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The discrete form of Parseval’s theorem is

N−1∑
k=0

|hk|2 =
1

N

N−1∑
n=0

|Hn|2 (12.1.10)

There are also discrete analogs to the convolution and correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =

N−1∑
k=0

Wnkhk (12.2.2)

In other words, the vector of hk’s is multiplied by a matrix whose (n, k)th element
is the constant W to the power n × k. The matrix multiplication produces a vector
result whose components are theHn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers of W . So, the discrete Fourier transform appears to be an O(N2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log2 N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log2 N and N2 is immense.
WithN = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see [1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of lengthN/2. One of the two is formed from the
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even-numbered points of the original N , the other from the odd-numbered points.
The proof is simply this:

Fk =

N−1∑
j=0

e2πijk/Nfj

=

N/2−1∑
j=0

e2πik(2j)/Nf2j +

N/2−1∑
j=0

e2πik(2j+1)/Nf2j+1

=

N/2−1∑
j=0

e2πikj/(N/2)f2j +W k

N/2−1∑
j=0

e2πikj/(N/2)f2j+1

= F ek +W k F ok

(12.2.3)

In the last line, W is the same complex constant as in (12.2.1), F ek denotes the kth
component of the Fourier transform of lengthN/2 formed from the even components
of the original fj ’s, while F ok is the corresponding transform of length N/2 formed
from the odd components. Notice also that k in the last line of (12.2.3) varies from
0 to N , not just to N/2. Nevertheless, the transforms F ek and F ok are periodic in k
with length N/2. So each is repeated through two cycles to obtain Fk .

The wonderful thing about the Danielson-Lanczos Lemma is that it can be used
recursively. Having reduced the problem of computing Fk to that of computing
F ek and F ok , we can do the same reduction of F ek to the problem of computing
the transform of its N/4 even-numbered input data and N/4 odd-numbered data.
In other words, we can define F eek and F eok to be the discrete Fourier transforms
of the points which are respectively even-even and even-odd on the successive
subdivisions of the data.

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTs withN a power of two. If the length of your data
set is not a power of two, pad it with zeros up to the next power of two. (We will give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N , it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
is the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattern of log2 N
e’s and o’s, there is a one-point transform that is just one of the input numbers fn

F eoeeoeo···oeek = fn for some n (12.2.4)

(Of course this one-point transform actually does not depend on k, since it is periodic
in k with period 1.)

The next trick is to figure out which value of n corresponds to which pattern of
e’s and o’s in equation (12.2.4). The answer is: Reverse the pattern of e’s and o’s,
then let e = 0 and o = 1, and you will have, in binary the value of n. Do you see
why it works? It is because the successive subdivisions of the data into even and odd
are tests of successive low-order (least significant) bits of n. This idea of bit reversal
can be exploited in a very clever way which, along with the Danielson-Lanczos
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Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the original vector of data fj
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit-reversing j.
Then the bookkeeping on the recursive application of the Danielson-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log2N combinations, so the whole
algorithm is of order N log2N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log2 N ).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sorts the data into bit-reversed order. Luckily this takes no additional storage,
since it involves only swapping pairs of elements. (If k1 is the bit reverse of k2, then
k2 is the bit reverse of k1.) The second section has an outer loop that is executed
log2N times and calculates, in turn, transforms of length 2, 4, 8, . . . , N . For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Danielson-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log2 N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (data), and isign, which should be set to either ±1 and is the sign of i in
the exponential of equation (12.1.7). When isign is set to −1, the routine thus
calculates the inverse transform (12.1.9) — except that it does not multiply by the
normalizing factor 1/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points, although
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we avoid the use of complex arithmetic because of the inefficient implementations
found on many computers. The actual length of the real array (data) is 2 times
nn, with each complex value occupying two consecutive locations. In other words,
data(1) is the real part of f0, data(2) is the imaginary part of f0, and so on up
to data(2*nn-1), which is the real part of fN−1 , and data(2*nn), which is the
imaginary part of fN−1. The FFT routine returns the Fn’s packed in exactly the
same fashion, as nn complex numbers.

The real and imaginary parts of the zero frequency componentF0 are in data(1)
and data(2); the smallest nonzero positive frequency has real and imaginary parts in
data(3) and data(4); the smallest (in magnitude) nonzero negative frequency has
real and imaginary parts in data(2*nn-1) and data(2*nn). Positive frequencies
increasing in magnitude are stored in the real-imaginary pairs data(5), data(6)

up to data(nn-1), data(nn). Negative frequencies of increasing magnitude are
stored in data(2*nn-3), data(2*nn-2) down to data(nn+3), data(nn+4).
Finally, the pair data(nn+1), data(nn+2) contain the real and imaginary parts of
the one aliased point that contains the most positive and the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

SUBROUTINE four1(data,nn,isign)
INTEGER isign,nn
REAL data(2*nn)

Replaces data(1:2*nn) by its discrete Fourier transform, if isign is input as 1; or replaces
data(1:2*nn) by nn times its inverse discrete Fourier transform, if isign is input as −1.
data is a complex array of length nn or, equivalently, a real array of length 2*nn. nn
MUST be an integer power of 2 (this is not checked for!).

INTEGER i,istep,j,m,mmax,n
REAL tempi,tempr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Double precision for the trigonomet-

ric recurrences.n=2*nn
j=1
do 11 i=1,n,2 This is the bit-reversal section of the routine.

if(j.gt.i)then
tempr=data(j) Exchange the two complex numbers.
tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi

endif
m=n/2

1 if ((m.ge.2).and.(j.gt.m)) then
j=j-m
m=m/2

goto 1
endif
j=j+m

enddo 11

mmax=2 Here begins the Danielson-Lanczos section of the routine.
2 if (n.gt.mmax) then Outer loop executed log2 nn times.

istep=2*mmax
theta=6.28318530717959d0/(isign*mmax) Initialize for the trigonometric recur-

rence.wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 13 m=1,mmax,2 Here are the two nested inner loops.
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Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2)
complex time samples in a real array of length 2N , with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

do 12 i=m,n,istep
j=i+mmax This is the Danielson-Lanczos formula:
tempr=sngl(wr)*data(j)-sngl(wi)*data(j+1)
tempi=sngl(wr)*data(j+1)+sngl(wi)*data(j)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
data(i)=data(i)+tempr
data(i+1)=data(i+1)+tempi

enddo 12

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 13

mmax=istep
goto 2 Not yet done.
endif All done.
return
END

(A double precision version of four1, named dfour1, is used by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)
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Other FFT Algorithms

We should mention that there are a number of variants on the basic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log2N iterations. In
the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
algorithm. It is also possible to derive FFT algorithms that first go through a set of
log2N iterations on the input data, and rearrange the output values into bit-reverse
order. These are called decimation-in-frequencyor Sande-Tukey FFT algorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back out again. In these cases it is possible
to avoid all bit reversing. You use a decimation-in-frequency algorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only a small fraction of an FFT’s
operations count, and since most useful operations in the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initial data set of length N not all the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of special symmetries of that particular small N . For example, for
N = 4, the trigonometric sines and cosines that enter are all ±1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
e.g., 20 or 30 percent.

There are also FFT algorithms for data sets of length N not a power of
two. They work by using relations analogous to the Danielson-Lanczos Lemma to
subdivide the initial problem into successively smaller problems, not by factors of
2, but by whatever small prime factors happen to divide N . The larger that the
largest prime factor of N is, the worse this method works. If N is prime, then no
subdivision is possible, and the user (whether he knows it or not) is taking a slow
Fourier transform, of orderN2 instead of orderN log2N . Our advice is to stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transform algorithms. Winograd algorithms are in some ways analogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small-N discrete Fourier transforms, e.g., for N = 2, 3, 4, 5, 7, 8, 11, 13, 16.
The algorithms also use a new and clever way of combining the subfactors. The
method involves a reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplications in the
algorithm. For some especially favorable values of N , the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT algorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finally, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with
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integer arithmetic modulo some large prime N+1, and the N th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.
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12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples fj , j = 0 . . .N − 1. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform Fn, n = 0 . . .N − 1
satisfies FN−n* = Fn. Since this complex-valued array has real values for F0

and FN/2, and (N/2) − 1 other independent values F1 . . . FN/2−1, it has the same
2(N/2− 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.


