s 5	ε 88%, α 12%
		174	(3+)	-30.9s	9 s <i>2</i>	ε99.6%,α0.4%

Is	Isotope			Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
77	Ir	174m	(7+)	-30.7s	4.9 s 3	ϵ 97.48%, α 00.52%
		175	(5/2-)	-33.4s	9 s <i>2</i>	ε 99.15%, α0.85%
		176		-34.0s	8 s 1	ε 97.9%, α2.1%
		177	(5/2-)	-36.2s	30 s 2	ε 99.94%, α0.06%
		178		-36.3s	12 s <i>2</i>	ε
		179	(5/2)-	-38.1s	79 s <i>1</i>	ε
		180		-38.0s	1.5 m <i>1</i>	ε
		181	(5/2)-	-39.5s	4.90 m 15	ε
		182	(5+)	-38.9	15 m <i>1</i>	ε
		183	5/2-	-40.2s	57 m 4	ε
		184	5-	-39.7	3.09 h <i>3</i>	ε
		185	5/2 -	-40.4s	14.4 h <i>1</i>	ε
		186	5+	-39.17	16.64 h <i>3</i>	ε
		186m	2-	-39.17	2.0 h <i>1</i>	$\epsilon \ge 100\%$. IT > 0%
		187	3/2 +	-39.718	10.5 h <i>3</i>	ε
		187m	9/2-	-39.532	30.3 ms <i>6</i>	IT
		188	1-	-38.329	41.5 h <i>5</i>	£
		188m	_	-38.329	4.2 ms 2	ĪT
		189	3/2 +	-38.46	13.2 d <i>1</i>	ε. ε
		190	(4) +	-36.7	11.78 d <i>10</i>	ε
		190m	(7)+	-36.7	1 2 h	IT
		190m	$(11)_{-}$	-36.5	3 25 h 20	e 94 4% IT 5 6%
		191	3/2+	-36 709	37.3% 5	
		191m	11/2 -	-36 539	494s 3	ІТ
		191m	11/2	-34 662	5587	IT
		192	4(+)	-34 836	73 830 d <i>18</i>	β-95 24% ε4 76%
		102 102m	$\frac{1}{1}$	-34.000	1.45 m 5	β 55.2470, 24.7070 IT 00 08% β_{-} 0 02%
		102m	(-)	-34.775	$9/1 \times 0$	11.55.56%, p=0.02%
		102	3/2+	-34.001 -34.537	697%5	11
		103m	3/2- 11/9	-34.337	10 53 d /	IT
		101	1 1/2-	29 5 29	10.35 u 4 10.15 h 2	ß
		194 104m	1 - (10, 11)	-32.332	19.15 H 5 171 d 11	ρ- ρ
		19411	(10, 11)	-32.342	171 U 11 95 b 2	ρ- α
		195 105m	3/2 + 11/9	-31.093	2.3 II 2 2 8 h 2	μ-
		19511	11/2 -	-31.393	5.0 II 2 5.0 a 1	p = 95%, 11 5%
		190	(0-)	-29.45	J2 S I 1 40 h 2	μ-
		190110	(10, 11-)	-29.04	1.40 II 2 5.9 m 5	$\beta = \approx 100\%, 11 < 0.5\%$
		197	3/2 +	-20.20	3.0 III 3	$p = \frac{1}{2}$
		19/11	11/2-	-20.17	8.9 III 3	p = 99.75%, 110.25%
		198		-23.88	8 S 1	p–
78	Pt	168	0+	-11.1s	?	$\alpha \leq 100\%$
		169		-12.6s	2.5 ms +25-10	$\alpha \leq 100\%$
		170	0+	-16.5s	6 ms $+5-2$	α
		171		-17.6s	25 ms <i>9</i>	$\alpha \approx 99\%$, $\epsilon \approx 1\%$
		172	0+	-21.15	0.104 s 7	α94%,ε6%
		173		-21.9	342 ms <i>18</i>	α 84%, ε 16%
		174	0+	-25.32	0.90 s 1	α83%,ε17%
		175		-25.8s	2.52 s 8	α64%,ε36%
		176	0+	-28.9s	6.33 s 15	ε 62%, α 38%
		177	(5/2-)	-29.4s	11 s <i>1</i>	ϵ 94.4%, α 5.6%
		178	0+	-31.9s	21.1 s 6	ε 92.3%, α7.7%
		179	1/2 -	-32.3s	21.2 s 4	ϵ 99.76%, α 0.24%
		180	0+	-34.3s	52 s <i>3</i>	ϵ , $\alpha \approx 0.3\%$

Isotope			Δ	Τ½, Γ , or		
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
78	Pt	181	1/2-	-34.3s	51 s <i>5</i>	ϵ , $\alpha \approx 0.06\%$
		182	0+	-36.1	2.2 m 1	ε 99.96%, α0.04%
		183	1/2 -	-35.7s	6.5 m <i>10</i>	ε, α≈1.3×10 ⁻³ %
		183m	(7/2)-	-35.6s	43 s 5	ϵ , $\alpha\!<\!4.0\!\!\times\!\!10^{-4}\!\%$, IT
		184	0+	-37.4s	17.3 m <i>2</i>	ϵ , $\alpha \approx 0.001\%$
		185	9/2 +	-36.6s	70.9 m <i>24</i>	ε,α?
		185m	1/2 -	-36.5s	33.0 m <i>8</i>	$\epsilon > 98\%$, IT < 2%, α ?
		186	0+	-37.79	2.0 h 1	ϵ , $lpha pprox 1$. $4 \! imes \! 10^{-4} \! \%$
		187	3/2-	-36.6s	2.35 h <i>3</i>	3
		188	0+	-37.823	10.2 d <i>3</i>	ε,α2.6×10 ⁻⁵ %
		189	3/2-	-36.49	10.87 h <i>12</i>	ε
		190	0+	-37.325	6.5×10 ¹¹ y <i>3</i>	α
					0.01% <i>1</i>	
		191	3/2 -	-35.691	2.96 d 4	ε
		192	0+	-36.296	0.79% <i>6</i>	
		193	1/2 -	-34.480	50 y <i>9</i>	ε
		193m	13/2 +	-34.330	4.33 d <i>3</i>	IT
		194	0+	-34.779	32.9% <i>6</i>	
		195	1/2 -	-32.813	33.8% <i>6</i>	
		195m	13/2 +	-32.554	4.02 d 1	IT
		196	0+	-32.664	25.3% 6	
		197	1/2 -	-30.439	19.8915 h <i>19</i>	β–
		197m	13/2 +	-30.039	95.41 m <i>18</i>	IT 96.7%, β -3.3%
		198	0+	-29.924	7.2% <i>2</i>	
		199	5/2 -	-27.409	30.80 m <i>21</i>	β–
		199m	(13/2) +	-26.985	13.6 s 4	IT
		200	0+	-26.62	12.5 h <i>3</i>	β–
		201	(5/2-)	-23.74	2.5 m 1	β–
		202	0+		44 h <i>15</i>	β–
79	Au	171				α, p
		172		-9.2s	4 ms 1	$\alpha \le 100\%$, p < 2%
		173		-12.7	59 ms +45-18	$\alpha \leq 100\%$
		174		-14.0s	120 ms <i>20</i>	$\alpha > 0\%$
		175		-17.1s	200 ms 22	α94%,ε6%
		176		-18.4s	1.25 s <i>30</i>	α, ε
		177		-21.2s	1.18 s 7	$\epsilon \ge 60\%$, $\alpha \le 40\%$
		178		-22.4s	2.6 s 5	$\epsilon \leq 60\%$, $\alpha \geq 40\%$
		179		-24.9s	7.1 s <i>3</i>	ε 78%, α 22%
		180		-25.7s	8.1 s <i>3</i>	$\epsilon \leq 98.2\%$, $\alpha \geq 1.8\%$
		181	5/2-	-28.0s	11.4 s 5	ε 98.5%, α1.5%
		182		-28.3s	15.6 s 4	ε 99.87%, α0.13%
		183	(5/2)-	-30.2s	42.0 s <i>12</i>	ε99.64%,α0.36%
		184	5+	-30.2s	12.0 s 2	ε
		184m	2+	-30.2s	53.0 s <i>14</i>	ε 99.98%, α0.02%, IT
		185	5/2-	-31.9s	4.25 m 6	ε99.74%, α0.26%
		185m		-31.9s	6.8 m <i>3</i>	ε<100%, IT
		186	3–	-31.7	10.7 m 5	ε
		187	1/2 +	-33.0s	8.4 m <i>3</i>	ϵ , α 3.0×10 ⁻³ %
		187m	9/2-	-32.9s	2.3 s 1	IT
		188	1(-)	-32.5s	8.84 m 6	ε
		189	1/2 +	-33.6s	28.7 m <i>3</i>	ϵ , $lpha$ < 3 . 0 $ imes$ 10 $^{-5}$ %

Is	Isotope			Δ	Τ½, Γ, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
79	Au	189m	11/2 -	-33.4s	4.59 m <i>11</i>	ϵ , IT>0%
		190	1-	-32.88	42.8 m <i>10</i>	ε, α<1.0×10 ⁻⁶ %
		190m	(11-)	-32.88	125 ms <i>20</i>	IT?
		191	3/2 +	-33.86	3.18 h <i>8</i>	ε
		191m	(11/2 -)	-33.59	0.92 s <i>11</i>	IT
		192	1-	-32.78	4.94 h <i>9</i>	ε
		192m	(11-)	-32.78	160 ms <i>20</i>	IT?
		193	3/2+	-33.412	17.65 h <i>15</i>	ε
		193m	11/2 -	-33.122	3.9 s <i>3</i>	IT 99.97%, $\varepsilon \approx 0.03\%$
		194	1 –	-32.29	38.02 h <i>10</i>	ε
		194m	(5+)	-32.18	600 ms <i>8</i>	IT
		194m	(11-)	-31.81	420 ms <i>10</i>	IT
		195	3/2 +	-32.586	186.10 d 5	ε
		195m	11/2 -	-32.267	30.5 s 2	IT
		196	2-	-31.158	6.183 d <i>10</i>	$\epsilon 92.5\%$, $\beta - 7.5\%$
		196m		-31.073	8.1 s 2	IT
		196m	12-	-30.562	9.7 h <i>1</i>	IT
		197	3/2 +	-31.157	100%	
		197m	11/2 -	-30.749	7.73 \$ 6	ІТ
		198	2-	-29.598	2 69517 d <i>21</i>	β_
		198m	(12-)	-28 786	2 27 d 2	
		199	(12)	-29 111	3 139 d 7	β_
		200	1(-)	_27.28	48.4 m 3	β_
		200m	12-	-26 31	18.7 h 5	β-82% IT 18%
		200m 201	$\frac{12}{3/2+}$	-26.40	26 m 1	$\beta = 0 \approx 30$, 11 10/0
		202	(1_{-})	20.40 -24 4	28 8 s 19	β_
		202	3/2	~4.4 _93 11	20.0310 60 s 6	β_
		203	(2_{-})	-20.95	30 8 c 0	β_
		204	(~-) 3/2+	-20.33	31 c 2	β-
~ ~		200	0721		5152	þ
80	Hg	174	0+	-6.8s		
		175		-8.2s	20 ms +40-13	α
		176	0+	-11.80	34 ms +18-9	$\alpha \approx 100\%$
		177	_	-12.7	0.130 s 5	α 85%, ε 15%
		178	0+	-16.32	0.254 s <i>19</i>	$\alpha \approx 70\%, \ \varepsilon \approx 30\%$
		179		-17.0s	1.09 s 4	$\alpha \approx 53\%$, $\epsilon \approx 47\%$,
			_			$\varepsilon \mathbf{p} \approx 0 \cdot \mathbf{15\%}$
		180	0+	-20.2s	3.0 s 2	ε 51%, α 49%
		181	1/2(-)	-20.7s	3.6 s <i>3</i>	ε 64%, α 36%
		182	0+	-23.5s	10.83 s 6	ε 84.8%, α 15.2%
		183	1/2-	-23.9s	9.4 s 7	ε 74.5%, α 25.5%,
						εp 0.06%
		184	0+	-26.2s	30.6 s <i>3</i>	ε 98.89%, α 1.11%
		185	1/2-	-26.1s	49.1 s 10	ε 94%, α 6%
		185m	13/2 +	-26.0s	21.6 s 15	ΙΤ 54%, ε 46%,
						$\alpha \approx 0.03\%$
		186	0+	-28.4	1.38 m 7	ε 99.98%, α 0.02%
		187	13/2 +	-28.1s	2.4 m 3	$\epsilon, \alpha > 1.2 \times 10^{-4}\%$
		187m	3/2-	-28.1s	1.9 m <i>3</i>	$\epsilon, \alpha > 2.5 \times 10^{-4}\%$
		188	0+	-30.2s	3.25 m <i>15</i>	ε, α 3.7×10 ⁻³ %
		189	3/2-	-29.7s	7.6 m <i>1</i>	$\epsilon, \alpha < 3.0 \times 10^{-5}\%$
		189m	13/2 +	-29.7s	8.6 m <i>1</i>	$\epsilon, \alpha < 3.0 \times 10^{-5}\%$
		190	0+	-31.4s	20.0 m 5	ε, $\alpha < 5.0 \times 10^{-5}$ %

Is	oto	ре		Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
80	Hg	191	(3/2 -)	-30.68	49 m 10	ε
	U	191m	13/2 +	-30.68	50.8 m <i>15</i>	8
		192	0+	-32.1s	4.85 h <i>20</i>	ε
		193	3/2 -	-31.07	3.80 h <i>15</i>	ε
		193m	13/2 +	-30.93	11.8 h 2	ε92.9%, IT 7.1%
		194	0+	-32.25	520 y <i>32</i>	ε
		195	1/2 -	-31.08	9.9 ĥ <i>5</i>	8
		195m	13/2 +	-30.90	41.6 h <i>8</i>	IT 54.2%, ε 45.8%
		196	0+	-31.844	0.15% <i>1</i>	
		197	1/2 -	-30.558	64.14 h 5	ε
		197m	13/2 +	-30.259	23.8 h 1	IT 91.4%, ε 8.6%
		198	0+	-30.971	9.97% <i>8</i>	·
		199	1/2 -	-29.563	16.87% <i>10</i>	
		199m	13/2 +	-29.031	42.6 m <i>2</i>	IT
		200	0+	-29.520	23.10% <i>16</i>	
		201	3/2 -	-27.679	13.18% <i>8</i>	
		202	0+	-27.362	29.86% <i>20</i>	
		203	5/2-	-25.284	46.612 d <i>18</i>	β-
		204	0+	-24.708	6.87% 4	F
		205	1/2 -	-22.304	5.2 m 1	β-
		206	0+	-20.96	8.15 m <i>10</i>	β-
		207	(9/2+)	-16.3	2.9 m 2	Р В-
		208	(0, 2)	10.0	42 m + 23 - 12	β-
01	T	170	0	0.6	12 / 20 12	٢
91	11	170		0.08	.1 u.e	
		170		-2.95	<1 µs	
		170		-4.45	0.10 - 0.4	a. 1000/
		179	(0,0)	-7.85	0.16 s + 9 - 4	$\alpha \approx 100\%$
		179m	(9/2-)	-7.85	1.4 ms 5	$\alpha \approx 100\%$
		180	(1/0)	-9.1S	1.9 S <i>9</i>	$\varepsilon SF \approx 1 \times 10^{-10}$, α , ε
		181	(1/2+)	-12.2S	3.4 S <i>b</i>	E :
		182	(7+)	-13.45	3.1 \$ <i>10</i>	$\varepsilon > 96\%, \ \alpha < 4\%$
		183	(1/2+)	-16.28	6.9 S /	ε > 0%
		183m	(9/2)	-15./s	60 ms 15	11?, $\alpha < 0.01\%$
		184	(2+)	-17.0s		ε 97.9%, α2.1%
		185	(1/2+)	-19.55	19.5 S 5	е
		185m	(9/2-)	-19.08	1.83×12	α , 11
		180	(7+)	-20.0s	27.5 S 10	ε,αο.υ×10 %
		180m	(10-)	-19.65	2.9 S 2	II - 1000/ 00/
		187	(1/2+)	-22.2s	≈51 S	$\varepsilon < 100\%, \ \alpha > 0\%$
		18/m	(9/2–)	-21.9s	15.60 s <i>12</i>	$\varepsilon < 100\%$, 11 < 100%, $\alpha > 0\%$
		188m	(2-)	-22.4s	71 s <i>2</i>	ε
		188m	(7+)	-22.4s	71 s <i>1</i>	ε
		189	(1/2+)	-24.5s	2.3 m <i>2</i>	ε
		189m	(9/2-)	-24.2s	1.4 m <i>1</i>	ε, IT<4%
		190m	(2)-	-24.4s	2.6 m <i>3</i>	ε
		190m	(7+)	-24.4s	3.7 m <i>3</i>	ε
		191	(1/2+)	-26.2s	?	ε?
		191m	9/2(-)	-25.9s	5.22 m <i>16</i>	ε
		192m	(2-)	-25.9s	9.6 m 4	ε
		192m	(7+)	-25.9s	10.8 m 2	ε
		193	1/2(+)	-27.4s	21.6 m <i>8</i>	ε

Is	Isotope			Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
81	Tl	193m	(9/2-)	-27.1s	2.11 m 15	IT 75%, ε25%
		194	2-	-27.0s	33.0 m <i>5</i>	ϵ , α < 1 . 0×10 ⁻⁷ %
		194m	(7+)	-27.0s	32.8 m <i>2</i>	ε
		195	1/2 +	-28.3s	1.16 h 5	ε
		195m	9/2-	-27.8s	3.6 s 4	IT
		196	2 -	-27.5s	1.84 h <i>3</i>	ε
		196m	(7+)	-27.1s	1.41 h <i>2</i>	ε95.5%, IT 4.5%
		197	1/2 +	-28.37	2.84 h 4	ε
		197m	9/2-	-27.77	0.54 s 1	IT
		198	2 -	-27.51	5.3 h <i>5</i>	ε
		198m	7+	-26.97	1.87 h <i>3</i>	ε 54%, IT 46%
		199	1/2 +	-28.12	7.42 h 8	ε
		200	2 -	-27.064	26.1 h <i>1</i>	ε
		201	1/2 +	-27.20	72.912 h <i>17</i>	ε
		201m	(9/2-)	-26.28	2.035 ms 7	IT
		202	2 -	-26.00	12.23 d <i>2</i>	ε
		203	1/2 +	-25.776	29.524% <i>14</i>	
		204	2 -	-24.360	3.78 y <i>2</i>	β-97.1%, ε2.9%
		205	1/2 +	-23.835	70.476% <i>14</i>	
		206	0-	-22.268	4.199 m 15	β-
		206m	(12 -)	-19.625	3.74 m <i>3</i>	IT
		207	1/2 +	-21.045	4.77 m 2	β-
		207m	11/2 -	-19.697	1.33 s <i>11</i>	IT
		208	5(+)	-16.763	3.053 m 4	β-
		209	(1/2+)	-13.648	2.20 m 7	β-
		210	(5+)	-9.26	1.30 m <i>3</i>	β -, β -n 7.0×10 ⁻³ %
82	Pb	178	0+	3.4s		
		179		2.0s		
		180	0+	-1.92s		
		181	(13/2+)	-2.9	45 ms <i>20</i>	$\alpha < 100\%, \ \epsilon \approx 2\%$
		182	0+	-6.82	55 ms +40-35	α≤100%
		183	(1/2-)	-7.5s	300 ms <i>80</i>	$\alpha \approx 94\%,\ \epsilon \approx 6\%$
		184	0+	-11.0s	0.55 s <i>6</i>	α,ε?
		185		-11.6s	4.1 s 3	α≤100%
		186	0+	-14.6s	4.7 s 1	α < 100%
		187m		-15.0s	15.2 s <i>3</i>	α,ε
		187m	(13/2+)	-15.0s	18.3 s <i>3</i>	$\epsilon > 90\%$, $\alpha < 10\%$
		188	0+	-17.6s	25.5 s 1	ε 78%, α 22%
		189		-17.8s	51 s <i>3</i>	$\epsilon > 99\%$, $\alpha \approx 0.4\%$
		190	0+	-20.3	1.2 m <i>1</i>	ε99.1%,α0.9%
		191	(3/2-)	-20.3s	1.33 m <i>8</i>	ε 99.99%, α0.01%
		191m	(13/2+)	-20.2s	2.18 m <i>8</i>	ϵ , $\alpha \approx 0.02\%$
		192	0+	-22.6s	3.5 m <i>1</i>	ε 99.99%,
						$\alpha 6.2 \times 10^{-3}\%$
		193	(3/2-)	-22.3s	?	ε
		193m	(13/2+)	-22.2s	5.8 m 2	3
		194	0+	-24.2s	12.0 m 5	ε, α7.3×10 ⁻⁰ %
		195	3/2 -	-23.8s	≈15 m	ε
		195m	13/2 +	-23.6s	15.0 m <i>12</i>	3
		196	0+	-25.4s	37 m <i>3</i>	$\varepsilon \approx 100\%$,
		107	0.10	0.4.0	0 0	$\alpha \le 3.0 \times 10^{-3}\%$
		197	3/2-	-24.8s	8 m 2	ε

Is	Isotope			Δ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
82	Pb	197m	13/2 +	-24.5s	43 m <i>1</i>	ε81%, IT 19%
		198	0+	-26.10s	2.40 h 10	ε
		199	3/2 -	-25.24	90 m <i>10</i>	ε
		199m	13/2 +	-24.81	12.2 m <i>3</i>	IT 93%, ε 7%
		200	0+	-26.25	21.5 h 4	8
		201	5/2 -	-25.29	9.33 h <i>3</i>	ε
		201m	13/2 +	-24.66	61 s 2	$IT > 99\%$, $\varepsilon < 1\%$
		202	0+	-25.948	52.5×10 ³ y <i>28</i>	ε, α<1%
		202m	9-	-23.778	3.53 h <i>ॅ1</i>	IT 90.5%, ε 9.5%
		203	5/2 -	-24.801	51.873 h <i>9</i>	8
		203m	13/2 +	-23.976	6.3 s 2	IT
		203m	29/2 -	-21.852	0.48 s 2	IT
		204	0+	-25.124	$\geq 1.4 \times 10^{17} \text{ v}$	α?
					1.4% 1	
		204m	9–	-22.938	67.2 m <i>3</i>	IT
		205	5/2-	-23.784	1.53×10^7 v 7	8
		206	0+	-23.801	24.1% 1	C
		207	1/2-	-22.467	22.1% 1	
		207m	13/2 +	-20.834	0.806 s 6	ІТ
		208	0+	-21.764	52.4% 1	
		209	9/2 +	-17628	3 253 h 14	ß_
		200 210	0,≝ ¦	-14 742	223×2	$\beta_{B} = \alpha 1 \ 9 \times 10^{-60}$
		210 211	9/2-	_10 496	26.1 m 2	β_
		212 212	0, ≝ 0+	-7 557	10 64 h 1	β β_
		212	(9/2+)	-3.25	10.01 m 10.2 m 3	β β_
		213 214	(J/2) 0+	_0 189	26.8 m 9	β_ β_
~ ~		~ 1 1	01	0.100	20.0 m 0	þ
83	Bi	185		-1.8s		
		186		-3.3s	05 (F 0 0/
		187	(9/2-)	-6.1s	35 ms 4	$\alpha > 50\%$
		187m	(1/2+)	-6.0s	0.8 ms 6	$\alpha > 50\%$
		188m		-7.3s	44 ms 3	α,ε
		188m		-7.3s	0.21 s 9	α, ε
		189	(9/2-)	-9.8s	680 ms <i>30</i>	$\alpha > 50\%, \ \varepsilon < 50\%$
		189m	(1/2+)	-9.7s	7.0 ms 2	$\alpha > 50\%, \ \varepsilon < 50\%$
		190m	(3+)	-10.7s	5.7 s <i>8</i>	$\alpha \approx 90\%$, $\varepsilon \approx 10\%$
		190m	(10-)	-10.7s	5.9 s <i>6</i>	α 70%, ε 30%
		191	(9/2-)	-13.0s	12 s 1	α 60%, ε 40%
		191m	(1/2+)	-12.7s	150 ms 15	α 75%, $\epsilon \leq 25\%$
		192	(3+)	-13.6s	34.6 s 9	ε 88%, α 12%
		192m	(10-)	-13.5s	40.6 s 4	ε 90%, α 10%
		193	(9/2-)	-15.8s	67 s 3	ε 95%, α 5%
		193m	(1/2+)	-15.5s	3.2 s 7	α 90%, $\varepsilon \approx 10\%$
		194	(3+)	-16.1s	95 s 3	ε, α0.46%
		194m	(6+,7+)	-16.1s	92 s 5	ϵ 99.93%, α 0.07%
		194m	(10–)	-16.1s	115 s 4	ϵ 99.8%, α 0.2%
		195	(9/2-)	-17.9s	183 s 4	ϵ 99.97%, α 0.03%
		195m	(1/2+)	-17.5s	87 s 1	ε 67%, α 33%
		196	(3+)	-18.1	308 s 12	$\varepsilon \approx 100\%$,
						$\alpha 1.2 \times 10^{-3}\%$
		196m	(7+)	-17.9	0.6 s 5	$\epsilon > 0\%$
		196m	(10-)	-17.8	240 s 3	ε 74.2%, IT 25.8%,
						$\alpha \ 3.8 \times 10^{-4}\%$

Is	Isotope			Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
83	Bi	197	(9/2-)	-19.6	9.33 m <i>50</i>	ε, α 1.0×10 ⁻⁴ %
		197m	(1/2+)	-19.1	5.04 m <i>16</i>	α55%,ε45%, IT<03%
		198	(2+,3+)	-19.5	10.3 m <i>3</i>	۲۱ < 0.0/0 ۶
		198m	$(2^{+},0^{+})$	-19.5	11.6 m <i>3</i>	e e
		198m	(10-)	-19.3	7785	ĨT
		199	9/2_	-20.89	27 m 1	C
		100 100m	$(1/2 \pm)$	-20.03	24 70 m 15	c c > 98% IT < 9%
		100111	(1727)	20.21	24.70 m 10	$\alpha \approx 0.01\%$
		200	7+	-20.36	36.4 m <i>5</i>	ε
		200m	(2+)	-20.36	31 m <i>2</i>	$\epsilon > 90\%$, IT < 10%
		200m	(10-)	-19.93	0.40 s 5	IT
		201	9/2-	-21.45	108 m <i>3</i>	ϵ , $\alpha < 1.0 \times 10^{-4}$ %
		201m	1/2+	-20.60	59.1 m <i>6</i>	$\epsilon > 93\%$, IT $\leq 6.8\%$, $\alpha \approx 0.3\%$
		202	5+	-20.79	1.72 h 5	ϵ , $\alpha < 1 \times 10^{-5}$ %
		203	9/2-	-21.55	11.76 h <i>5</i>	ϵ , $\alpha \approx 1.0 \times 10^{-5}$ %
		203m	1/2 +	-20.45	303 ms 5	IT
		204	6+	-20.69	11.22 h <i>10</i>	ε
		205	9/2-	-21.076	15.31 d <i>4</i>	ε
		206	6(+)	-20.043	6.243 d <i>3</i>	ε
		207	9/2 -	-20.069	31.55 y <i>5</i>	ε
		208	(5) +	-18.884	3.68×10^5 y 4	ε
		209	9/2-	-18.272	100%	
		210	1-	-14.806	5.013 d <i>5</i>	β -, α 1.3×10 ⁻⁴ %
		210m	9-	-14.535	3.04×10 ⁶ y 6	α
		211	9/2 -	-11.869	2.14 m <i>2</i>	α 99.72%, β -0.28%
		212	1(-)	-8.131	60.55 m <i>6</i>	β - 64.06%, α 35.94%, β - α 0.014%
		212m	(9–)	-7.881	25.0 m <i>2</i>	α 67%, β - 33%
		212m	. ,	-6.221	7.0 m <i>3</i>	$\beta - \approx 100\%$
		213	9/2 -	-5.241	45.59 m <i>6</i>	$\beta = 97.91\%, \alpha 2.09\%$
		214	1-	-1.21	19.9 m 4	$\beta = 99.98\%, \alpha 0.02\%$
		215		1.71	7.6 m <i>2</i>	β-
		216		5.8s	3.6 m 4	β-
84	Po	190	0+	-4.6s	9.6 ms $+47-44$	α
		191		-5.1s	15.5 ms +60-35	α
		192	0+	-7.9s	0.034 s <i>3</i>	$\alpha \approx 99\%$, $\epsilon \approx 1\%$
		193		-8.3s	0.45 s 4	α
		193m		-8.3s	0.24 s 1	α
		194	0+	-10.9	0.392 s 4	α
		195	(3/2-)	-11.1s	4.64 s 9	α75%,ε25%
		195m	(13/2+)	-10.9s	1.92 s <i>2</i>	$\alpha \approx 90\%$, $\epsilon \approx 10\%$, IT < 0.01%
		196	0+	-13.5s	5.8 s 2	$\alpha \approx 98\%$, $\epsilon \approx 2\%$
		197	(3/2-)	-13.4s	53.6 s 10	ε 56%, α 44%
		197m	(13/2+)	-13.2s	25.8 s 2	α 84%, ε 16%,
		100	0	155	1 70 0	IT 0.01%
		198	0+	-15.58	1./6 m 3	α 57%, ε 43%
		199	(3/2-)	-15.3s	5.48 m <i>16</i>	ε 92.5%, α7.5%
		199m	13/2+	-15.0s	4.17 m 4	ε 13.5%, α24%, IT 2.5%

Is	Isotope			Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
84	Po	200	0+	-17.0s	11.5 m <i>1</i>	ε 88.9%, α 11.1%
		201	3/2 -	-16.6s	15.3 m <i>2</i>	ε 98.4%, α1.6%
		201m	13/2 +	-16.1s	8.9 m <i>2</i>	ΙΤ 56%, ε 41%,
						$\alpha \approx 2.9\%$
		202	0+	-17.98s	44.7 m 5	ε 98%, α 2%
		203	5/2 -	-17.31	36.7 m 5	ε 99.89%, α 0.11%
		203m	13/2 +	-16.67	45 s 2	$\text{IT} \approx 100\%$, $\alpha \approx 0.04\%$
		204	0+	-18.34	3.53 h <i>2</i>	$\epsilon 99.34\%, \alpha 0.66\%$
		205	5/2 -	-17.54	1.66 h <i>2</i>	$\epsilon 99.96\%, \alpha 0.04\%$
		206	0+	-18.197	8.8 d 1	$\epsilon 94.55\%, \alpha 5.45\%$
		207	5/2 -	-17.160	5.80 h <i>2</i>	$\epsilon 99.98\%, \alpha 0.02\%$
		207m	19/2 -	-15.777	2.79 s 8	IT
		208	0+	-17.483	2.898 y 2	α, ε
		209	1/2 -	-16.380	102 y 5	α99.52%, ε0.48%
		210	0+	-15.969	138.376 d 2	α
		211	9/2 +	-12.448	0.516 s <i>3</i>	α
		211m	(25/2+)	-10.986	25.2 s 6	α99.98%, IT 0.02%
		212	0+	-10.385	0.299 µs <i>2</i>	α
		212m	(18+)	-7.463	45.1 s 6	α 99.93% , IT 0.07%
		213	9/2 +	-6.667	4.2 μs <i>8</i>	α
		214	0+	-4.484	164.3 μs <i>20</i>	α
		214m	0+	-3.069	99 ps <i>3</i>	ΙΤ 99.86%, α 0.14%
		215	9/2 +	-0.545	1.781 ms 4	lpha , eta - 2.3 $ imes$ 10 ⁻⁴ %
		216	0+	1.774	0.145 s 2	α
		217		5.9s	<10 s	lpha > 95%, $eta - < 5%$
		218	0+	8.351	3.10 m <i>1</i>	α 99.98%, $\beta-$ 0.02%
85	At	194		-0.8s	0.18 s <i>8</i>	α
		195		-3.2s	?	$\alpha > 75\%$, $\epsilon < 25\%$
		196		-4.0s	0.3 s 1	$\alpha > 0\%$
		197	(9/2-)	-6.3s	0.35 s 4	α96%,ε4%
		197m	(1/2+)	-6.2s	3.7 s 25	α≤100%, ε
		198	(3+)	-6.7s	4.2 s 3	α90%,ε10%
		198m	(10-)	-6.6s	1.0 s 2	α84%,ε16%
		199	(9/2-)	-8.7s	7.2 s 5	α90%,ε10%
		200	(3+)	-9.0	43 s 1	α57%,ε43%
		200m	(7+)	-8.9	47 s 1	$\varepsilon \approx 57\%$, $\alpha 43\%$
		200m	(10-)	-8.7	3.5 s <i>2</i>	$\mathrm{IT}\approx 84\%$, $\alpha\approx 10.5\%$,
		0.0.1	(0, 0)	10 7	00 0	$\varepsilon \approx 4.5\%$
		201	(9/2)	-10.7	89 s 3	α /1%, ϵ 29%
		202	(2+,3+)	-10.8	184 S <i>I</i>	$\varepsilon \leq 87\%, \ \alpha \geq 13\%$
		202m	(/+)	-10.7	182 s Z	$\varepsilon 91.3\%, \alpha 8.7\%$
		202m	(10-)	-10.3	$0.46 \ S \ J$	$11, 0.9.6 \times 10^{-10}$
		203	9/2-	-12.20	7.4 III 2	
		204 201	(10)	-11.0/ 11.90	3.4 III <i>λ</i>	と 90. 470, ቢ ጋ. ዕ % IT
		204M	(10-) 0/2	-11.20 12.01	$\frac{100 \text{ IIIS } 10}{26.2 \text{ m } 5}$	11 $0.00%$ $0.100%$
		203 206	$\vartheta/\mathcal{L} = (5)$	-13.UI 19.40	20.2 III 3	ະ 9070, ປັ 10%0 ເ 00 110∕ ∝ 0 000/
		200 207	())+ 0/9	-12.40 12.95	30.0 111 0 1 20 h 1	ε 33.1170, U.U.δ3% c 01 10/ α 9 60/
		201 209	5/2- 6:	-13.23 19 51	1.00 11 4 1 62 h 2	ε 31.470, U.O.070 c 00 150/ ~ 0 550/
		200 200	0+ 0/9	-12.01 19 QOA	1.03 11 3 5 / 1 h 5	ε 33.4J/0, U.U.JJ% c 0.5 00/ α/ 10/
		209 210	$(5)_{\pm}$	-12.034	3.41 H J 8 1 h A	ເງງ. 5/0, ປ. 4. 1/0 ເງງ 8,9% ທີ່ 1,9%
		211	9/2-	-11.661	7.214 h 7	ε 58.2%. α 41.8%

Isotope		ре		Δ	Т½, Г, ог	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
85	At	212	(1–)	-8.630	0.314 s 2	α , $\epsilon < 0.03\%$, $\beta - < 2.0 \times 10^{-6}\%$
		212m	(9–)	-8.408	0.119 s <i>3</i>	$\alpha > 99\%$, IT < 1%
		213	9/2-	-6.594	125 ns <i>6</i>	α
		214	1 –	-3.394	558 ns <i>10</i>	α
		214m		-3.335	265 ns <i>30</i>	α < 100%
		214m	9-	-3.163	760 ns <i>15</i>	α≤100%
		215	9/2-	-1.266	0.10 ms 2	α
		216	1(-)	2.243	0.30 ms <i>3</i>	α , $\epsilon < 0.006\%$, $\beta - < 3 \times 10^{-7}\%$
		217	9/2-	4.386	32.3 ms 4	α 99.99%, $\beta0.01\%$
		218	(2-)	8.09	1.6 s 4	α 99.9%, β -0.1%
		219		10.52	56 s <i>3</i>	$\alpha \approx 97\%$, $\beta - \approx 3\%$
		220		14.3s	3.71 m 4	β-
		221			2.3 m <i>2</i>	β–
		222			54 s 10	β–
		223			50 s 7	β–
86	Rn	198	0+	-1.1	?	α, ε
		198m	0+	-1.1	50 ms <i>9</i>	α, ε, ΙΤ
		199	(3/2-)	-1.6s	0.62 s <i>3</i>	α94%,ε6%
		199m	(13/2+)	-1.6s	0.32 s 2	α97%,ε3%
		200	0+	-4.0s	1.06 s 2	$\alpha \approx 98\%$, $\epsilon \approx 2\%$
		201	(3/2-)	-4.2s	7.0 s 4	$\alpha \approx 80\%$, $\epsilon \approx 20\%$
		201m	(13/2+)	-3.9s	3.8 s 4	$\label{eq:alpha} \begin{array}{l} \alpha \approx 90\% , \ \epsilon \approx 10\% , \\ IT \approx 0\% \end{array}$
		202	0+	-6.3s	9.85 s <i>20</i>	$\epsilon < 30\%$, α
		203 (3	3/2, 5/2) -	-6.2s	45 s <i>3</i>	α66%,ε34%
		203m	(13/2+)	-5.9s	28 s 2	$\label{eq:alpha} \begin{array}{l} \alpha \approx 80\%, \ \epsilon \approx 20\%, \\ IT < 0.1\% \end{array}$
		204	0+	-8.0s	1.24 m <i>3</i>	α73%,ε27%
		205	5/2 -	-7.8s	2.8 m 1	ε 77%, α 23%
		206	0+	-9.17s	5.67 m <i>17</i>	α 62%, ε 38%
		207	5/2 -	-8.64	9.25 m <i>17</i>	ε 79%, α 21%
		208	0+	-9.66	24.35 m <i>14</i>	α 62%, ε 38%
		209	5/2 -	-8.96	28.5 m 10	ε 83%, α 17%
		210	0+	-9.61	2.4 h <i>1</i>	α96%,ε4%
		211	1/2 -	-8.770	14.6 h 2	ε 72.7%, α27.4%
		212	0+	-8.674	23.9 m <i>12</i>	α
		213	(9/2+)	-5.712	25.0 ms 2	α
		214	0+	-4.335	0.27 μs <i>2</i>	α
		214m	6+	-2.892	0.7 ns <i>3</i>	$IT < 100\%, \ \alpha > 0\%$
		214m	8+	-2.710	6.5 ns <i>30</i>	$IT \approx 90\%$, $\alpha \approx 10\%$
		215	9/2+	-1.184	2.30 µs <i>10</i>	α
		216	0+	0.240	45 μs <i>5</i>	α
		217	9/2 +	3.647	0.54 ms 5	α
		218	0+	5.204	35 ms <i>5</i>	α
		219	5/2 +	8.826	3.96 s 1	α
		220	0+	10.604	55.6 s <i>1</i>	α
		221	7/2(+)	14.5s	25 m <i>2</i>	β – 78%, α 22%
		222	0+	16.366	3.8235 d <i>3</i>	α
		223	7/2		23.2 m 4	β–
		224	0+		107 m <i>3</i>	β–

Is	oto	ре		Δ	Т½, Г, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
86	Rn	225	7/2-		4.5 m <i>3</i>	β-
		226	0+		6.0 m 5	β-
		227			22.5 s 7	β–
		228	0+		65 s 2	β-
87	Fr	201	(9/2 -)	3.7s	48 ms 15	α. ε < 1%
		202	(3+)	3.1s	0.34 s 4	$\alpha \le 97\%$. $\epsilon \ge 3\%$
		202m	(10-)	3.2s	≈0.34 s	$\alpha \le 94\%, \ \epsilon \ge 6\%$
		203	(9/2-)	1.0s	0.55 s 2	$\alpha \approx 95\%, \ \varepsilon \approx 5\%$
		204	(3+)	0.6	1.7 s <i>3</i>	$\alpha \approx 80\%, \ \varepsilon \approx 20\%$
		204m	(7+)	0.6	2.6 s 3	α ≤100%
		204m	(10-)	0.9	≈1 s	α≤100%, IT
		205	(9/2-)	-1.2	3.85 s 10	α , $\epsilon < 1\%$
		206	(2+,3+)	-1.4	15.9 s <i>2</i>	α, ε
		206m	(7+)	-1.4	15.9 s ?	$\alpha \leq 84\%$
		206m	(10-)	-0.8	0.7 s 1	α, IT?
		207	9/2-	-2.93	14.8 s 1	α95%,ε5%
		208	7+	-2.67	59.1 s <i>3</i>	α90%,ε10%
		209	9/2-	-3.80	50.0 s <i>3</i>	α89%,ε11%
		210	6+	-3.35	3.18 m <i>6</i>	α60%,ε40%
		211	9/2-	-4.16	3.10 m <i>2</i>	$\alpha > 80\%$, $\epsilon < 20\%$
		212	5+	-3.56	20.0 m <i>6</i>	ε 57%, α 43%
		213	9/2-	-3.563	34.6 s <i>3</i>	$\alpha 99.45\%, \epsilon 0.55\%$
		214	(1-)	-0.975	5.0 ms 2	α
		214m	(8–)	-0.853	3.35 ms <i>5</i>	α
		215	9/2-	0.304	86 ns 5	α
		216	(1-)	2.97	0.70 μs <i>2</i>	α , $\epsilon < 2 \times 10^{-7}$ %
		217	9/2-	4.301	16 μs 2	α
		218	(1-)	7.046	1.0 ms 6	α
		218m	0.40	7.132	22.0 ms 5	α≤100%
		219	9/2-	8.608	20 ms 2	α
		220	1+	11.469	27.4 S 3	α 99.65%, β -0.35%
		221	5/2-	13.209	4.9 m z	α , p-<0.1%, ¹⁴ C 9×10 ⁻¹³ %
		222	2-	16.34	14.2 m <i>3</i>	β-
		223	3/2(-)	18.379	22.00 m 7	$\beta - 99.99\%, \alpha 6.0 \times 10^{-3}\%$
		224	1(-)	21.64	3.30 m <i>10</i>	β–
		225	3/2-	23.85	4.0 m <i>2</i>	β-
		226	1	27.30	48 s 1	β-
		227	1/2 +	29.66	2.47 m <i>3</i>	β-
		228	2-	33.3	39 s 1	β-
		229	(1/2+)		50.2 s 4	β-
		230			19.1 s 5	β-
		231			17.5 s 8	β-
		232			5 s 1	β–
88	Ra	204	0+	6.0s	45 ms +55-21	α
		205		5.8s	0.22 s 6	α,ε
		206	0+	3.5s	0.24 s 2	$\alpha \approx 100\%$
		207 (5/2-,3/2-)	3.5s	1.3 s 2	$\alpha \approx 90\%, \ \epsilon \approx 10\%$
		207m	(13/2+)	3.9s	55 ms <i>10</i>	ΙΤ 85%, α 15%,
		a a -				$\varepsilon \approx 0.35\%$
		208	0+	1.7s	1.3 s <i>2</i>	α95%,ε5%

Is	Isotope			Δ	Т½, Г, ог	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
88	Ra	209	5/2 -	1.8s	4.6 s 2	$\alpha \approx 90\%$, $\epsilon \approx 10\%$
		210	0+	0.42s	3.7 s 2	$\alpha \approx 96\%, \ \varepsilon \approx 4\%$
		211	5/2(-)	0.83	13 s <i>2</i>	$\alpha > 93\%, \epsilon < 7\%$
		212	0+	-0.20	13.0 s 2	$\alpha \approx 90\%$, $\epsilon \approx 15\%$
		213	1/2-	0.32	2.74 m <i>6</i>	α 80%, ε 20%
		213m		2.09	2.1 ms 1	IT \approx 99%, $\alpha \approx 1\%$
		214	0+	0.08	2.46 s 3	α 99.94%, ε 0.06%
		215	(9/2+)	2.519	1.59 ms <i>9</i>	α
		216	0+	3.277	182 ns <i>10</i>	α, ε
		217	(9/2+)	5.874	1.7 μs <i>1</i>	α
		218	0+	6.64	15.6 μs <i>1</i>	α
		219	(7/2) +	9.37	10 ms <i>3</i>	α
		220	0+	10.26	17 ms <i>2</i>	α
		221	5/2 +	12.957	28 s 2	α , ¹⁴ C 1×10 ⁻¹² %
		222	0+	14.309	38.0 s 5	α , ¹⁴ C 2.3×10 ⁻⁸ %
		223	3/2+	17.230	11.435 d <i>4</i>	α , ¹⁴ C 6.4×10 ⁻⁸ %
		224	0+	18.818	3.66 d 4	α , ${}^{12}C4.3 \times 10^{-9}\%$
		225	1/2 +	21.986	14.9 d 2	β–
		226	0+	23.661	1600 y 7	α , ¹⁴ C 3×10 ⁻⁹ %
		227	3/2+	27.171	42.2 m 5	β-
		228	0+	28.935	5.75 y <i>3</i>	β-
		229	5/2(+)	32.43	4.0 m 2	β–
		230	0+	34.54	93 m <i>2</i>	β-
		231 (7	//2-,1/2+)		103 s <i>3</i>	β-
		232	0+		250 s <i>50</i>	β-
		233			30 s 5	β–
		234	0+		30 s 10	β-
89	Ac	207			22 ms +40-9	α
		208	(3+)		95 ms +24-16	$\alpha \approx 99\%$
		208m	(10-)		25 ms +9-5	$\alpha \approx 90\%$
		209	(9/2-)	8.9	0.10 s 5	$\alpha \approx 99\%$, $\epsilon \approx 1\%$
		210		8.6	0.35 s 5	$\alpha \approx 96\%,\ \epsilon \approx 4\%$
		211		7.12	0.25 s 5	$\alpha \approx 100\%$
		212		7.27	0.93 s 5	$\alpha \approx 97\%,\ \epsilon \approx 3\%$
		213		6.13	0.80 s 5	α≤100%
		214		6.42	8.2 s 2	$\alpha \ge 89\%$, $\epsilon \le 11\%$
		215	9/2-	6.01	0.17 s <i>1</i>	α 99.91%, ϵ 0.09%
		216	(1-)	8.11	≈0.33 ms	α
		216m	(9–)	8.11	0.33 ms <i>2</i>	α
		217	9/2-	8.69	69 ns 4	α , $\epsilon \leq 2\%$
		218		10.83	1.06 μs <i>9</i>	α
		219	9/2-	11.56	11.8 μs <i>15</i>	α
		220		13.74	26.1 ms 5	α,ε 5×10 ⁻⁴ %
		221		14.51	52 ms <i>2</i>	α
		222	(1-)	16.60	5.0 s 5	α 99%, $\epsilon \leq 2\%$
		222m		16.60	63 s 4	$\alpha \ge 88\%$, IT $\le 10\%$,
						$\varepsilon \leq 2\%$
		223	(5/2-)	17.816	2.10 m 5	α99%, ε1%
		224	0-	20.221	2.9 h 2	ε 90.9%, α9.1%,
						$\beta - < 1.6\%$
		225	(3/2-)	21.629	10.0 d <i>1</i>	α.
		226	(1)	24.302	29.4 h <i>1</i>	β-83%, ε17%,
					61	α 0.006%

Ise	oto	ре		Δ	Т½, Г, ог	
Ζ	El	Α	Jπ	(MeV)	Abundance	Decay Mode
89	Ac	227	3/2 -	25.846	21.773 y <i>3</i>	β - 98.62%, α 1.38%
		228	3(+)	28.889	6.15 h 2	β α 5 . 5 × 10 ⁻⁶ %
		229	(3/2+)	30.67	62.7 m 5	β-
		230	(1+)	33.6	122 s 3	β-
		231	(1/2+)	35.9	7.5 m <i>1</i>	β-
		232	(1+)	39.1	119 s 5	β-
		233	(1/2+)		145 s 10	β_
		234	(2/2/)		44 s 7	β_
00	ть	910	0		$0 m_{c} + 17.4$	r a
90	1 11	210 911	0+		9 ms + 17 - 4 27 ms + 29 - 11	a a
		611 919	0	19.00	$37 \text{ ms} \pm 20 \text{ 10}$	$\alpha = 0.20$
		616 919	0+	12.05	140 ms 25	$\alpha, \epsilon \approx 0.3/0$
		213 914	0	16.15	140 ms 25	$\alpha \leq 100\%$
		214 915	(1/2)	10.075		a a
		215 916	(1/2 -)	10.92	1.252	
		210	(0, 11)	10.29	$0.028 \ S \ Z$	$\alpha, \epsilon \approx 0.000\%$
		210	(8+,11-)	12.32	0.18 ms 4	$11 \approx 97\%, \ \alpha \approx 3\%$
		21/ 910	(9/2+)	12.17	0.252 ms /	α
		218 910	0+	12.30	109 ns 13	α
		219	0	14.40	$1.05 \ \mu s \ 3$	α
		220	(7/9)	14.05	9.7 μs <i>b</i>	α, ε 2×10 '%
		221	(7/2+)	10.93	1.68 ms <i>b</i>	α
		<i>~~~</i>	(5/9)	17.19	2.2 ms 2	α
		223	(3/2)+	19.30	0.00 s 2	α
		224	0+	19.99	$1.05 \ S \ Z$	α τ 0.00/ τ 1.00/
		225	(3/2)+	22.304	8.72 m 4	$\alpha \approx 90\%, \ \varepsilon \approx 10\%$
		226	0+	23.185	30.6 m <i>I</i>	α
		227	(1/2+)	25.802		α 200 1.10-110/
		228	0+ 5/0	20.703	1.9131 y 9	α, ²³ 01×10 ¹¹ %
		229	5/2+	29.579	7880 y 120	α
		230	0+ 5/9	30.830	7.338×10 ⁻ y 30	$\alpha, SF \le 5. \times 10^{-1}\%$
		201 000	$\frac{3}{2} +$	33.81U	23.32 II I	β -, $\alpha \approx 1.0 \times 10^{-5}$
		232	0+	35.443	1.405×10 ¹⁰ y b	α , SE 1 0.10-90/
		000	1/0.	00 700		$SF < 1.0 \times 10^{-5}$
		233	1/2 +	38.728	22.3 m I	β-
		234	(1/2)	40.010	24.10 d 3	β-
		233	(1/2+)	44.23	7.1 m 2	p-
		200	0+		57.5 III 2 5.0 m 0	β- 0
		231			5.0 m 9	p–
91	Ра	213			5.3 ms +40-16	α
		214			17 ms <i>3</i>	α
		215		17.7	15 ms 4	α
		216		17.71	105 ms <i>12</i>	$\alpha \approx 80\%$, $\varepsilon \approx 20\%$
		217		17.04	3.4 ms 2	α
		217m	1	18.89	1.5 ms <i>2</i>	α≤100%
		218	a :-	18.64	0.11 ms 2	α
		219	9/2-	18.52	53 ns 10	α
		220	0.12	20.37	0.78 μs <i>16</i>	α?
		221	9/2-	20.37	5.9 µs 17	α
		222		22.0s	3.3 ms <i>3</i>	α
		223		22.32	5 ms 1	α
		224		23.86	0.95 s 15	α99.9%,ε0.1%
		225		24.33	1.7 s 2	α
Isot	tope		Δ	Т½, Г, ог		
------	--------------	--------------	------------------	--	---	
ZE	ELĀ	$J\pi$	(MeV)	Abundance	Decay Mode	
91 P	a 226		26.01	1.8 m 2	α74%,ε26%	
	227	(5/2-)	26.821	38.3 m <i>3</i>	α 85%, ε 15%	
	228	(3+)	28.874	22 h <i>1</i>	ε 98.15%, α1.85%	
	229	(5/2+)	29.895	1.50 d 5	ε 99.52%, α0.48%	
	230	(2-)	32,166	17.4 d 5	ε 91.6%, β-8.4%.	
	200	(~)	02.100	1111 4 0	$\alpha 3.2 \times 10^{-3}\%$	
	231	3/2 -	33.420	32760 y <i>110</i>	α , SF \leq 3.0 \times 10 $^{-}\%$	
	232	(2-)	35.938	1.31 d <i>2</i>	β-,ε3.0×10 ⁻³ %	
	233	3/2 -	37.483	26.967 d <i>2</i>	β-	
	234	4+	40.337	6.70 h 5	β–	
	234m	(0-)	40.411	1.17 m <i>3</i>	β -99.84%, IT 0.16%	
	235	(3/2-)	42.32	24.5 m <i>2</i>	β–	
	236	1(-)	45.3	9.1 m <i>1</i>	β–	
	237	(1/2+)	47.6	8.7 m 2	β-	
	238	(3–)	50.76	2.3 m 1	β -, SF<2.6×10 ⁻⁶ %	
92 L	J 218	0+	21.88s	1.5 ms +73-7	α	
	219		23.2s	42 µs +34-13	α	
	220	0+	23.0s	•		
	221		24.5s			
	222	0+	24.38	$1.0 \text{ us } \pm 10-4$	α	
	223	0	25.82	18 µs + 10 - 5	α α	
	224	0+	25 70	$10 \mu \text{s}$ $+ 10 \text{s}$ $-10 \text$	α α	
	225	0	27 37	95 ms 15	a	
	226	0+	27.39	020 5	a	
	227	(3/2+)	29.00	1.2030	a a	
	220	(3/2+)	20.22	1.1 m 1	$\alpha > 0.5\%$ $\alpha < 5\%$	
	220 220	(2/2)	21 201	9.1 III 2 59 m 2	0.9370, E < 370	
	220	(3/2+)	31.204 21 602	20 0 J	$\varepsilon \approx 80/0, \ \alpha \approx 20/0$	
	200 201	(5/2)	31.003 22 70	20.0 u 1 2 2 1	u a	
	201 201	(3/2-)	33.70 22.70	4.2 U I	$\epsilon = 4 \times 10^{-30}$	
	201 ((3/2+, 3/2+)	33.78	4.2 U <i>I</i>	$\alpha \approx 4 \times 10^{-5}$	
	232	0+ 5/0	34.601	68.9 y 4	α , Ne 9×10 10%	
	233	5/2+	36.912	1.592×10° y 2	α , SF < 6.0×10 ⁻³ %, Ne 7×10 ⁻¹¹ %	
	234	0+	38.140	2.455×10 ⁵ y 6	α,	
				0.0055% <i>5</i>	SF 1.7×10 ⁻⁹ % ,	
					Mg 1×10^{-11} %,	
		/ -			Ne 9×10 ⁻¹² %	
	235	7/2-	40.913	703.8×10° y 5	α,	
				0.720% <i>1</i>	SF 7.0×10 ⁻⁵ %,	
					Ne 8×10^{-10} %	
	235m	1/2+	40.913	≈25 m	IT	
	236	0+	42.440	2.342×10′ y <i>3</i>	α , SF 9.6×10 ⁻⁸ %	
	236m	l	42.440	121 ns <i>2</i>	SF 0.013%	
	237	1/2 +	45.385	6.75 d <i>1</i>	β–	
	238	0+	47.305	4.468×10 ⁹ y 3	α,	
	c c -	6		99.2745% <i>15</i>	SF 0.5×10 ⁻⁴ %	
	238m	0+	47.305	267 ns 3	SF 0.015%	
	239	5/2+	50.570	23.45 m <i>2</i>	β-	
	240	0+	52.708	14.1 h <i>1</i>	β-,α	
	242	0+		16.8 m 5	β–	
93 N	p 225		31.58			
	226		32.7s	31 ms <i>8</i>	α	

Isot	tope		Δ	Т½, Г, ог	
ΖH	ELĀ	Jπ	(MeV)	Abundance	Decay Mode
93 N	Ыр 227		32.56	0.51 s <i>6</i>	α
	228		33.7s	1.07 m <i>3</i>	ε.εSF
	229		33.76	3.85 m 14	$\alpha > 50\%$, $\epsilon < 50\%$
	230		35.21	4.6 m 3	$\varepsilon \leq 97\%, \ \alpha \geq 3\%$
	231	(5/2)	35.61	48.8 m 2	ε 98%, α 2%
	232	(4+)	37.35	14.7 m <i>3</i>	£
	233	(5/2+)	38.15	36.2 m 1	$\epsilon \alpha < 1.0 \times 10^{-3}$ %
	234	(0+)	39 950	4 4 d 1	e, a=1.0/10 /0
	235	(0^{+}) 5/2+	41 037	396 1 d <i>12</i>	ε α 2 6×10 ⁻³ %
	236	(6-)	43 38	154×10^3 v 6	$e 87 3\% \beta = 12 5\%$
	200	(0)	10.00	101×10 y 0	$\alpha 0 16\%$
	236m	1	43 44	225 h <i>4</i>	$\beta = 48\%$
	230 m	5/2 ±	44 867	$2 144 \times 10^{6} \text{ v}$ 7	$\alpha SE < 2 \times 10^{-10}$
	237m	0121	44.007	2.144×10 y /	SE < 100%
	237111	9 .	47.007	4J IIS J 9 1 1 7 d 9	SI ⁻ ≤ 100/0
	230	۵+ 5/9	47.450	2.117 U 2 2.2565 d 1	B b-
	239	$\frac{3}{2}$ +	49.304	2.3303 u 4	B b-
	240 240m	(3+)	59.22	01.9 III 2	$p = \frac{1}{100} $
	240III 941	1(+)	54.52	1.42 III 2	p= 99.89%, 11 0.11%
	241	(3/2+)	54.20	13.9 m 2	p–
	242	(1+)	57.4	2.2 m 2	β-
	242	(6)	57.4	5.5 m <i>1</i>	β-
	243	(5/2)	59.92	1.85 m 15	β–
	244	(7–)		2.29 m <i>16</i>	
94 P	Pu 228	0+		?	α, SF
	229			?	α
	230	0+	36.92	≈200 s	α≤100%
	231		38.4s		
	232	0+	38.36	34.1 m 7	ε 80%, α 20%
	233		40.05	20.9 m 4	ε 99.88%, α 0.12%
	234	0+	40.338	8.8 h <i>1</i>	$\epsilon \approx 94\%$, $\alpha \approx 6\%$
	235	(5/2+)	42.20s	25.3 m <i>5</i>	ε, α2.7×10 ⁻³ %
	236	0+	42.893	2.858 y <i>8</i>	α , SF 1 . 4×10 ⁻⁷ %
	237	7/2 -	45.087	45.2 ď <i>1</i>	ε , α 4.2×10 ⁻³ %
	237m	1/2 +	45.233	0.18 s 2	IT
	237m		47.687	85 ns <i>15</i>	SF≤100%
	237m		47.987	1.1 μs <i>1</i>	SF≤100%
	238	0+	46.158	87.7 y 3	α , SF 1.9×10 ⁻⁷ %
	239	1/2 +	48.583	24110 y <i>30</i>	α , SF 3×10^{-10} %
	240	0+	50.120	6564 v 11	α , SF 5.7×10 ⁻⁶ %
	241	5/2 +	52.950	14.35 y 10	β -, α 2.5×10 ⁻³ %,
				5	$SF < 2 \times 10^{-14}\%$
	242	0+	54.712	3.733×10^5 y 12	α , SF 5.5×10 ⁻⁴ %
	242m	0+	54.712	3.5 ns 6	SF
	242m	0+	54.712	28 ns	SF
	243	7/2 +	57.749	4.956 h <i>.</i> 3	β-
	244	0+	59.799	8.08×10^7 v 10	α 99.88%. SF 0.12%
	244m	0+	59 799	400 ps 100	SF<100%
	245	(9/2-)	63 10	10.5 h 1	β_
	246	0+	65 39	10.84 d 2	г В-
	247		00.00	2 27 d 23	Р В-
				70 0	۲ • • • • • • • • • • • • • • • • • • •
95 A	m 232		40.0	19 S Z	$\varepsilon \approx 98\%$, $\alpha \approx 2\%$
	233		43.3s		

Isotope		Δ	Т½, Г, ог	
Z EL A	Jπ	(MeV)	Abundance	Decay Mode
95 Am 234		44.5s	2.32 m 8	ε 99.96%, α0.04%
235		44.7s	?	
236		46.2s		α, ε
237	5/2(-)	46.8s	73.0 m <i>10</i>	ε99.98%,α0.03%
237m		49.2s	5 ns <i>2</i>	$SF \le 100\%$
238	1+	48.42	98 m 2	$\epsilon > 99$. 99% ,
				α 0.0001%
239	(5/2)-	49.386	11.9 h <i>1</i>	ϵ 99.99%, α 0.01%
240	(3–)	51.50	50.8 h <i>3</i>	ϵ , α 1.9×10 ⁻⁴ %
241	5/2 -	52.929	432.2 y 7	α , SF 4×10 ⁻¹⁰ %
241m		55.129	1.2 μs <i>3</i>	SF
242	1-	55.463	16.02 h <i>2</i>	β- 82.7% , ε17.3%
242m	5-	55.512	141 y 2	IT 99.54%, α 0.46%, SF < .5×10 ⁻¹⁰ %
242m		57.663	14.0 ms	SF, IT, $\alpha < 1.5\%$
243	5/2 -	57.167	7370 y <i>40</i>	α , SF 3.7×10 ⁻⁹ %
244	(6–)	59.875	10.1 h <i>1</i>	β–
244m		59.875	≈6.5 µs	$SF \le 100\%$
244m		59.875	0.90 ms 15	$SF \le 100\%$
244m	1+	59.963	≈26 m	$\beta - 99.96\%, \epsilon 0.04\%$
245	(5/2) +	61.893	2.05 h <i>1</i>	β-
246	(7–)	64.99	39 m <i>3</i>	β–
246m	2(-)	64.99	25.0 m <i>2</i>	β -, IT<0.01%
247	(5/2)	67.2s	23.0 m <i>13</i>	β-
248		70.5s	?	β–
96 Cm 232	0+		1 m ?	SF < 30.3%
235		48.0s	?	
236	0+	47.9s		α, ε
237		49.3s	_	
238	0+	49.38	2.4 h 1	$\epsilon \ge 90\%$, $\alpha \le 10\%$
239	(7/2-)	51.1s	≈2.9 h	ε, α<0.1%
240	0+	51.715	27 d 1	$\alpha > 99.5\%, \epsilon < 0.5\%,$ SF 3.9×10 ⁻⁶ %
241	1/2 +	53.697	32.8 d 2	ε99%,α1%
242	0+	54.798	162.79 d <i>9</i>	α , SF 6.2 $\times 10^{-6}$ %
242m		54.798	40 ps 15	$SF \le 100\%$
242m		57.598	180 ns <i>70</i>	SF?, IT?
243	5/2+	57.176	29.1 y <i>1</i>	α 99.71%, ε 0.29%, SF 5.3×10 ⁻⁹ %
244	0+	58.447	18.10 y 2	α , SF 1.3 $ imes$ 10 ⁻⁴ %
244m	0+	58.447	>500 ns	$SF \le 100\%$
244m	6+	59.487	34 ms <i>2</i>	$SF \le .77 \times 10^{-9}\%$
245	7/2+	60.999	8500 y <i>100</i>	α , SF 6.1×10 ⁻⁷ %
246	0+	62.612	4730 y <i>100</i>	α 99.97%, SF 0.03%
247	9/2-	65.527	1.56×10^7 y 5	α
248	0+	67.385	3.40×10^5 y 4	α 91.74%, SF 8.26%
249	1/2(+)	70.743	64.15 m <i>3</i>	β-
250	0+	72.98	≈9700 y	$SF \approx 80\%$, $\alpha \approx 11\%$, $\beta - \approx 9\%$
251	(1/2+)	76.64	16.8 m 2	β-
252	0+		<2 d	β-
97 Bk 237		53.2s		

Iso	oto	ре		Δ	Т½, Γ, or	
Z	El	A	Jπ	(MeV)	Abundance	Decay Mode
97]	Bk	238		54.3s	144 s 5	ε, εSF 0.048%
		239	(7/2+)	54.4s		
		240		55.7s	4.8 m <i>8</i>	$\epsilon \approx 100\%$, ϵSFw
		241	(7/2+)	56.1s	?	
		242		57.8s	7.0 m <i>13</i>	ε
		242m		57.8s	9.5 ns <i>20</i>	SF > 0%
		242m		57.8s	600 ns <i>100</i>	SF > 0%
		243	(3/2-)	58.685	4.5 h 2	$\varepsilon \approx 99.85\%$, $\alpha \approx 0.15\%$
		244	(1-)	60.70	4.35 h <i>15</i>	ε 99.994%,
						α 6.0×10 ⁻³ %
		244m	0.40	60.70	820 ns 60	SF≤100%
		245	3/2 -	61.809	4.94 d 3	ε 99.88%, α 0.12%
		246	Z(-)	63.96	1.80 d 2	ε , $\alpha < 0.2\%$
		24/	(3/2-)	65.482	1380 y 250	$\alpha \leq 100\%$
		248	1(-)	68.10	23.7 h 2	$\beta = 70\%$, $\epsilon 30\%$,
		940	(\mathbf{C}, \mathbf{c})	00 10	. 0	$\alpha < 0.001\%$
		248	(6+)	68.10	>9 y	$\alpha > 70\%$
		249	1/2+	69.843	320 a b	$p-, \alpha 1.4 \times 10^{-5}\%$, SE 4.7 × 10-80/
		250	9	72 045	2917 h 5	SF 4.7×10 ⁻⁷ 0 β
		251 251	(2/2)	72.945	5.217 II J	$\beta = \frac{1}{2} 0 \times 10^{-50}$
		251	(3/2-)	79.50	55.0 III <i>11</i>	$p-$, $\alpha \approx 1.0 \times 10^{-6}$
		253		70.35 80.8s		
	~ ^	200	0	00.05	1 0	
98	Cf	238	0+	50.0	1 s ?	SF < 25%
		239	0	58.3s	39 s +37-12	$\alpha > 50\%$, ϵ ?
		240	0+	58.0s	1.06 m 15	$\alpha \approx 100\%$
		241	0	59.4s	3.78 m 70	$\varepsilon \approx 75\%, \ \alpha \approx 25\%$
		242	0+	59.33	3.49 m <i>12</i>	$\alpha > 0\%$
		243	(1/2+)	60.9S	10.7 m 5	$\varepsilon \approx 80\%$, $\alpha \approx 14\%$
		244	0+	01.409 62.277	19.4 m <i>b</i>	α
		243	(3/2+)	03.377	45.0 m 15	ε 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
		240	0+	04.005	55.7 II 5	α , $\varepsilon < 5.0 \times 10^{-70}$, SF 2 0 $\times 10^{-40/2}$
		217	$(7/2_{\pm})$	66 128	311h 3	$s 99 97\% \alpha 0 0.0\%$
		248	$(1/2^{+})$	67 233	333 5 d <i>28</i>	α SF 0 0029%
		249	9/2-	69 718	351 v 2	α SF 5 2×10 ⁻⁷ %
		250	0+	71,165	13.08 v 9	α 99 92% SF 0 08%
		251	1/2 +	74.127	898 v 44	α
		252	0+	76.027	2.645 v 8	α 96, 91%, SF 3, 09%
		253	(7/2+)	79.293	17.81 d <i>8</i>	$\beta = 99.69\%, \alpha 0.31\%$
		254	0+	81.33	60.5 d 2	SF 99.69%. α 0.31%
		255	(9/2+)	84.8s	85 m <i>18</i>	β-
		256	0+		12.3 m <i>12</i>	SF, $\beta - < 1\%$,
						$\alpha \approx 1.0 \times 10^{-6}\%$
99	Es	241		63.95		
		242		64.95	≈7 s	ε.εSF
		243		64.98	21 s 2	$\epsilon < 70\%, \alpha > 30\%$
		244		66.08	37 s 4	ε 96%. α 4%
		245	(3/2 -)	66.4s	1.1 m <i>1</i>	ε 60%, α 40%
		246	(4-,6+)	68.0s	7.7 m 5	ε 90.1%, α 9.9%
		247	(7/2+)	68.60s	4.55 m <i>26</i>	$\varepsilon \approx 93\%$, $\alpha \approx 7\%$
		248	(2-,0+)	70.29	27 m 4	$\varepsilon > 99\%$, $\alpha \approx 0.25\%$

Is	oto	ре		Δ	Т½, Г, or	
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
99	Es	249	7/2(+)	71.17s	102.2 m <i>6</i>	ε 99.43%, α0.57%
		250	(6+)	73.3s	8.6 h <i>1</i>	$\epsilon > 97\%, \alpha < 3\%$
		250m	1(-)	73.3s	2.22 h 5	$\epsilon \geq 99\%$, $\alpha \leq 1\%$
		251	(3/2-)	74.504	33 h <i>1</i>	ε 99.51%, α 0.49%
		252	(5-)	77.29	471.7 d <i>19</i>	α 76%, ε 24%,
						$\beta - \approx 0.01\%$
		253	7/2 +	79.007	20.47 d <i>3</i>	α , SF 8.7×10 ⁻⁶ %
		254	(7+)	81.988	275.7 d <i>5</i>	α , $\epsilon < 1.0 \times 10^{-4}$ %,
						$SF < 3.0 \times 10^{-6}\%$,
						eta– 1.7×10 ⁻⁶ %
		254m	2+	82.066	39.3 h <i>2</i>	$\beta - 98\%$, IT < 3%,
						α 0.33%, ε 0.08%,
						SF<0.05%
		255	(7/2+)	84.08	39.8 d 12	$\beta - 92\%$, $\alpha 8\%$,
			. ,			SF 4.1×10 ⁻³ %
		256	(1+)	87.1s	25.4 m <i>24</i>	β-
		256m	(8+)	87.1s	≈7.6 h	β-
		257		89.4s	2 s ?	SF?
100	Fm	919	0		0.8 ms 2	SE > 0%
100	гш	242 919	0+	60.40	0.0 IIIS 2	$SI^{2} > 0/0$
		243 911	0	09.48 60.1c	0.105 + 0 - 4	$\alpha \le 100\%$, $SF \le 0.30\%$
		244 915	0+	09.15 70.2c	3.3 ms 4	$ST \le 100\%$ $\alpha < 100\%$ SE < 0 11%
		24J 916	0.	70.25	4.2 5 13	$\alpha \ge 100\%$, SF $\ge 0.11\%$
		240 9172	0+	70.12	1.1 5 2 35 s 1	$0.52/0, 51.6/0, \epsilon \le 1/0$
		247: 217m		71.55	09 5 23	$\alpha \leq 100\%$
		247 m 248	0+	71.55	36 5 3	$\alpha = 100\%$
		240	0+	71.50	30 8 3	$x = 55\%, z \approx 1\%,$ SF $\approx 0.05\%$
		249	(7/2+)	73 6s	2.6 m 7	$\epsilon \approx 85\%$ $\alpha \approx 15\%$
		250	(1/2)	74.07	2.0 m 7	$\alpha > 90\%$ s < 10%
		200	0	/ 1.07	00 111 0	$SF \approx 6 0 \times 10^{-4}\%$
		250m		75 07	18s <i>1</i>	IT > 80%
		200111		10101	110 5 1	$SF < 0.8 \times 10^{-4}\%$
		251	(9/2)	75.978	5.30 h <i>8</i>	ε 98.2%, α 1.8%
		252	(0, 2)	76.810	25.39 h 5	α . SF 0.0023%
		253	1/2 +	79.340	3.00 d <i>12</i>	ε 88%, α 12%
		254	0+	80.897	3.240 h <i>2</i>	α 99.94%. SF 0.06%
		255	7/2 +	83.793	20.07 h 7	α . SF 2.4×10 ⁻⁵ %
		256	0+	85.479	157.6 m <i>13</i>	SF 91.9%, α8.1%
		257	(9/2+)	88.581	100.5 d <i>2</i>	α 99.79%, SF 0.21%
		258	0+	90.5s	370 us <i>43</i>	SF
		259		93.7s	1.5 s <i>3</i>	SF
		260	0+		≈4 ms	SF
101	ма	247		76.1s	29s 17	a < 100%
101	wiu	247		70.13 77 1s	2.5317 7s3	s 80% ~ 20%
		~10		77.15	130	SE < 0.05%
		249		77 Se	24 s 1	α≈70% ε≈30%
		~+5 250		78.7c	~+ 3 4 59 c R	ε 93% ~ 7%
		≈30 251		70.13 70.1c	40m 5	$c > 0.0\%$ $\alpha < 1.0\%$
		~ 5 1 9 5 9		80.7c	$\frac{1.0 \text{ m } 3}{4.8 \text{ m } \pm 8}$	C⊆00/0, U⊇10/0 c
		~ J ~ 253		81 ?e	τ.υ m <i>το−J</i> ≈6 m	e < 100%
		~55 254		83 Re	~0 m 10 m ?	C - 100/0
		251		83 Rc	28 m <i>8</i>	c
		~UT		00.03		

Isoto	ре		Δ	Т½, Г, ог	
Z El	Α	Jπ	(MeV)	Abundance	Decay Mode
101 Md	255	(7/2-)	84.835	27 m <i>2</i>	ε 92%, α 8%, SF≤0.15%
	256	(0-,1-)	87.61	78.1 m <i>18</i>	ε 90.7%, α9.3%, SF<2.8%
	257	(7/2-)	88.990	5.52 h <i>5</i>	ε 90%, α 10%, SF<1%
	258	(1-)	91.684	60 m <i>2</i>	3
	258	(8–)	91.684	51.5 d <i>3</i>	α , SF \leq 0.003%
	259	(7/2-)	93.6s	1.60 h <i>6</i>	$SF \approx 100\%$, $\alpha < 3\%$
	260		96.6s	27.8 d <i>8</i>	$SF > 73\%$, $\alpha < 25\%$, $\epsilon < 15\%$, $\beta - < 10\%$
	261		98.4s		
102 No	250	0+		0.25 ms 5	SF. $\alpha \approx 0.05\%$
	251		82.8s	0.8 s <i>3</i>	$\label{eq:alpha} \begin{array}{l} \alpha \approx 100\%, \ \epsilon \approx 1\%, \\ SF < 10\% \end{array}$
	252	0+	82.87	2.30 s 22	α 73.1%, SF 26.9%
	253	(9/2-)	84.5s	1.7 m <i>3</i>	$\alpha \approx 80\%,\ \epsilon \approx 20\%$
	254	0+	84.72	55 s <i>3</i>	α90%,ε10%, SF0.25%
	254m		85.22	0.28 s 4	$IT > 80\%, SF \ge 0.2\%$
	255	(1/2+)	86.85	3.1 m <i>2</i>	α61.4%,ε38.6%
	256	0+	87.816	2.91 s 5	α 99.5%, SF 0.5%
	257	(7/2+)	90.22	25 s <i>2</i>	$\alpha \approx 100\%$
	258	0+	91.5s	1.2 ms 2	SF, $\alpha 0.001\%$
	259	(9/2+)	94.1s	58 m <i>5</i>	α75%,ε25%, SF<10%
	260	0+	95.6s	106 ms <i>8</i>	SF
	261		98.5s		
	262	0+	100.2s	≈5 ms	SF
	263		103.2s		
103 Lr	252			≈1 s	$\label{eq:alpha} \begin{array}{l} \alpha \approx 90\%, \hspace{0.2cm} \epsilon \approx 10\%, \\ SF < 1\% \end{array}$
	253		88.7s	1.3 s +6-3	α 90%, SF < 20%, $\epsilon\approx 1\%$
	254		89.9s	13 s 2	α78%,ε22%, SF<0.1%
	255		90.1s	22 s 4	$\alpha 85\%$, $\epsilon < 30\%$
	256		92.0s	28 s 3	$\alpha > 80\%$, $\epsilon < 20\%$, SF < 0.03%
	257	(9/2+)	92.7s	0.646 s 25	α , SF \leq .65 \times 10 ⁻³ %
	258		94.9s	3.9 s 4	$\alpha\!>\!95\%$, $\epsilon\!<\!5\%$, SF $\!<\!5\%$
	259		95.93s	6.1 s 4	$\alpha 80\%$, SF 20%, $\epsilon < 0.5\%$
	260		98.3s	180 s <i>30</i>	α 75%, $\epsilon\approx15\%,$ SF $<10\%$
	261		99.6s	39 m <i>12</i>	SF
	262		102.3s	3.6 h <i>3</i>	ϵ , $SF < 10\%$
	263		103.8s		
	264		106.5s		
	265		108.2s		
104 Rf	253			≈1.8 s	$\alpha \approx 50\%$, SF $\approx 50\%$

Isot	tope		Δ	Т½, Г, ог	
Ζŀ	El A	Jπ	(MeV)	Abundance	Decay Mode
104 F	Rf 254	0+		0.5 ms 2	SF, $\alpha \approx 0.3\%$
	255	(9/2-)	94.6s	1.5 s 2	SF 52%, α 48%
	256	0+	94.25	6.7 ms 2	SF 98%, α2.2%
	257	(7/2+)	96.2s	4.7 s 3	α79.6%, ε18%,
					SF 2.4%
	258	0+	96.4s	12 ms <i>2</i>	$SF \approx 87\%$, $\alpha \approx 13\%$
	259		98.38s	3.1 s 7	α93%, SF 7%,
					$\varepsilon \approx 0.3\%$
	260	0+	99.2s	20.1 ms 7	$SF \approx 98\%$, $\alpha \approx 2\%$
	261		101.5s	65 s <i>10</i>	$\alpha > 80\%$, $\epsilon \le 10\%$,
	0.00	0	100 5	10 10 5	SF<10%
	262	0+	102.55	1.2 s + 10 - 5	SF
	263	0	105.0s		
	264	0+	106.38		
	200	0.	108.85		
	200	0+	110.48		
105 H	Ia 255			1.6 s + 6 - 4	$\alpha \approx 80\%$, SF $\approx 20\%$
	256			2.6 s +14-8	$\alpha \le 90\%$, SF $\le 40\%$,
	059		100 5	10 50	ε≈10%
	257		100.55	1.3 s + 5 - 3	α 82%, SF 17%, ε 1%
	258		101.85	4.4 s + 9-6	α 67%, ε 33%, SF < 1%
	258		101.85	20 s 10	8
	209 260		102.28	{ 1.52 c. 12	$\alpha > 0.0\%$ SE < 1.0% c.2
	200 261		103.88	1.32 S 13	$\alpha \ge 50\%$, SF $\le 10\%$, ϵ ?
	262		104.45	1.054	$\alpha 6.0\%$ SF 33% $c \sim 3\%$
	263		100.55 107 4s	3434 27 + 10-7	SF $\approx 57\%$ $\alpha \approx 43\%$
	264		109.65	2131107	51 ~ 5770, 0.~ 1070
	265		110.7s		
	266		113.0s		
106 5	Gr 250	$(1/2_{\pm})$	106.85	0952	a > 80% SE < 20%
100 5	260	(1/2+) 0+	106.83	0.55 & 36 ms $\pm 9 = 6$	$\alpha = 50\%$, SF 50%
	261	U I	108.45	0.23×3	$\alpha > 90\%$ SF < 10%
	262	0+	108.65		
	263	0	110.5s	0.8 s <i>2</i>	SF \approx 70%. $\alpha \approx$ 30%
	264	0+	111.1s		· · · · , · · · · · ·
	265		113.1s	≈16 s	α , SF < 50%
	266	0+	114.0s	$\approx 20 s$	α , SF < 50%
107 N	Ns 260				α
_	261		113.4s	11.8 ms +53-28	$\alpha > 90\%$, SF < 10%
	262		114.7s	102 ms <i>26</i>	$\alpha \ge 80\%$, SF $\le 20\%$
	262m		115.0s	8.0 ms 21	$\alpha > 70\%$, SF < 30%
	263		114.9s		
	264		116.4s		
	265		116.8s		
	266		118.7s		
108 H	Is 263			<1 s	α
	264	0+	119.8	0.08 ms + 40 - 4	α , SF < 1.5%
	265		121.6s	1.8 ms +22-7	$\alpha \approx 100\%$, SF $\leq 9\%$
	266	0+	121.7s		
	267			60 ms +30-15	α

Isotope			Δ	Т½, Г, or		
Z	El	Α	Jπ	(MeV)	Abundance	Decay Mode
108	Hs	267			33 ms 17	
109	Mt	266 267		128.4s	3.4 ms +61-13	$\alpha \approx 100\%, \ SF \le 5.5\%$
		268			70 ms 65	α
110		267? 269 271 271 272	0+		≈3 µs 0.17 ms +16-6 1.1 ms +6-3 0.06 s +27-3 ≈8.6 ms	α α α SF
111		272			1.5 ms +20-5	α

	Z	El	Atomic Weight ^a	Density (g/cc) ^b	Melting Pt. (°C) ^b	Boiling Pt. (°C) ^b	Oxidation States ^b
	1 2	H He	1.00794 <i>7</i> 4.002602 <i>2</i>	$8.988 \times 10^{-5} d$ $1.785 \times 10^{-4} f$	-259.34	-252.87 -268.93	+1,-1 0
	-			111001110	(26 atm)	200100	Ū
	3	Li	6 941 2	0 534¢	180 5	1342	+1
	о Л	Re	9 012182 3	1 8480	1287	2471	+ 1 + 2
	•	DU	0.012102 0	1.010	1201	(5 mm)	. ~
	5	в	10 811 5	2 34h	2075	4000	+3
	0	D	10.011 0	2.01	2010	(subl.)	
,	6	С	12.011	1.8 to 2.1 i	≈3550	4827	+2.+44
	7	Ň	14.00674 7	0.0012506j	-210.00	-195.79	+1 +2 +3 +4
	•		11000011/			100000	+5123
;	8	0	15.9994 <i>3</i>	0.001429k	-218.79	-182.95	-2
1	9	F	18.9984032 5	0.001696	-219.62g	-188.12g	-1
	10	Ne	20.1797 6	8.9990×10^{-4}	-248.59	-246.0889	0
	11	Na	22.989770 <i>2</i>	0.971C	97.72	883	+1
	12	Mø	24.3050 6	1.738 ^c	650	1090	+2
	13	Al	26.981539.5	2.6989C	660.32	2519	+2
	14	Si	28.0855.3	2.33e	1414	3265	+2 +4 -4
	15	P	30 973761 2	1 82l	44 15l	277l	+3 +5 -3
	16	S	32 066 6	2 07cm	115 21m	244 60	+0,+0,-2
	17	CL	35 4527 9	0.003214	-101 5	-34 04	$+1,+0, \approx$ +1 +5 +7 -1
	18	Δr	39 948	0.000211	_189.35	_185 85	0
	10	K	30,0083	0.0017007	63 38	750	∪ ⊥1
	20	Ca	10 078 <i>1</i>	1 550	842	1/8/	+ 1 ⊥9
	~ U 9 1	Ca Sc	40.070 4 11 055010 8	2 080e	15/1	2830	+~ ⊥3
	~ I 9 9	ы Ті	44.955510 0	2.909° 1 51	1668	2287	+3
	~~ 92	V	47.007	4.J4 6 11	1000	3207	+2,+3,+4
	23	v	30.9413	$(18.7 \circ C)$	1910	3407	+2,+3,+4,+3
	21	Cr	51 0061 <i>6</i>	7 18 to 7 20 C	1907	2671	+2 +3 +6
	~4 95	UI Mn	51.9901 0	7.10 to 7.20°	1907	2071	+2,+3,+0
	25 26	Fo	55 845 2	7 8740	1528	2861	+2,+3,+4,+7
	~U 97	Co	59 022200 0	7.074° 9.00	1330	2007	+2,+3
	~ 1 9 Q	CU Ni	58 6031 2	0.9° 8 0026	1455	2012	+2,+3
	~0 20		50.0954 2 62 546 2	8.902	1433	2562	+2,+3
	29 20	Cu 7n	03.340 3	0.90° 7 1996	1004.02	2302	+1,+2
	3U 91		00.39 <i>2</i>	7.1330	419.33	907	+2
	51	Ga	09.723	$(20 \ e^{\circ}C)$	29.70	2204	+3
	ეე	C	7961 9	(29.0 C) 5 2228	028 25	9099	.9.1
	ა <i>გ</i> ეე	Ge	74.09160 9	5.525	930.23	2033	+2,+4
	აა	AS	74.92100 2	5.750	$\frac{01}{0}$	(aubl)	+3,+3,-3
	91	5.	79 06 2	4 70D	(20 atm) 9910	(SUDI.)	. 4 . 6 9
	34 95	Se D	70.90 3	4.79P	2218	00JP 50 70	+4,+0,-2
	30 96	Dľ V m	79.904	3.12ª	-1.2	JO./O 152.99	+1, +3, -1
	30 97	ЛГ DL	03.0U 05 4070 2	0.003733	-137.30	-133.22	U . 1
	37 90	KD C-	0J.40/8 J 07 69	1.3320	39.31 777	UOO 1909	+1
	38 00	5r V	01.02	۵.34 ۸ ۸۵۵۹	1 []]	1382	+ 2
	39	ľ 7	00.90505 Z	4.409	1320	333b 4400	+ 5
	4U		91.224 Z	0.300	1000	4409	+4
	41		92.90038 Z	0.0/ ^v	24// 2022	4/44	+3,+3
	42		93.94 (09)	10.22 11 Fot	2023	4039	+0
	43		(98) 101 07 0	11.30 ^c	2137	4200	+4,+0,+/
	44	κu	101.07 2	12.41	2004	4130	+ 3

Z	El	Atomic Weight ^a	Density (g/cc) ^b	Melting Pt. (°C) ^b	Boiling Pt. (°C) ^b	Oxidation States ^b
45	Rh	102.90550 <i>2</i>	12.41 ^c	1964	3695	+3
46	Pd	106.42	12.02 ^c	1554.9	2963	+2,+4
47	Ag	107.8682 <i>2</i>	10.50c	961.78	2162	+1
48	Cd	112.411 8	8.65c	321.07	767	+2
49	In	114.818 <i>3</i>	7.31 ^c	156.60	2072	+3
50	Sn	118.710 7	5.759	231.93	2602	+2, +4
51	Sb	121.760	6.691 ^c	630.63	1587	+3, +5, -3
52	Te	127.60 <i>3</i>	6.24 ^c	449.51	988	+4, +6, -2
53	Ι	126.90447 <i>3</i>	4.93V	113.7	184.4	+1, +5, +7, -1
54	Xe	131.29 <i>2</i>	0.005887	-111.75	-108.04	0
55	Cs	132.90545 2	1.873 ^c	28.44	671	+1
56	Ba	137.327 7	3.5 ^c	727	1897	+2
57	La	138.9055 <i>2</i>	6.145e	920	3455	+3
58	Се	140.115 <i>4</i>	6.770e	799	3424	+3, +4
59	Pr	140.90765 <i>2</i>	6.773r	931	3510	+3
			6.64 ^s			
60	Nd	144.24 <i>3</i>	7.008	1016	3066	+3
61	Рm	(145)	7.264e	1042	3000	+3
62	Sm	150.36 <i>3</i>	7.520r	1072	1790	+2,+3
			7.40 ^s			
63	Eu	151.965 <i>9</i>	5.244e	822	1596	+2, +3
64	Gd	157.25 <i>3</i>	7.901e	1314	3264	+3
65	Тb	158.92534 <i>2</i>	8.230	1359	3221	+3
66	Dy	162.50 <i>3</i>	8.551e	1411	2561	+3
67	Ho	164.93032 <i>2</i>	8.795e	1472	2694	+3
68	Er	167.26 3	9.066e	1529	2862	+3
69 20	Tm	168.93421 <i>2</i>	9.321e	1545	1946	+3
70	Yb	173.04 3	6.903r	824	1194	+2,+3
~ 1	т	171007	6.9668	1000		0
71		174.967	9.841e	1663	3393	+3
12	HI T	178.49 2	13.310	2233	4603	+4
13		180.9479		3017	5458	+5
74	W Do	183.84	19.30	3422	0000 5500	+0
75	ке	100.207	21.020	3180	5590	+4,+0,+7
76	Oc	100 22 2	99 57	2022	(est.) 5012	. 2 . 1
70	US Ir	190.23 3	22.07 99 19	3033	JUI2 1198	+3,+4
11	11	192.217 3	$(17 \circ C)$	2440	4420	+3,+4
78	Рt	195 08 3	(17 C) 21 45C	1768 /	3825	±9 ±1
79	1 ι Δ 11	196 96655 2	~19 30	1064 18	2856	+~,+4 +1 +3
80	на На	200 59 <i>2</i>	~13.5* 13.546C	-38.83	256 73	+1,+5 +1 +2
81		200.33 2	11 850	304	1473	+1,+2
82	Ph	207.2	11 350	304	1749	+1,+3 +2 +4
83	Bi	208.98038 2	9.747 ^c	271.40	1564	+3.+5
84	Po	(209)	9.32r	254		+2.+4
85	At	(210)		302		
86	Rn	(222)	0.00973	-71	-61.7	0
87	Fr	(223)		27		+1
88	Ra	(226)	5?	700		+2
89	Ac	(227)	10.07 ^t	1051	3198	+3
90	Th	232.03805 2	11.72	1750	4788	+4

Z El	Atomic Weight ^a	Density (g/cc) ^b	Melting Pt. (°C) ^b	Boiling Pt. (°C) ^b	Oxidation States ^b
91 Pa	(231)	15.37 ^t	1572		+4, +5
92 U	238.0289	≈18.95	1135	4131	+3, +4, +5, +6
93 Np	(237)	20.25c	644	3902	+3, +4, +5, +6
				(est.)	
94 Pu	(244)	19.84e	640	3228	+3, +4, +5, +6
95 Am	(243)	13.67 ^c	1176		+3, +4, +5, +6
96 Cm	(247)	13.51 ^t	1345		+3
97 Bk	(247)	14	1050		+3,+4
		(est.)			
98 Cf	(251)		900		+3
99 Es	(252)		860		+3
100Fm	(257)		1527		+3
101Md	(258)		827		+2, +3
102No	(259)		827		+2, +3
103Lr	(261)		1627		+3

Footnotes and References

a) Atomic weights of many elements are not invariant and depend on the origin and treatment of the material. The values given here apply to elements as they exist naturally on earth and are from N. E. Holden, *Handbook of Chemistry and Physics*, 76th edition, 1995. Uncertainty is 1 in last significant figure unless expressly given.

Masses are scaled to 12 for ¹²C.

Parenthetical whole numbers represent the mass numbers (A) of the longest lived isotopes for radioactive elements.

Isotopic masses (and more precise atomic weights for some monoisotopic elements) may be calculated as A+($\Delta/931.494$), where A is the mass number and Δ is the mass excess as given in the *Nuclear Wallet Cards*.

- b) C.R. Hammond, in CRC Handbook of Chemistry and Physics, 75th edition, 1994, 4-1, 4-122. Where specified, exact temperature and pressure conditions are given; the conditions for all gases have been inferred to be 0 °C and 1 atm. The densities for the following gaseous elements are for diatomic molecules: H, N, O, F, Cl. In general, densities for gases (in g/cc) may be approximated by the formula: density=MP/82.05T, where M is the molecular weight in g, P the pressure in atm, and T the temperature in °K. The reported oxidation states do not include some uncommon states, or those states predicted by periodicity, but not confirmed chemically.
- c) At 20 °C.
- d) For gas; density (liquid)=0.0708 g/cc at b.p.; density (solid)=0.0706 g/cc at -262 °C.
- f) For gas; density (liquid)=0.1221 g/cc at b.p.
- e) At 25 °C.

- f) For gas; density (liquid)=1.221 g/cc at b.p.
- g) At 1 atm.
- h) For crystal form; density (amorphous)=2.37 g/cc.
- i) For amorphous carbon; density (graphite)=1.9 to 2.3 g/cc; density (gem diamond)=3.513 g/cc at 25 °C; density (other diamond)=3.15 to 3.53 g/cc.
- j) For gas; density (liquid) = 0.808 g/cc at b.p.; density (solid)=1.026 g/cc at -252 °C.
- k) For gas; density (liquid)=1.14 g/cc at b.p.
- For white phosphorus; density (red) = 2.20 g/cc; density (black)=2.25 to 2.69 g/cc.
- m) For rhombic sulfur; melting point (monoclinic)=119.0 °C; density (monoclinic)=1.957 g/cc at 20 °C.
- n) Depending on allotropic form.
- o) For gray arsenic; density (yellow)=1.97 g/cc.
- p) For gray selenium; density (vitreous)=4.28 g/cc.
- q) For gray tin; density (white)=7.13 g/cc.
- r) For α modification.
- s) For β modification.
- t) Calculated.
- u) For liquid at 20 °C; 0.00759 g/cc for gas.
- v) For solid at 20 $\,^{\circ}C;\,0.01127$ g/cc for gas.

Appendix-II Frequently-Used Constants

The frequently used constants are given below in familiar units. Only approximate values are given, see App-III for values to current known precision

Symbol	Constant	Value			
$1/\alpha = \hbar c/e^2$	Fine structure constant	137.0			
С	Speed of light in vacuum	2.998×10 ¹⁰ cm/s			
$h = h/2\pi$ h c	Planck constant	6.626×10 ⁻²⁷ erg s 6.582×10 ⁻²² MeV s 197.3 MeV fm			
$k = R/N_A$	Boltzmann constant	8.617×10 ⁻¹¹ MeV/K			
$r_{e}^{}=e^{2}/m_{e}^{}c^{2}$	Classical e ⁻ radius	2.818 fm			
$\lambda_{C,e} = \hbar/m_e c$	Compton wavelength of e $^-$	386.2 fm			
$\lambda_{C,p} = \hbar/m_p c$	Compton wavelength of p	0.210 fm			
$\chi_{C,\pi} = \hbar/m_{\pi}c$	Compton wavelength of π	1.414 fm			
u	Atomic mass unit	931.5 MeV/c ²			
m _e	Electron mass	0.511 MeV/c ²			
m _n	Neutron mass	939.6 MeV/c ²			
m _p	Proton mass	938.3 MeV/c ²			
m _d	Deuteron mass	1875.6 MeV/c ²			
m_{π}^{\pm}	π^{\pm} mass	139.6 MeV/c ²			
${m_{\pi^\circ}}$	π^0 mass	135.0 MeV/c ²			
m _W	W^{\pm} boson mass	80.2 GeV/c ²			
m _z	Z ⁰ boson mass	91.2 GeV/c ²			
$\mu_{N} = \hbar e/2m_{p}c$	Nuclear magneton	$3.152 \times 10^{-18} \text{ MeV/Gauss}$			
μ _p	Proton magnetic moment	$2.793~\mu_N$			
μ _n	Neutron magnetic moment	1.913 μ _N			
$1 \text{ fm} = 10^{-13} \text{ cm}$	n 1 Å=10 ⁻⁸ cm	$\pi = 3.1416$			
1 barn=10 ⁻²⁴	cm^2 1 $eV/c^2=1.783 \times 10^{-3}$	³ g			
1 joule=10 ⁷ e	rg 1 coulomb=2.998×1	1 coulomb= 2.998×10^9 esu			
1 newton=10 ⁵	dyne 1 tesla=10 ⁴ gauss	1 tesla=10 ⁴ gauss			

App-II

Unless otherwise noted, the information presented in this table is from *The 1986 Adjustment of the Fundamental Physical Constants*^a. The constants are arranged alphabetically according to the symbols by which they are denoted. The numbers in *italics* are the one-standard-deviation uncertainty in the last digits of the values given. The unified atomic mass scale (${}^{12}C=12$) has been used throughout. Values are given for both SI and cgs units. In cgs units "permittivity of vacuum" μ_0 and "permeability of vacuum" ϵ_0 are dimensionless unit quantities; in SI units they have the values f

 $\begin{array}{l} \mu_0 = 4\pi \times 10^{-7} \ m \cdot kg \cdot s^{-2} \cdot A^{-2} = 4\pi \times 10^{-7} \ N \cdot A^{-2} = 4\pi \times 10^{-7} \ T \cdot A^{-1} \\ \epsilon_0 = 1/\mu_0 c^2 \end{array}$

The factor in square brackets given in the definition of a quantity is to be omitted to obtain the expression in cgs units f.

The following abbreviations are used:

```
A = ampere
C = coulomb
cm = centimeter
emu = electromagnetic unit
esu = electrostatic unit
G = gauss
g = gram
Hz = hertz = cycles/sec
J = joule
K = degree Kelvin
kg = kilogram
m = meter
mol = mole
N = newton
s = second
T = tesla
u = atomic mass unit (unified scale)
V = volt
W = watt
Wb = Weber
```

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs) ^b
	$a_0 = r_e / \alpha^2$	Bohr radius	5.29177249 24	10^{-11} m	10^{-9} cm
	$lpha = e^2/\hbar c [4\pi\epsilon_0]$ 1/ $lpha$	Fine structure constant	0.00729735308 <i>33</i> 137.0359895 <i>61</i>		
	с	Speed of light in vacuum	2.99792458 ^(e)	10^8 m s ⁻¹	10^{10} cm s ⁻¹
	$c_1 = 2\pi hc^2$	First radiation constant	3.7417749 22	10^{-16} W m ²	$10^{-5} \text{ erg cm}^2 \text{ s}^{-1}$
	c ₂ =hc/k	Second radiation constant	1.438769 12	$10^{-2} m K$	cm K
App-I	e	Elementary charge	4.8032068 <i>15</i> 1.60217733 <i>49</i>	10 ⁻¹⁰ esu 10 ⁻¹⁹ C	10 ⁻²⁰ emu
III-ii	2e/h	Josephson frequency-voltage ratio	4.8359767 14	10^{14} Hz V ⁻¹	
	-e/m _e	Electron specific charge	1.75881962 <i>53</i>	10^{11} C kg ⁻¹	10 ⁷ emu g ⁻¹
	$F = N_A e$	Faraday constant	9.6485309 29	10^4 C mol ⁻¹	10 ³ emu mol ⁻¹
	$\gamma_{\mathbf{p}}$	Gyromagnetic ratio of proton	2.67522128 81	$10^8 \text{ s}^{-1} \text{ T}^{-1}$	$10^4 \ s^{-1} \ G^{-1}$
	$\gamma_{\mathbf{p}}'$	Gyromagnetic ratio of proton (uncorrected for diamagnetism of H ₂ O)	2.67515255 81	$10^8 \text{ s}^{-1} \text{ T}^{-1}$	$10^4 \ s^{-1} \ G^{-1}$
	G	Gravitational constant	6.67259 <i>85</i>	$10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$	$10^{-8} \text{ cm}^{-3} \text{ g}^{-1} \text{ s}^{-2}$

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs) ^b
	h	Planck constant	6.6260755 40	10^{-34} J s	$10^{-27} erg s$
	$\hbar = h/2\pi$		1.05457266 63	10^{-34} J s	10 ⁻²⁷ erg s
	hc/(2e[c])	Quantum of magnetic flux	2.06783461 61	$10^{-15} { m Wb}$	10^{-7} G cm ²
	$k = R/N_A$	Boltzmann costant	1.380658 12	10^{-23} J K $^{-1}$	10^{-16} erg K $^{-1}$
	$\lambda_{C,e} = h/m_e c$	Compton wavelength of electron	2.42631058 22	$10^{-12} m$	$10^{-10} { m ~cm}$
A	$\lambda_{C,p} = h/m_p c$	Compton wavelength of proton	1.32141002 12	$10^{-15} m$	10 ⁻¹³ cm
pp-I	$\lambda_{C,n} = h/m_n c$	Compton wavelength of neutron	1.31959110 <i>12</i>	$10^{-15} m$	10 ⁻¹³ cm
II-ii	m _e	Electron mass	5.48579903 <i>13</i>	10^{-4} u	10^{-4} u
	m _H	Mass of hydrogen atom	1.007825032 1 ^(c)	u	u
	m_{μ}	Muon mass	0.113428913 17	u	u
	m _n	Neutron mass	1.008664904 14	u	u
	m _p	Proton mass	1.007276470 12	u	u
	$m_{\pi\pm}$	π^{\pm} mass	0.1498345 4 ^(d)	u	u
	$m_{\pi 0}$	π^0 mass	0.144903 6 ^(d)	u	u

	Symbol	Constant	Value	Units (SI) ^b	Units (cgs) ^b
	$\mu_B = [c]e\hbar/2m_ec$	Bohr magneton	9.2740154 31	10^{-24} J T $^{-1}$	10^{-21} erg G $^{-1}$
	μ_e/μ_B	Magnetic moment of electron	1.001159652193 <i>10</i>		
	μ_{μ}	Muon magnetic moment	4.4904514 15	10^{-26} J T $^{-1}$	10^{-23} erg Gs ⁻¹
	$\mu_N = [c]e\hbar/2m_pc$	Nuclear magneton	5.0507866 17	10^{-27} J T $^{-1}$	10^{-24} erg G $^{-1}$
	N _A	Avogadro constant	6.0221367 36	10 ²³ mol ⁻¹	10 ²³ mol ⁻¹
А	R	Molar gas constant	8.314510 70	$J mol^{-1} K^{-1}$	$10^{7} \text{ erg mol}^{-1} \text{ K}^{-1}$
pp-III-iv	$R_{\infty} = m_e c \alpha^2 / 2 h$	Rydberg constant for infinite mass	1.0973731534 <i>13</i>	$10^{7} m^{-1}$	10^5 cm^{-1}
	$r_e = \hbar \alpha / m_e c$	Classical e ⁻ radius	2.81794092 38	10^{-15} m	10 ⁻¹³ cm
	$\sigma = (\pi^2/60)k^4/\hbar^3c^2$	Stefan-Boltzmann constant	5.67051 19	10^{-8} W m ⁻² K ⁻⁴ erg cm ⁻² s ⁻¹ K ⁻⁴	10 ⁻⁵
	$u = 1/N_A$	Atomic mass unit	1.6605402 <i>10</i> 931.49432 <i>28</i>	10 ⁻²⁷ kg MeV	10 ⁻²⁴ g

1 year (sidereal) = 365.25636 days = 3.1558150×10^7 s, 1 year (tropical) = 3.15569×10^7 s

- a) E. R. Cohen and B. N. Taylor, *Rev. Mod. Phys.* 59, 1121(1987); *CODATA* Bulletin #63, Nov., 1986; *Physics Today*, August 1995, Part 2, BG9
- b) Quantities are given in the International System of Units (SI) except for the atomic mass unit; this unit is not part of the SI.
- c) The 1993 Atomic Mass Evaluation, G. Audi and A. H. Wapstra, *Nuclear Physics* A565, 1 (1993)
- d) Review of Particle Properties, Particle Data Group, *Phys. Rev*, D50, 1173 (1994)
- e) Speed of light in vacuum is now an exact constant as a result of redefinition of meter [P. Giacomo, *Metrologia* 20, 25 (1984)].
- f) General Section by H. L. Anderson and E. R. Cohen in A Physicist's Desk Reference, H. L. Anderson, Editor-in-Chief, AIP, New York (1989)

	units	erg	eV	s^{-1}	cm^{-1}
-	erg	1.0	1.60217733 49×10 ⁻¹²	$6.6260755 \ 40 \times 10^{-27}$	1.9864475 12×10 ⁻¹⁶
	eV	6.2415064 <i>19</i> ×10 ¹¹	1.0	4.1356692 12×10 ⁻¹⁵	1.23984244 37×10 ⁻⁴
	s ⁻¹	1.50918897 <i>90</i> ×10 ²⁶	2.41798836 72×10 ¹⁴	1.0	$2.99792458 \times 10^{10}$
	cm ⁻¹	5.0341125 <i>30</i> ×10 ¹⁵	8.0655410 24×10 ³	$3.335640952 \times 10^{-11}$	1.0
	deg K	7.242924 61×10 ¹⁵	1.160445 <i>10</i> ×10 ⁴	4.799216 41×10 ⁻¹¹	1.438769 12
	g	$1.11265006 \times 10^{-21}$	1.78266270 <i>54</i> ×10 ⁻³³	7.3725032 44×10^{-48}	2.2102209 13×10 ⁻³⁷
Ap	u	6.7005308 40×10 ²	1.07354385 <i>33</i> ×10 ⁻⁹	4.43982224 40×10 ⁻²⁴	1.33102522 <i>12</i> ×10 ⁻¹³
p-IV-		(1 cal = 4.1840 J, 1 J	$= 10^7 \text{ erg}$)		
<u> </u>					

Appendix-IV Energy-Equivalent Factors†

Note: In the above table all entries in the same column are equivalent. The various units of energy are connected as follows:

1 erg = $1/c^2$ g = $1/(mc^2)$ u = 1/(hc) cm⁻¹ = 1/h s⁻¹ = 1/k ⁰K = 1/e eV

Examples: 1 eV = $1.602..\times 10^{-12}$ erg = $1.073..\times 10^{-9}$ u= $3.829..\times 10^{-20}$ cal e/h = $2.417..\times 10^{14}$ s⁻¹, e/(hc) = $8.0654..\times 10^{3}$ cm⁻¹ e/c² = $1.782..\times 10^{-33}$ g, e/mc² = $1.073..\times 10^{-9}$ u e/k = $1.160..\times 10^{4}$ deg K

	units	deg K	g	u	
	erg	1.380658 12×10 ⁻¹⁶	8.987551787×10 ²⁰	1.49241909 <i>88</i> ×10 ⁻³	
	eV	8.617385 73×10 ⁻⁵	5.6095862 17×10 ³²	9.3149432 <i>28</i> ×10 ⁸	
	s ⁻¹	2.083674 18×10 ¹⁰	1.35639140 <i>81</i> ×10 ⁴⁷	2.25234242 <i>40</i> ×10 ²³	
	cm ⁻¹	$6.950387 \ 59 \times 10^{-1}$	4.5244347 <i>27</i> ×10 ³⁶	7.51300563 <i>69</i> ×10 ¹²	
	deg K	1.0	6.509616 55×10 ³⁶	1.0809478 91×10 ¹³	
	g	1.536189 <i>13</i> ×10 ⁻³⁷	1.0	1.6605402 <i>10</i> ×10 ⁻²⁴	
ApJ	u	9.251140 78×10 ⁻¹⁴	6.0221367 <i>36</i> ×10 ²³	1.0	
9-IV-ii	Note	: In the above table all e	entries in the same colun	nn are equivalent.	

Appendix-IV Energy-Equivalent Factors†

Example: $1u \equiv 1.492..\times 10^{-3} \text{ erg} = 9.314..\times 10^{8} \text{ eV} = 3.567..\times 10^{-11} \text{ cal, etc.}$

† From 1986 Fundamental Constants, E.R. Cohhen and B.N. Taylor, Rev. Mod. Physics 59, 1121 (1987); CODATA Bulletin #63 (Nov. 1986); Physics Today, August 1995, Part 2, BG9.

	Appendix-V Observed A Hypernuclides†								
El	Α	J(g.s.)	B _Λ (g.s.) [*] (MeV)	Excited (bound) states (E or B_A^*) (MeV)					
Н	3	1/2	0.13 5						
	4	0	2.04 4	E=1.05 4					
He	4	0	2.39 <i>3</i>	E=1.15 4					
	5	1/2	3.12 <i>2</i>						
	6	(1)	4.18 10						
	8		7.16 70						
Li	6	(1/0)	4.50						
	/ 0	(1/2)	5.58 3	E=2.034 23					
	0 9	1	0.80 <i>3</i> 8.50 <i>12</i>						
R۵	7	1/9	5 16 8						
БС	8	1/2	6.84 <i>5</i>						
	9	1/2	6.71 4	$B_{a}^{b}=3.0\ 3.0.5\ 5$					
	10		9.11 22	Λ					
В	9		8.29 18						
	10		8.89 12						
	11	5/2	10.24 5						
	12	1	11.37 6						
С	12	1	10.76 19	$E^{e} = 2.58 \ 17,6.89 \ 42,10.68 \ 12$					
	13	1/2	11.69 12	$E^{cu}=4.4,10.4$					
	14		12.17 33						
N	14		12.17	$E = 10.5^{u}$					
0	10		13.39 <i>13</i>						
0	10		$12.5^{6} 4$	$B_A = 6.6 \ 2, 2.74 \ 13$ E_{-12d}					
. 1	10		14.5						
AI	27		17.5°	$B_{\Lambda} = 9^{\alpha}$					
51	28		16.0° 3	$B_{\Lambda}^{\ \ }=12.74, 6.41, 3.35$					
S	32		17.5 5	$B_{\Lambda} = 6^{\alpha}$					
Ca	40		18.7 ^b 11	$B_{\Lambda}^{D} = 15.8 \ 8, 12.6 \ 7, 10.4 \ 3, 7.6 \ 3, 4.8 \ 2, 2.0 \ 2$					
V	51		20 ^b 2	$B_{\Lambda}^{\ b} = 17 \ 3, 14.2 \ 6, 11.6 \ 7, \\ 8.0 \ 8, 5.0 \ 3, 1.5 \ 8$					
Fe	56		21						
Y	89		22 ^b 2	$B_{\Lambda}^{b} = 15.2 \ 2, 8.7 \ 1, 2.3 \ 1$					
Bi	209		23.5 ^a						

†From H. Bando, T. Motoba, and J. Zofka Int. J. Mod. Phys. A5, 4021 (1990), except where indicated otherwise. * A binding energy a Theoretical value b From (π^+, K^+) – R. Chrien, BNL, Priv. Comm. (1990) c From (π^+, K^+) d From (K^-, π^-) e From (π^+, K^+) – T. Hasegawa, et al., Phys. Rev. Lett. 74, 224 (1995)

Appendix-VIa Periodic Table of Elements

IA	IIA	IIIB	IVB	VB	VIB	VIIE		VIII		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
H 1																	He 2
Li 3	Be 4											В 5	C 6	N 7	O 8	F 9	Ne 10
Na 11	Mg 12											Al 13	Si 14	P 15	S 16	Cl 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	N b 4 1	Mo 42	Тс 43	Ru 44	Rh 45	Pd 46	Ag 47	C d 48	In 49	Sn 50	Sb 51	Те 52	I 53	Xe 54
C s 5 5	Ва 56	* 57-	Hf 72	Та 73	W 74	Re 75	Os 76	Ir 77	Pt 78	Au 79	Hg 80	Tl 81	Рb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88	** 89-	Rf 104	Ha 105	Sg 106	Ns 107	Hs 108	Mt 109									
*	La 57	C e 5 8	Pr 59	N d 60	Рт 61	Sm 62	Eu 63	Gd 64	T b 6 5	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71	Lant	thanides
* *	Ac 89	Th 90	Ра 91	U 92	Nр 93	Pu 94	Am 95	C m 96	Bk 97	Cf 98	Es 99	Fm 100	M d 101	No 102	Lr 103	Acti	nides

Appendix-VI Name	b List Sym	of E	lements – Alpha Name	abetic _{Sym}	al Z
Actinium	Ac	89	Mercurv	Hg	80
Aluminum	Al	13	Molybdenum	Mo	42
Americium	Am	95	Neodymium	Nd	60
Antimony	Sb	51	Neon	Ne	10
Argon	Ar	18	Neptunium	Np	93
Arsenic	As	33	Nickel	Ni	28
Astatine	At	85	Nielsbohrium	Ns	107
Barium	Ba	56	Niobium	Nb	41
Berkelium	Bk	97	Nitrogen	N	7
Bervllium	Be	4	Nobelium	No	102
Bismuth	Bi	83	Osmium	Os	76
Boron	B	5	Oxygen	0	8
Bromine	Br	35	Palladium	Pd	46
Cadmium	Cd	48	Phosphorus	P	15
Calcium	Ca	20	Platinum	Pt	78
Californium	Cf	98	Plutonium	Pu	94
Carbon	C	6	Polonium	Po	84
Cerium	Ce	58	Potassium	K	19
Cesium	Cs	55	Praseodymium	Pr	59
Chlorine	Cl	17	Promethium	Pm	61
Chromium	Cr	24	Protactinium	Pa	91
Cobalt	Co	27	Radium	Ra	88
Copper	Cu	29	Radon	Rn	86
Curium	Cm	96	Rhenium	Re	75
Dysprosium	Dv	66	Rhodium	Rh	45
Einsteinium	Es	99	Rubidium	Rb	37
Erbium	Er	68	Ruthenium	Ru	44
Europium	Eu	63	Rutherfordium	Rf	104
Fermium	Fm	100	Samarium	Sm	62
Fluorine	F	9	Scandium	Sc	21
Francium	Fr	87	Selenium	Se	34
Gadolinium	Gd	64	Seaborgium	Sø	106
Gallium	Ga	31	Silicon	Si	14
Germanium	Ge	32	Silver	Aø	47
Gold	Au	79	Sodium	Na	11
Hafnium	Hf	72	Strontium	Sr	38
Hahnium	На	105	Sulfur	S	16
Hassium	Hs	108	Tantalum	Та	73
Helium	He	2	Technetium	Тс	43
Holmium	Но	67	Tellurium	Te	52
Hvdrogen	Н	1	Terbium	Tb	65
Indium	In	49	Thallium	Tl	81
Iodine	I	53	Thorium	Th	90
Iridium	Īr	77	Thulium	Tm	69
Iron	Fe	26	Tin	Sn	50
Krypton	Kr	36	Titanium	Ti	22
Lanthanum	La	57	Tungsten	W	74
Lawrencium	Lr	103	Uranium	U	92
Lead	Pb	82	Vanadium	V	23
Lithium	Li	3	Xenon	Xe	54
Lutetium	Lu	71	Ytterbium	Yb	70
Magnesium	Mø	12	Yttrium	Ŷ	39
Manganese	Mn	25	Zinc	Zn	30
Meitnerium	Mt	109	Zirconium	Zr	40
Mendelevium	Md	101			-
		App-	VI-ii		

Appendix-VIc List of Elements - by Z m Name Z Sym Name

Ζ	Sym	Name
1	Н	Hydrogen
2	He	Helium
3	Li	Lithium
4	Be	Beryllium
5	В	Boron
6	С	Carbon
7	Ν	Nitrogen
8	0	Oxygen
9	F	Fluorine
10	Ne	Neon
11	Na	Sodium
12	Mg	Magnesium
13	Aľ	Aluminum
14	Si	Silicon
15	Р	Phosphorus
16	S	Sulfur
17	Cl	Chlorine
18	Ar	Argon
19	K	Potassium
20	Ca	Calcium
21	Sc	Scandium
22	Ti	Titanium
23	V	Vanadium
24	Cr	Chromium
25	Mn	Manganese
26	Fe	Iron
27		Cobalt
28	Ni	Nickel
29	Cu	Conner
30	Zn	Zinc
31	Ga	Gallium
32	Ge	Germanium
32 33		Arsonic
34	Se	Selenium
35	Br	Bromine
36	bi Kr	Krynton
37	Rh	Ruhidium
30	KD Sr	Strontium
30	v	Vttrium
10	1 7r	7irconium
40	Nh	Niohium
41	Mo	Molyhdonum
42	Tc	Tochnotium
43	Ru	Ruthanium
44	Ru Dh	Phodium
4J 16	RII Dd	Rolladium
40	Pu A a	Fallaululli Silven
47	Ag Cd	Codmium
40	Cu In	Indium
49 50	III Sr	Tin
50 51	511 6 k	1 III Antimony
51 59	сы Т∽	Antimony
じん 5.9	те	Ienurium
55	I Va	Vonor
54 57	ле	Aenon
22	US	Cesium

	Sym	rume
56	Ba	Barium
57	La	Lanthanum
58	Ce	Cerium
59	Pr	Praseodymium
60	Nd	Neodymium
61	Pm	Promethium
62	Sm	Samarium
63	Eu	Euronium
64	Gd	Gadolinium
65	Th	Terhium
66	Dv	Dysprosium
67	Ho	Holmium
68	Fr	Frhium
69	Tm	Thulium
70	Vh	Vttarhium
71	ID In	Lutatium
79	Lu Цf	Hafnium
72	111 Та	Tantalum
71	I A W	Tungston
75		Dhonium
76	Ne Oc	Osmium
70		Ushinuni
70	11 D+	Distinum
70		
19	Au IIa	Golu Manaunu
0U 01	пg ті	Thelline
01		
82	PD D:	
83	BI D-	Bismuth
84	PO	Polonium
85	At	Astatine
80	кn Г	Radon
8/	Fr	Francium
88	ка	Radium
89	Ac	Actinium
90	Th	Thorium
91	Ра	Protactinium
92	U	Uranium
93	Np	Neptunium
94	Pu	Plutonium
95	Am	Americium
96	Cm	Curium
97	Bk	Berkelium
98	Cf	Californium
99	Es	Einsteinium
100	Fm	Fermium
101	Md	Mendelevium
102	No	Nobelium
103	Lr	Lawrencium
104	Rf	Rutherfordium
105	На	Hahnium
106	Sg	Seaborgium
107	Ns	Nielsbohrium
108	Hs	Hassium
109	Mt	Meitnerium

App-VI-iii

Appendix-VII International Nuclear Structure and Decay Data Network

International At. Energy Agency-Nuclear Data Section Wagramerstr. 5, P.O. Box 100 A-1400 Vienna, Austria **Contact: H. D. Lemmel**

National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973, USA **Contact: M. R. Bhat**

Nuclear Data Project Oak Ridge National Laboratory Oak Ridge, TN 37831, USA **Contact: M. J. Martin**

Isotopes Project Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA **Contact: J. M. Dairiki**

Idaho National Engineering Laboratory E. G. and G. Idaho, Inc. P.O. Box 1625 Idaho Falls, ID 83415, USA **Contact: R. G. Helmer**

TUNL Nuclear Data Evaluation Project, Triangle Universities Nuclear Laboratory P.O. Box 90308, Durham, NC 27708-0308 **Contact: D. R. Tilley**

Center for Nuclear Information Technology, Dept. of Chemistry San Jose State University San Jose, CA 95192-0101 **Contact: C. A. Stone**

Center for Nuclear Structure and Reaction Data Kurchatov Inst. of At. En. 46 Ulitsa Kurchatov 123 182 Moscow, Russia **Contact: F. E. Chukreev**

Nuclear Data Centre St. Petersburg Nucl. Phys. Inst. Gatchina, Leningrad Region 188 350, Russia **Contact: I. Kondurov** Fysisch Laboratorium Princetonplein 5, Postbus 80.000 3508 TA Utrecht, The Netherlands **Contact: C. van der Leun**

Centre d'Etudes Nucleaires DRF-SPH Cedex No. 85 F-38041 Grenoble Cedex, France **Contact: J. Blachot**

Nuclear Data Center Tokai Research Establishment JAERI Tokai-Mura, Naka-Gun Ibaraki-Ken 319-11, Japan **Contact: Y. Kikuchi**

Department of Physics University of Lund Sölvegatan 14 S-223 62 Lund, Sweden **Contact: P. Ekström**

Nuclear Data Project Kuwait Institute for Scientific Research P.O. Box 24885 Kuwait, Kuwait **Contact: A. Farhan**

Laboratorium voor Kernfysica Proeftuinstraat 86 B–9000 Gent, Belgium **Contact: D. De Frenne**

Tandem Accelerator Laboratory McMaster University Hamilton, Ontario L8S 4K1 Canada

Contact: J. A. Kuehner

Institute of Atomic Energy P.O. Box 275 (41), Beijing People's Republic of China **Contact: Zhang, Zingshang**

Department of Physics Jilin University, Changchun People's Republic of China **Contact: Huo, Junde**

Appendix-VIII The Nuclear Data Centers Network

National Nuclear Data Center Brookhaven National Laboratory Bldg. 197D P.O. Box 5000 Upton, NY 11973-5000, USA **Contact: C. L. Dunford**

OECD Nuclear Energy Agency-Data Bank Le Seine Saint-Germain 12 Boulevard des Iles 92130 Issy-les-Moulineaux France **Contact: N. Tubbs**

International Atomic Energy Agency– Nuclear Data Section Wagramerstr. 5, P.O. Box 100 A-1400 Vienna, Austria **Contact: P. Oblozinsky**

Federal Research Center IPPE Centr Jadernykh Dannykh Ploshchad Bondarenko 249 020 Obninsk, Kaluga Region Russia

Contact: V. N. Manokhin

Kurchatov Institute Russia Nuclear Center 46 Ulitsa Kurchatova 123182 Moscow, Russia **Contact: F. E. Chukreev**

Institute of Nuclear Physics Moscow State University Vorob'evy Gory 119899 Moscow, Russia **Contact: V. V. Varlamov**

China Nuclear Data Center China Institute of Atomic Energy P.O. Box 275 (41) Beijing 102413, People's Republic of China **Contact: Zhang, Jingshang**

Japan Atomic Energy Research Institute– Nuclear Data Center 2–4 Shirakata Shirane Tokai–mura, Naka–gun Ibaraki–ken 319–11, Japan **Contact: Y. Kikuchi** RIKEN Nuclear Data Group RIKEN Hirosawa 2-1 Wako-shi Saitama 351-01, Japan **Contact: Y. Tendow**

Japan Charged-Particle Nuclear Reaction Data Group Department of Physics Hokkaido University Kita-10 Nishi-8, Kita-ku Sapporo 060, Japan **Contact: K. Kato**

ATOMKI Charged-Particle Nuclear Reaction Data Group ATOMKI, Inst of Nuclear Research of the Hungarian Academy of Sciences Bem ter 18/c, P.O. Box 51 H-4001 Debrecen, Hungary **Contact: F. T. Tarkanyi**

Electronic Nuclear Data Access

Introduction

The National Nuclear Data Center (NNDC) and some other members of the International Nuclear Structure and Decay Data Network (See Appendix VII) and the Nuclear Data Centers Network (See Appendix VIII) provide electronic access to many of the bibliographic and numeric data bases maintained by members of these groups. Access is available by anonymous FTP, terminal (TCP/IP TELNET, DECNET SET HOST, and modem), and the World Wide Web (WWW). Some data bases or programs also are available on CD-ROM and floppy diskettes.

The contents of these various services are changing and growing continually as are the methods of accessing them. Most of the WWW home pages listed below contain current links. If you have problems or questions, please contact the NNDC at **services@bnlnd2.dne.bnl.gov**.

The data bases and other services maintained by the NNDC, the International Atomic Energy Agency Nuclear Data Section (IAEA NDS), and the OECD Nuclear Energy Agency Data Bank (NEADB) are listed starting on page *ii* followed by the methods of electronic access to these centers. Other members of the International Nuclear Structure and Decay Data Network providing electronic access are listed in alphabetical order starting on page *vi*. Sites for members of other networks providing electronic access are given on the NNDC WWW home page; other WWW sites of interest may be found on most of the home pages listed below.

An abridged, modified set of definitions of terms, acronyms, and abbreviations starts on page *viii*. The original source is

Electronic Nuclear Data Access - i

available on the Lund Nuclear Data Services (University of Lund, Sweden) WWW home page. Information on access to the Directory of Nuclear Physics Laboratories and to the DOE's Division of Nuclear Physics is also included on page *xii*.

Data Bases and Services at the NNDC, the IAEA NDS, and the OECD NEADB

The NNDC, NDS, and NEADB mirror the information available at these three centers although there are some differences in the contents and version dates of the data bases. Current major systems common to the three systems are listed below. The centers providing access to this information in various formats are shown in the square brackets following the definitions.

CINDA (Computer Index of Neutron Data)—Bibliographic references to data on neutron reactions. [NDS, NEADB, NNDC]

CODES—Includes ENDF pre-processing and utility codes and ENSDF analysis and checking codes. [NDS, NNDC]

CSISRS (Cross Section Information Storage and Retrieval System)—Experimental data on nuclear reactions, along with descriptions. This also is known as EXFOR (Exchange Format). [NDS, NEADB, NNDC]

DOCUMENTATION—Includes the NNDC (NDS) On-line Data Service Manual [NDS, NNDC]and the *Evaluated Nu*clear Structure *Data File* Manual [NDS, NEADB, NNDC].

ENDF (*E*valuated *N*uclear *D*ata *F*ile)—Evaluated data on nuclear reactions and decays. [NDS, NEADB (EVA, JEF), NNDC]

Electronic Nuclear Data Access - ii

ENSDF (*E*valuated *Nuclear Structure Data File)*—Evaluated data on adopted levels and their properties, decay schemes, and nuclear structure information from reactions for all known nuclides. [IP (Isotopes Project), Lund, NDS, NEADB, NNDC]

LIBRARIES—Includes the 1993 Audi-Wapstra Atomic Mass Evaluation [NDS, NEADB, NNDC], and the International Reactor Dosimetry File—1990 (Version 2) [NDS, NNDC]

MIRD—Information on radionuclide decay in the format of the *M*edical *I*nternal *R*adiation *D*ose Committee. [Lund, NDS, NNDC]

NSR (*Nuclear Science References*)—Bibliographic information on nuclear structure, nuclear reactions, and radioa ctive decay; some papers on atomic physics are included that are relevant to the physics of nuclear structure. [IP (Papyrus NSR), Lund (Papyrus NSR), NDS, NEADB, NNDC]

NUDAT (*Nuclear Data* File)—Evaluated nuclear data, including nuclear levels and their properties, nuclear masses, nuclear isomeric properties, radioactive decay radiations, and thermal cross sections and resonance integrals. [NDS, NEADB, NNDC]

PCNUDAT—An MS-DOS clone of NUDAT. [Lund, NNDC]

XRAY (Photon Attenuation and Scattering)—Attenuation coefficients and total x-ray cross sections, and scattering cross sections for polarized photons. [NDS, NNDC]

Other information available at the NNDC and NDS includes: the NNDC (NDS) address list and Newsletter; UTILITIES to run nuclear physics analyses and Q-value

Electronic Nuclear Data Access - iii

calculation codes, to plot and display sample retrievals; and **FILES** to view and electronically transfer data files.

National Nuclear Data Center (NNDC), Brookhaven National Laboratory, USA

Anonymous FTP •bnlnd2.dne.bnl.gov. User name: anonymous. Password: Your e-mail address.

•Contents: Codes, documentation, and libraries as described on pages *ii* through *iv*. Additional contents include MS-DOS versions of the ENSDF analysis and checking codes (including executables), ENSDAT (*Evaluated Nuclear Structure Drawings and Tables*), and PCNUDAT.

Terminal Access

•TELNET: bnlnd2.dne.bnl.gov (130.199.112.132). User name: NNDC (no password). At the prompt for as-

signed authorization code, enter the code or GUEST.

•DECNET SET HOST: bnlnd2 (44436 or 43.404). Remaining dialog as in the TELNET instructions.

•Modem: 516-282-2002.

•Protocol: ASCII only. Full duplex.

•Speed: 1200 to 19200 bps. Higher speeds up to 57.6 kbps may be possible if supported by the local modem and software.

•Word: 8-bit, parity off, one stop bit.

•Thor login: **NNDC**. Password: **NNDC**. User name and password must be *capitalized*. See TELNET instructions for authorization code.

•Contents: See pages *ii* through *v*.

Electronic Nuclear Data Access - iv

World Wide Web

•http://www.dne.bnl.gov/nndc.html

•Contents: General information, Nuclear decay data in the Medical Internal Radiation Dose format (MIRD), Codes, documentation, and libraries as described on pages *ii* through *iv*. Mirror site for the Korean Atomic Energy Research Institute's *Table of the Nuclides*.

CD-ROM Distribution

Nuclear Data on CD-ROM (In preparation)—Includes Papyrus NSR and PCNUDAT. Contact: R.R. Kinsey (kinsey1@ bnl.gov)

Floppy Disk Distribution

•ENSDF Analysis and Checking Codes for MS-DOS— Contact: T.W. Burrows (**nndctb@bnl.gov**) •PCNUDAT (Demonstration version)—Contact: R.R. Kinsey (**kinsey1@bnl.gov**).

Nuclear Data Section (NDS), IAEA, Austria

Terminal Access •TELNET: iaeand.iaea.or.at. User name: IAEANDS (No password). At the prompt for assigned authorization code,

enter the code or GUEST.•Contents: See pages *ii* through *v*.

Nuclear Energy Agency Data Bank (NEADB), OECD, France

Terminal Access

•TELNET: db.nea.fr. User name: NEADB. No password. At the prompt for assigned authorization code, enter the assigned code or GUEST.

Electronic Nuclear Data Access - v

•Contents: See next entry.

World Wide Web

•http://www.nea.fr/html/dbdata/dbdata.html

•Contents: General Information, evaluated nuclear structure data (NSR, ENSDF, NUDAT), evaluated nuclear data files (EVA, JEF), experimental data on nuclear reactions (EXFOR, CINDA, WRENDA), and the Audi-Wapstra Atomic Mass Evaluations. Most searches and retrievals of the data base are by TELNET connections.

Center for Nuclear Information Technology (CNIT), San Jose State University, USA

•MacNuclide—Contact C.A. Stone (STONE.C@APPLELINK.APPLE.COM)

Isotopes Project (IP), E.O. Lawrence Berkeley National Laboratory, USA

World Wide Web

•http://csa5.lbl.gov/~fchu/ip.html

•Contents: General information; ENSDF; EHSDF (Evaluated High Spin Data File); EDDF (Evaluated Decay Data File); VUENSDF, Table of Isotopes (not yet available), Papyrus NSR, and GAMQUEST.

CD-ROM Distribution

Nuclear Data on CD-ROM (In preparation)—Includes Papyrus NSR and PCNUDAT. Contact: E. Browne (EBROWNE@CSA3.LBL.GOV)

Electronic Nuclear Data Access - vi

Lund Nuclear Data Services, University of Lund, Sweden

Anonymous FTP

•OUTIS.LUCAS.LU.SE. User name: anonymous. No password. Directory: /pub/nsr

•Contents: Papyrus NSR and updates, PCNUDAT, and VuENSDF

World Wide Web

•http://www.fysik.lu.se/NuclearData/

•Contents: General information, Papyrus NSR, ENSDF Status, PCNUDAT, *Table of Isotopes*, EHSDF and EDDF, MIRD, The Radioactivity Gammas Database, the Nuclear Wallet Cards, VuENSDF, GCORR, Programs for evaluators, Local services and file transfer, Local Area Network services for Sweden. A CD-ROM user interface is planned.

CD-ROM Distribution

Nuclear Data on CD-ROM (In preparation)—Includes Papyrus NSR and PCNUDAT. Contact: L.P. Ekström (PETER. EKSTROM@NUCLEAR.LU.SE)

Nuclear Data Evaluation Project, Triangle Universities Nuclear Laboratory, USA

World Wide Web

•http://www.tunl.duke.edu/NuclData

•Contents: Preprints of "Energy Levels of Light Nuclei, A=19" and "Energy Levels of Light Nuclei, A=18"; an abridged version of "Energy Levels of Light Nuclei A=16-17"; a list of preprints and reprints available by standard mail; Energy Level Diagrams for A=4-20 nuclei; and info rmation on A=3-20 nuclei from ENSDF in Postscript.

Electronic Nuclear Data Access - vii

Nuclear Data Project (NDP), Oak Ridge National Laboratory, USA

World Wide Web •http://www.phy.ornl.gov/ndp/ndp.html •Contents: A description of the project's activities.

Glossary of Nuclear Data Evaluation and WWW Jargon

Following is an abridged, modified version of definitions of terms and abbreviations used by nuclear data evaluators prepared by L.P. Ekström. Some computer terms—relevant to the nuclear structure software—also are included. The original version, including links to more detailed information, is available on the Lund Nuclear Data Services Web home page.

•Adopted levels, gammas—In ENSDF, there is an Adopted levels' data set for each known nuclide. It contains adopted properties of levels and gammas. If a nuclide has only one data set, this set is considered as the Adopted levels, gammas data set.

•Anonymous FTP—A method of using FTP without having to have an account on the server system. On systems offering an anonymous FTP service, the name "anonymous" and, very often, the more easily spelled "ftp" are recognized and allow access using the user's e-mail address as a password.

•Band—In ENSDF and VuENSDF a band is a set of levels that share some nuclear-structure property, *e.g.*, a rotational band, vibrational states or simple shell model configurations. In ENSDF, levels belonging to a band are marked with a BAND comment.

Electronic Nuclear Data Access - viii

•Browser—A program that sends requests for resources across networks and displays those resources when they are received. Another name for the WWW client program. Examples are Mosaic and Netscape.

•CINDA—See pages *ii* through *iv*.

•Client—A computer program which by some communication protocol is in contact with a server program.

•Client-server or Client-server architecture—A basic idea used in computer networking, wherein servers retrieve information requested by clients, and clients display that information to the user. On the WWW, the client is a WWW browser program. The server is a special program running on any computer on the Internet.

•COMTRANS—A computer program, written at the NNDC, to translate ENSDF comments (using the ENSDF dictionary into an extended-code character set).

•CSISRS—See pages *ii* through *iv*.

•Data set—ENSDF is divided into several data sets. A data set either contains adopted properties (the Adopted levels, gammas data set), data from a radioactive decay (decay data sets), or from a nuclear reaction (reaction data sets).

•EDDF—Evaluated Decay Data File - A computer file (based on ENSDF) with the decay data used for generating the *Table of Isotopes*.

•EHSDF—Evaluated High Spin Data File - A computer file (based on ENSDF) with the high-spin data used for the generating the *Table of Isotopes*.

•ENDF—See pages *ii* through *iv*.

•ENDF format—An internationally accepted format for exchanging evaluated files of nuclear reaction and decay data. ENDF-6 is the latest version.

•ENSDF—See pages *ii* through *iv*.

Electronic Nuclear Data Access - ix

•ENSDF/2 Format—A modified version of the ENSDF format. The main difference between this and the original is that all levels are labeled, and transitions between levels are defined unambiguously with these labels.

•ENSDF Dictionary—A translation table to convert 7 bit ASCII text from ENSDF comments into an extended character set containing Greek letters, superscripts, and subscripts. •FMTCHK—ForMaT CHecK - A computer program used

by evaluators to check that data sets comply with the ENSDF format.

•FTP—File Transfer Protocol. A standard Internet protocol that allows files to be transmitted from one computer to another across a network.

•GIF—Graphics Interchange Format. A standard graphicsfile format developed by CompuServe, Inc.

•Host—A computer attached to the Internet.

•HTML—HyperText Markup Language. The markup language used for WWW documents.

•HTTP—HyperText Transfer Protocol. The Internet protocol that is used to allow WWW clients to retrieve information from WWW servers.

•IP address—Internet Protocol address. A standardized method of identifying a particular computer connected to a network. The IP address is expressed as four numbers less than 256, separated by periods. It provides a unique identifier for every computer connected to the network.

•JPEG—Joint Photographic Experts Group; also refers to the graphics-file format developed by that body.

Mass chain—The collection of data sets in ENSDF containing information on nuclides with a particular mass number.
MASSES—Files containing information on atomic masses provided by G. Audi and A. Wapstra. These tables are published in Nuclear Physics A.

Electronic Nuclear Data Access - x
•MIME type—Multipurpose Internet Mail Extensions type—a piece of information on the type of file that is transferred from a server to a client.

•Mosaic—A free program from NCSA used for browsing the World Wide Web.

•Netscape—A program from Netscape Communications used for browsing the World Wide Web.

•NSR—See pages *ii* through *iv*.

•NUDAT—See pages *ii* through *iv*.

•PCNUDAT—See pages *ii* through *iv*.

•PDF—Portable Document Format. A format defined by Adobe, Inc. for platform-independent documents. To read files in PDF format a free Acrobat Reader is required for the computer used.

•Server—A program that responds to requests from a client program. The term also is used to refer to the computer system on which the server program runs.

•TELNET—A standard Internet protocol providing a remote login service.

•URL—Uniform Resource Locator. The current addressing scheme for resources on the WWW. The URL gives the location of a particular copy of a resource.

•VuENSDF—A computer code for displaying decay scheme drawings and tabular listings of nuclear structure and decay data from ENSDF. VuENSDF is written at the Isotopes Project.

•Viewer-application (also, a helper-application)—A program used by Mosaic or Netscape to handle specialized file formats.

•XRAY—See pages *ii* through *iv*.

Electronic Nuclear Data Access - xi

Directory of Nuclear Physics Laboratories, 6th Edition

A new version of the Directory of Nuclear Physics Laboratories is being prepared at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, under the sponsorship of the Division of Nuclear Physics, American Physical Society (APS). The current (5th) edition will be placed on the WWW by October 1, 1995. Sugge stions for new or changed listings should be sent to Shari Conroy, Cyclotron Laboratory, Michigan State University, East Lansing MI 48824 (conroy@nscl.msu.edu). The directory will appear on the World Wide Web with pointers to it on the Division's home page found on the APS home page (http://aps.org) and on the NSCL home page (http: //pads1.pa.msu.edu/nuclear/NSCL.htm).

Division of Nuclear Physics, US Department of Energy

The Division of Nuclear Physics supports a broad program of basic research in nuclear physics. At the Division's World Wide Web site: (http://www.er.doe.gov/produc tion/henp/nucphys.html) will be found an overview of its research program, programmatic activities, links to research facilities at universities and national laboratories, links to some major experiments, and links to research pu blications. One of the Division's sub-programs, Low Energy Nuclear Physics, supports information services on critical nuclear data, and the compilation and dissemination of accurate and complete nuclear data information that is readily accessible and user oriented.

Electronic Nuclear Data Access - xii