# Numerical Recipes in FORTRAN <br> The Art of Scientific Computing Second Edition 

William H. Press

Harvard-Smithsonian Center for Astrophysics
Saul A. Teukolsky
Department of Physics, Cornell University
William T. Vetterling
Polaroid Corporation

## Brian P. Flannery

EXXON Research and Engineering Company

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Copyright © Cambridge University Press 1986, 1992
except for $\S 13.10$, which is placed into the public domain, and except for all other computer programs and procedures, which are
Copyright © Numerical Recipes Software 1986, 1992
All Rights Reserved.
Some sections of this book were originally published, in different form, in Computers in Physics magazine, Copyright (C) American Institute of Physics, 1988-1992.

First Edition originally published 1986; Second Edition originally published 1992.
Reprinted with corrections, 1993.
Reprinted with corrections, 1994.
Reprinted with corrections, 1995.
This reprinting is corrected to software version 2.06
Printed in the United States of America
Typeset in $\mathrm{T}_{\mathrm{E}} X$

The computer programs in this book are available, in FORTRAN, in several machinereadable formats. There are also versions of this book and its software available in the Pascal, C, and BASIC programming languages.

To purchase diskettes in IBM PC or Apple Macintosh formats, use the order form at the back of the book or write to Cambridge University Press, 110 Midland Avenue, Port Chester, NY 10573. Also available from Cambridge University Press are the Numerical Recipes Example Books and coordinated diskettes in FORTRAN, Pascal, C, and BASIC. These provide demonstration programs that illustrate the use of each subroutine and procedure in this book. They too may be ordered in the above manner.

Unlicensed transfer of Numerical Recipes programs from the abovementioned IBM PC or Apple Macintosh diskettes to any other format, or to any computer except a single IBM PC or Apple Macintosh or compatible for each diskette purchased, is strictly prohibited. Licenses for authorized transfers to other computers are available from Numerical Recipes Software, P.O. Box 243, Cambridge, MA 02238 (fax 617 863-1739, email info@nr . com, or http://world.std.com/~nr). Technical questions, corrections, and requests for information on other available formats should also be directed to this address.

## Library of Congress Cataloging in Publication Data

Numerical recipes in FORTRAN : the art of scientific computing / William H. Press
... [et al.]. - 2nd ed.
Includes bibliographical references (p. ) and index.
ISBN 0-521-43064-X

1. Numerical analysis-Computer programs. 2. Science-Mathematics-Computer programs. 3. FORTRAN (Computer program language) I. Press, William H.

QA297.N866 1992
519.4'0285'53-dc20

92-8876
A catalog record for this book is available from the British Library.
ISBN 052143064 X Book
ISBN 0521437210 Example book in FORTRAN
ISBN 0521437172 FORTRAN diskette (IBM 5.25", 1.2M)
ISBN 0521437199 FORTRAN diskette (IBM 3.5", 720K)
ISBN 0521437164 FORTRAN diskette (Mac 3.5", 800K)

## Contents

Preface to the Second Edition ..... xi
Preface to the First Edition ..... xiv
Legal Matters ..... xvi
Computer Programs by Chapter and Section ..... xix
1 Preliminaries ..... 1
1.0 Introduction ..... 1
1.1 Program Organization and Control Structures ..... 5
1.2 Error, Accuracy, and Stability ..... 18
2 Solution of Linear Algebraic Equations ..... 22
2.0 Introduction ..... 22
2.1 Gauss-Jordan Elimination ..... 27
2.2 Gaussian Elimination with Backsubstitution ..... 33
2.3 LU Decomposition and Its Applications ..... 34
2.4 Tridiagonal and Band Diagonal Systems of Equations ..... 42
2.5 Iterative Improvement of a Solution to Linear Equations ..... 47
2.6 Singular Value Decomposition ..... 51
2.7 Sparse Linear Systems ..... 63
2.8 Vandermonde Matrices and Toeplitz Matrices ..... 82
2.9 Cholesky Decomposition ..... 89
2.10 QR Decomposition ..... 91
2.11 Is Matrix Inversion an $N^{3}$ Process? ..... 95
3 Interpolation and Extrapolation ..... 99
3.0 Introduction ..... 99
3.1 Polynomial Interpolation and Extrapolation ..... 102
3.2 Rational Function Interpolation and Extrapolation ..... 104
3.3 Cubic Spline Interpolation ..... 107
3.4 How to Search an Ordered Table ..... 110
3.5 Coefficients of the Interpolating Polynomial ..... 113
3.6 Interpolation in Two or More Dimensions ..... 116
4 Integration of Functions ..... 123
4.0 Introduction ..... 123
4.1 Classical Formulas for Equally Spaced Abscissas ..... 124
4.2 Elementary Algorithms ..... 130
4.3 Romberg Integration ..... 134
4.4 Improper Integrals ..... 135
4.5 Gaussian Quadratures and Orthogonal Polynomials ..... 140
4.6 Multidimensional Integrals ..... 155
5 Evaluation of Functions ..... 159
5.0 Introduction ..... 159
5.1 Series and Their Convergence ..... 159
5.2 Evaluation of Continued Fractions ..... 163
5.3 Polynomials and Rational Functions ..... 167
5.4 Complex Arithmetic ..... 171
5.5 Recurrence Relations and Clenshaw's Recurrence Formula ..... 172
5.6 Quadratic and Cubic Equations ..... 178
5.7 Numerical Derivatives ..... 180
5.8 Chebyshev Approximation ..... 184
5.9 Derivatives or Integrals of a Chebyshev-approximated Function ..... 189
5.10 Polynomial Approximation from Chebyshev Coefficients ..... 191
5.11 Economization of Power Series ..... 192
5.12 Padé Approximants ..... 194
5.13 Rational Chebyshev Approximation ..... 197
5.14 Evaluation of Functions by Path Integration ..... 201
6 Special Functions ..... 205
6.0 Introduction ..... 205
6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients ..... 206
6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function ..... 209
6.3 Exponential Integrals ..... 215
6.4 Incomplete Beta Function, Student's Distribution, F-Distribution, Cumulative Binomial Distribution ..... 219
6.5 Bessel Functions of Integer Order ..... 223
6.6 Modified Bessel Functions of Integer Order ..... 229
6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions ..... 234
6.8 Spherical Harmonics ..... 246
6.9 Fresnel Integrals, Cosine and Sine Integrals ..... 248
6.10 Dawson's Integral ..... 252
6.11 Elliptic Integrals and Jacobian Elliptic Functions ..... 254
6.12 Hypergeometric Functions ..... 263
7 Random Numbers ..... 266
7.0 Introduction ..... 266
7.1 Uniform Deviates ..... 267
7.2 Transformation Method: Exponential and Normal Deviates ..... 277
7.3 Rejection Method: Gamma, Poisson, Binomial Deviates ..... 281
7.4 Generation of Random Bits ..... 287
7.5 Random Sequences Based on Data Encryption ..... 290
7.6 Simple Monte Carlo Integration ..... 295
7.7 Quasi- (that is, Sub-) Random Sequences ..... 299
7.8 Adaptive and Recursive Monte Carlo Methods ..... 306
8 Sorting ..... 320
8.0 Introduction ..... 320
8.1 Straight Insertion and Shell's Method ..... 321
8.2 Quicksort ..... 323
8.3 Heapsort ..... 327
8.4 Indexing and Ranking ..... 329
8.5 Selecting the $M$ th Largest ..... 333
8.6 Determination of Equivalence Classes ..... 337
9 Root Finding and Nonlinear Sets of Equations ..... 340
9.0 Introduction ..... 340
9.1 Bracketing and Bisection ..... 343
9.2 Secant Method, False Position Method, and Ridders' Method ..... 347
9.3 Van Wijngaarden-Dekker-Brent Method ..... 352
9.4 Newton-Raphson Method Using Derivative ..... 355
9.5 Roots of Polynomials ..... 362
9.6 Newton-Raphson Method for Nonlinear Systems of Equations ..... 372
9.7 Globally Convergent Methods for Nonlinear Systems of Equations ..... 376
10 Minimization or Maximization of Functions ..... 387
10.0 Introduction ..... 387
10.1 Golden Section Search in One Dimension ..... 390
10.2 Parabolic Interpolation and Brent's Method in One Dimension ..... 395
10.3 One-Dimensional Search with First Derivatives ..... 399
10.4 Downhill Simplex Method in Multidimensions ..... 402
10.5 Direction Set (Powell's) Methods in Multidimensions ..... 406
10.6 Conjugate Gradient Methods in Multidimensions ..... 413
10.7 Variable Metric Methods in Multidimensions ..... 418
10.8 Linear Programming and the Simplex Method ..... 423
10.9 Simulated Annealing Methods ..... 436
11 Eigensystems ..... 449
11.0 Introduction ..... 449
11.1 Jacobi Transformations of a Symmetric Matrix ..... 456
11.2 Reduction of a Symmetric Matrix to Tridiagonal Form: Givens and Householder Reductions ..... 462
11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix ..... 469
11.4 Hermitian Matrices ..... 475
11.5 Reduction of a General Matrix to Hessenberg Form ..... 476
11.6 The QR Algorithm for Real Hessenberg Matrices ..... 480
11.7 Improving Eigenvalues and/or Finding Eigenvectors by Inverse Iteration ..... 487
12 Fast Fourier Transform ..... 490
12.0 Introduction ..... 490
12.1 Fourier Transform of Discretely Sampled Data ..... 494
12.2 Fast Fourier Transform (FFT) ..... 498
12.3 FFT of Real Functions, Sine and Cosine Transforms ..... 504
12.4 FFT in Two or More Dimensions ..... 515
12.5 Fourier Transforms of Real Data in Two and Three Dimensions ..... 519
12.6 External Storage or Memory-Local FFTs ..... 525
13 Fourier and Spectral Applications ..... 530
13.0 Introduction ..... 530
13.1 Convolution and Deconvolution Using the FFT ..... 531
13.2 Correlation and Autocorrelation Using the FFT ..... 538
13.3 Optimal (Wiener) Filtering with the FFT ..... 539
13.4 Power Spectrum Estimation Using the FFT ..... 542
13.5 Digital Filtering in the Time Domain ..... 551
13.6 Linear Prediction and Linear Predictive Coding ..... 557
13.7 Power Spectrum Estimation by the Maximum Entropy (All Poles) Method ..... 565
13.8 Spectral Analysis of Unevenly Sampled Data ..... 569
13.9 Computing Fourier Integrals Using the FFT ..... 577
13.10 Wavelet Transforms ..... 584
13.11 Numerical Use of the Sampling Theorem ..... 600
14 Statistical Description of Data ..... 603
14.0 Introduction ..... 603
14.1 Moments of a Distribution: Mean, Variance, Skewness, and So Forth ..... 604
14.2 Do Two Distributions Have the Same Means or Variances? ..... 609
14.3 Are Two Distributions Different? ..... 614
14.4 Contingency Table Analysis of Two Distributions ..... 622
14.5 Linear Correlation ..... 630
14.6 Nonparametric or Rank Correlation ..... 633
14.7 Do Two-Dimensional Distributions Differ? ..... 640
14.8 Savitzky-Golay Smoothing Filters ..... 644
15 Modeling of Data ..... 650
15.0 Introduction ..... 650
15.1 Least Squares as a Maximum Likelihood Estimator ..... 651
15.2 Fitting Data to a Straight Line ..... 655
15.3 Straight-Line Data with Errors in Both Coordinates ..... 660
15.4 General Linear Least Squares ..... 665
15.5 Nonlinear Models ..... 675
15.6 Confidence Limits on Estimated Model Parameters ..... 684
15.7 Robust Estimation ..... 694
16 Integration of Ordinary Differential Equations ..... 701
16.0 Introduction ..... 701
16.1 Runge-Kutta Method ..... 704
16.2 Adaptive Stepsize Control for Runge-Kutta ..... 708
16.3 Modified Midpoint Method ..... 716
16.4 Richardson Extrapolation and the Bulirsch-Stoer Method ..... 718
16.5 Second-Order Conservative Equations ..... 726
16.6 Stiff Sets of Equations ..... 727
16.7 Multistep, Multivalue, and Predictor-Corrector Methods ..... 740
17 Two Point Boundary Value Problems ..... 745
17.0 Introduction ..... 745
17.1 The Shooting Method ..... 749
17.2 Shooting to a Fitting Point ..... 751
17.3 Relaxation Methods ..... 753
17.4 A Worked Example: Spheroidal Harmonics ..... 764
17.5 Automated Allocation of Mesh Points ..... 774
17.6 Handling Internal Boundary Conditions or Singular Points ..... 775
18 Integral Equations and Inverse Theory ..... 779
18.0 Introduction ..... 779
18.1 Fredholm Equations of the Second Kind ..... 782
18.2 Volterra Equations ..... 786
18.3 Integral Equations with Singular Kernels ..... 788
18.4 Inverse Problems and the Use of A Priori Information ..... 795
18.5 Linear Regularization Methods ..... 799
18.6 Backus-Gilbert Method ..... 806
18.7 Maximum Entropy Image Restoration ..... 809
19 Partial Differential Equations ..... 818
19.0 Introduction ..... 818
19.1 Flux-Conservative Initial Value Problems ..... 825
19.2 Diffusive Initial Value Problems ..... 838
19.3 Initial Value Problems in Multidimensions ..... 844
19.4 Fourier and Cyclic Reduction Methods for Boundary Value Problems ..... 848
19.5 Relaxation Methods for Boundary Value Problems ..... 854
19.6 Multigrid Methods for Boundary Value Problems ..... 862
20 Less-Numerical Algorithms
881
20.0 Introduction
881
20.1 Diagnosing Machine Parameters
886
20.2 Gray Codes
20.3 Cyclic Redundancy and Other Checksums ..... 888
20.4 Huffman Coding and Compression of Data ..... 896
20.5 Arithmetic Coding ..... 902
20.6 Arithmetic at Arbitrary Precision ..... 906
References ..... 916
Index of Programs and Dependencies ..... 921
General Index ..... 935

## Preface to the Second Edition

Our aim in writing the original edition of Numerical Recipes was to provide a book that combined general discussion, analytical mathematics, algorithmics, and actual working programs. The success of the first edition puts us now in a difficult, though hardly unenviable, position. We wanted, then and now, to write a book that is informal, fearlessly editorial, unesoteric, and above all useful. There is a danger that, if we are not careful, we might produce a second edition that is weighty, balanced, scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then, we were making educated guesses, based on existing literature and our own research, about which numerical techniques were the most important and robust. Now, we have the benefit of direct feedback from a large reader community. Letters to our alter-ego enterprise, Numerical Recipes Software, are in the thousands per year. (Please, don't telephone us.) Our post office box has become a magnet for letters pointing out that we have omitted some particular technique, well known to be important in a particular field of science or engineering. We value such letters, and digest them carefully, especially when they point us to specific references to the literature.

The inevitable result of this input is that this Second Edition of Numerical Recipes is substantially larger than its predecessor, in fact about $50 \%$ larger both in words and number of included programs (the latter now numbering well over 300). "Don't let the book grow in size," is the advice that we received from several wise colleagues. We have tried to follow the intended spirit of that advice, even as we violate the letter of it. We have not lengthened, or increased in difficulty, the book's principal discussions of mainstream topics. Many new topics are presented at this same accessible level. Some topics, both from the earlier edition and new to this one, are now set in smaller type that labels them as being "advanced." The reader who ignores such advanced sections completely will not, we think, find any lack of continuity in the shorter volume that results.

Here are some highlights of the new material in this Second Edition:

- a new chapter on integral equations and inverse methods
- a detailed treatment of multigrid methods for solving elliptic partial differential equations
- routines for band diagonal linear systems
- improved routines for linear algebra on sparse matrices
- Cholesky and QR decomposition
- orthogonal polynomials and Gaussian quadratures for arbitrary weight functions
- methods for calculating numerical derivatives
- Padé approximants, and rational Chebyshev approximation
- Bessel functions, and modified Bessel functions, of fractional order; and several other new special functions
- improved random number routines
- quasi-random sequences
- routines for adaptive and recursive Monte Carlo integration in highdimensional spaces
- globally convergent methods for sets of nonlinear equations
- simulated annealing minimization for continuous control spaces
- fast Fourier transform (FFT) for real data in two and three dimensions
- fast Fourier transform (FFT) using external storage
- improved fast cosine transform routines
- wavelet transforms
- Fourier integrals with upper and lower limits
- spectral analysis on unevenly sampled data
- Savitzky-Golay smoothing filters
- fitting straight line data with errors in both coordinates
- a two-dimensional Kolmogorov-Smirnoff test
- the statistical bootstrap method
- embedded Runge-Kutta-Fehlberg methods for differential equations
- high-order methods for stiff differential equations
- a new chapter on "less-numerical" algorithms, including Huffman and arithmetic coding, arbitrary precision arithmetic, and several other topics. Consult the Preface to the First Edition, following, or the Table of Contents, for a list of the more "basic" subjects treated.


## Acknowledgments

It is not possible for us to list by name here all the readers who have made useful suggestions; we are grateful for these. In the text, we attempt to give specific attribution for ideas that appear to be original, and not known in the literature. We apologize in advance for any omissions.

Some readers and colleagues have been particularly generous in providing us with ideas, comments, suggestions, and programs for this Second Edition. We especially want to thank George Rybicki, Philip Pinto, Peter Lepage, Robert Lupton, Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallie Baliunas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomas Loredo, Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold Lewis, Peter Weinberger, David Syer, Richard Ferch, Steven Ebstein, and William Gould. We have been helped by Nancy Lee Snyder's mastery of a complicated $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ manuscript. We express appreciation to our editors Lauren Cowles and Alan Harvey at Cambridge University Press, and to our production editor Russell Hahn. We remain, of course, grateful to the individuals acknowledged in the Preface to the First Edition.

Special acknowledgment is due to programming consultant Seth Finkelstein, who influenced many of the routines in this book, and wrote or rewrote many more routines in its C-language twin and the companion Example books. Our project has benefited enormously from Seth's talent for detecting, and following the trail of, even very slight anomalies (often compiler bugs, but occasionally our errors), and from his good programming sense.

We prepared this book for publication on DEC and Sun workstations running the UNIX operating system, and on a $486 / 33$ PC compatible running MS-DOS 5.0/Windows 3.0. (See $\S 1.0$ for a list of additional computers used in program tests.) We enthusiastically recommend the principal software used: GNU Emacs, $\mathrm{T}_{\mathrm{E}} X$, Perl, Adobe Illustrator, and PostScript. Also used were a variety of FORTRAN compilers - too numerous (and sometimes too buggy) for individual
acknowledgment. It is a sobering fact that our standard test suite (exercising all the routines in this book) has uncovered compiler bugs in a large majority of the compilers tried. When possible, we work with developers to see that such bugs get fixed; we encourage interested compiler developers to contact us about such arrangements. WHP and SAT acknowledge the continued support of the U.S. National Science Foundation for their research on computational methods. D.A.R.P.A. support is acknowledged for $\S 13.10$ on wavelets.

June, 1992
William H. Press
Saul A. Teukolsky
William T. Vetterling
Brian P. Flannery

## Preface to the First Edition

We call this book Numerical Recipes for several reasons. In one sense, this book is indeed a "cookbook" on numerical computation. However there is an important distinction between a cookbook and a restaurant menu. The latter presents choices among complete dishes in each of which the individual flavors are blended and disguised. The former - and this book - reveals the individual ingredients and explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational techniques. This book is unique, we think, in offering, for each topic considered, a certain amount of general discussion, a certain amount of analytical mathematics, a certain amount of discussion of algorithmics, and (most important) actual implementations of these ideas in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. You will find that for some topics we have tilted quite far to the analytic side; this where we have felt there to be gaps in the "standard" mathematical training. For other topics, where the mathematical prerequisites are universally held, we have tilted towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation.

We admit, therefore, to some unevenness in the "level" of this book. About half of it is suitable for an advanced undergraduate course on numerical computation for science or engineering majors. The other half ranges from the level of a graduate course to that of a professional reference. Most cookbooks have, after all, recipes at varying levels of complexity. An attractive feature of this approach, we think, is that the reader can use the book at increasing levels of sophistication as his/her experience grows. Even inexperienced readers should be able to use our most advanced routines as black boxes. Having done so, we hope that these readers will subsequently go back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods of numerical computation can be simultaneously efficient, clever, and - important - clear. The alternative viewpoint, that efficient computational methods must necessarily be so arcane and complex as to be useful only in "black box" form, we firmly reject.

Our purpose in this book is thus to open up a large number of computational black boxes to your scrutiny. We want to teach you to take apart these black boxes and to put them back together again, modifying them to suit your specific needs. We assume that you are mathematically literate, i.e., that you have the normal mathematical preparation associated with an undergraduate degree in a physical science, or engineering, or economics, or a quantitative social science. We assume that you know how to program a computer. We do not assume that you have any prior formal knowledge of numerical analysis or numerical methods.

The scope of Numerical Recipes is supposed to be "everything up to, but not including, partial differential equations." We honor this in the breach: First, we do have one introductory chapter on methods for partial differential equations (Chapter 19). Second, we obviously cannot include everything else. All the so-called "standard" topics of a numerical analysis course have been included in this book:
linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration (Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and ordinary differential equations (Chapter 16). Most of these topics have been taken beyond their standard treatments into some advanced material which we have felt to be particularly important or useful.

Some other subjects that we cover in detail are not usually found in the standard numerical analysis texts. These include the evaluation of functions and of particular special functions of higher mathematics (Chapters 5 and 6); random numbers and Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including multidimensional methods (Chapter 10); Fourier transform methods, including FFT methods and other spectral methods (Chapters 12 and 13); two chapters on the statistical description and modeling of data (Chapters 14 and 15); and two-point boundary value problems, both shooting and relaxation methods (Chapter 17).

The programs in this book are included in ANSI-standard FORTRAN-77. Versions of the book in C, Pascal, and BASIC are available separately. We have more to say about the FORTRAN language, and the computational environment assumed by our routines, in $\S 1.1$ (Introduction).

## Acknowledgments

Many colleagues have been generous in giving us the benefit of their numerical and computational experience, in providing us with programs, in commenting on the manuscript, or in general encouragement. We particularly wish to thank George Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz, Bruce Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr, Richard Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: Forman Acton, whose 1970 textbook Numerical Methods that Work (New York: Harper and Row) has surely left its stylistic mark on us; and Donald Knuth, both for his series of books on The Art of Computer Programming (Reading, MA: AddisonWesley), and for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, the computer typesetting language which immensely aided production of this book.

Research by the authors on computational methods was supported in part by the U.S. National Science Foundation.

William H. Press
Brian P. Flannery
Saul A. Teukolsky
William T. Vetterling
October, 1985

