504 Chapter 12. Fast Fourier Transform

integer arithmetic modulo some large prime N+1, and the Nth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
a al, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itsalf is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]
Bloomfield, P. 1976, Fourier Analysis of Time Series — An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.LAM.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14-21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f;, j = 0...N — 1. To use fourl, we put these into a complex array
with all imaginary parts set to zero. The resulting transform F,,, n =0... N — 1
satisfies Fiyv_,* = F,. Since this complex-vaued array has real values for Fj
and Fi /2, and (IN/2) — 1 other independent values I} . .. Fiy/o_1, it has the same
2(N/2 —1) 4 2 = N “degrees of freedom” asthe original, real data set. However,
theuse of thefull complex FFT algorithmfor real dataisinefficient, bothin execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
rea functionsinto the input array in such away that their individua transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of haf itslength. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. Thisis donein the program realft below.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

12.3 FFT of Real Functions, Sine and Cosine Transforms 505

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform F,, to handle
two real functions a once: Since the input data f; are real, the components of the
discrete Fourier transform satisfy

Frnon = (F)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set of g;'s has the opposite symmetry.

GNon = —(Gp)* (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of
length N simultaneously by packing the two data arrays as the redl and imaginary
parts, respectively, of the complex input array of four1. Thentheresultingtransform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routine twofft works out these ideas.

SUBROUTINE twofft(datal,data2,fftl,fft2,n)

INTEGER n

REAL datal(n),data2(n)

COMPLEX ffti1(n),fft2(n)

USES fourl
Given two real input arrays datal(1:n) and data2(1:n), this routine calls fourl and
returns two complex output arrays, fft1(1:n) and £ft2(1:n), each of complex length n
(i-e., real length 2*n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.

INTEGER j,n2

COMPLEX h1,h2,cl,c2

cl=cmplx(0.5,0.0)

c2=cmplx(0.0,-0.5)

dou j=1,n

fft1(j)=cmplx(datal(j),data2(j))
enddo 11
call fourl(ffti,n,1)

Pack the two real arrays into one complex
array.
Transform the complex array.

fft2(1)=cmplx(aimag(££ft1(1)),0.0)
fft1(1)=cmplx(real (fft1(1)),0.0)
n2=n+2
do 12 j=2,n/2+1
hi=cl*(fft1(j)+conjg(ffti(n2-j)))
h2=c2* (fft1(j)-conjg(fft1(n2-j)))
£££1(j)=h1
fft1(n2-j)=conjg(hl)
£££2(j)=h2
fft2(n2-j)=conjg(h2)
enddo 12
return
END

Use symmetries to separate the two trans-
forms.
Ship them out in two complex arrays.

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in asingle FFT? Thisis
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using four1 with

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

506 Chapter 12. Fast Fourier Transform

isign = —1. Thereal and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which alows us to perform the FFT of
a single real function without redundancy, we split the data set in haf, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the origina data. It will
be a schizophrenic combination of two transforms, each of which has haf of the
information we need. Fortunately, thisschizophreniaistreatable. It workslikethis:

The right way to split the origina data is to take the even-numbered f; as
one data set, and the odd-numbered f; as the other. The beauty of this is that
we can take the original real array and treat it as a complex array h; of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking isrequired. In other words
hj = faj +ifoj41, 7 =0,...,N/2—1. We submit this to four1, and it will
return acomplex array H,, = F¢ +iF?, n=0,...,N/2—1with

N/2-1
Frez _ Z f2k e271'1']611/(N/2)

k=0
o (12.3.3)

Ff; — Z f2k+1 e271'1']611/(N/2)
k=0

The discussion of program twofft tellsyou how to separate the two transforms
F? and F? out of H,,. How do you work them into the transform F,, of the origina
data set f;? Simply glance back at equation (12.2.3):

F,=F¢+4e¥n/Npe pn—=0,...,N—1 (12.3.4)

Expressed directly in terms of the transform H,, of our real (masquerading as
complex) data set, the result is

1

5 (Hn = Hypop)™M n=0,...,N -1
(12.3.5)

1

A few remarks:

e Since Fy_,* = F, thereisno point in saving the entire spectrum. The
positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

e Evenso,weneedvaduesH,,, n =0, ..., N/2whereasfour1 returnsonly
thevaluesn = 0,..., N/2 — 1. Symmetry to the rescue, H /o = H.

e Thevalues F; and Fy/, arerea and independent. In order to actually get
the entire F;, in the origina array space, it is convenient to return Fy /o
as the imaginary part of Fj.

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(X-790€¥-T2S-0 N9SI) ONILNINOD DIHILNIIDS 4O LYV IHL 122 NVHLHOd NI S3dI03H TvOI4INNN woyy abed sjdwes gap spim plIOM

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

12.3 FFT of Real Functions, Sine and Cosine Transforms 507

o Degpite its complicated form, the process above is invertible. First peel
Fpnyo out of Fy. Then construct

o1 :
P% ::§(Ek/+'PkU2—n)

1 , *
By = SN (B =)

n=0,...,N/2-1 (12.36)

and use fourl to find the inverse transform of H, = Fﬁl) + z’FﬁQ).
Surprisingly, the actua agebraic steps are virtualy identical to those of

the forward transform.

Here is a representation of what we have said:

SUBROUTINE realft(data,n,isign)
INTEGER isign,n

REAL data(n)

USES fourl

Calculates the Fourier transform of a set of n real-valued data points. Replaces this data
(which is stored in array data(1:n)) by the positive frequency half of its complex Fourier
transform. The real-valued first and last components of the complex transform are returned
as elements data(1) and data(2), respectively. n must be a power of 2. This routine
also calculates the inverse transform of a complex data array if it is the transform of real
data. (Result in this case must be multiplied by 2/n.)

INTEGER i,i1,i2,i3,i4,n2p3
REAL c1,c2,hli,hlr,h2i,h2r,wis,wrs
DOUBLE PRECISION theta,wi,wpi,wpr,
wr,wtemp
theta=3.141592653589793d0/dble(n/2)
c1=0.5
if (isign.eq.1) then
c2=-0.5
call fourl(data,n/2,+1)
else
c2=0.5
theta=-theta
endif
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.0d0+wpr
wi=wpi
n2p3=n+3
don i=2,n/4
i1=2%i-1
i2=i1+1
i3=n2p3-i2
i4=i3+1
wrs=sngl (wr)
wis=sngl (wi)
hir=cix(data(il)+data(i3))
hili=cix(data(i2)-data(i4))
h2r=-c2*(data(i2)+data(i4))
h2i=c2x*(data(il)-data(i3))
data(il)=hlr+wrs*h2r-wis*h2i
data(i2)=hli+wrs*h2i+wis*h2r
data(i3)=hlr-wrs*h2r+wis*h2i
data(i4)=-hli+wrs*h2i+wis*h2r
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
enddo 1

Double precision for the trigonometric recurrences.

Initialize the recurrence.

The forward transform is here.

Otherwise set up for an inverse transform.

Case i=1 done separately below.

The two separate transforms are separated out of
data.

Here they are recombined to form the true trans-
form of the original real data.

The recurrence.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

508 Chapter 12. Fast Fourier Transform

if (isign.eq.1) then
hir=data(1)
data(1l)=hlr+data(2)
data(2)=hir-data(2) Squeeze the first and last data together to get
else them all within the original array.
hir=data(1)
data(1l)=cil*(hir+data(2))
data(2)=cl*(hlr-data(2))
call fourl(data,n/2,-1)
endif
return
END

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see §19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero a the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

N-1
Fp =Y f;sin(mjk/N) sinetransform (12.3.7)

j=1

where f;, 7 =0,...,N — listhedata array, and f, = 0.

At first blush thisappearsto be simply theimaginary part of the discrete Fourier
transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform uses sines only as a complete set
of functionsin the interval from 0 to 2x, and, as we shall see, the cosine transform
uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be“force-fit” into aform that allowsits cal culation
viathe FFT. Theideaisto extend the given function rightward past itslast tabulated
value. We extend the data to twice their length in such away as to make them an
odd function about j = N, with fy = 0,

fon—j=—f; j=0,....N—1 (12.3.8)
Consider the FFT of this extended function:
2N—1
Fp= Y fjemik/CN) (12.3.9)
j=0

The half of this sum from j = N to j = 2N — 1 can be rewritten with the
substitution j' = 2N — j

2N—-1 N
Z fje2m'jk/(2N) _ Z sz_j/e2m'(2N_j/)k/(2N)
j=N j'=1

(12.3.10)

N-1
.y
- _ E fj/e—27'rz] k/(2N)
J'=0

This is the inverse transform for the case isign=-1.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

12.3 FFT of Real Functions, Sine and Cosine Transforms 509

+1 1
4 W\/
@ 0
5
_1 3
+1 3 2 1
() o
4
5
-1
+1 1
2
3
© o
4
-1 5
0 21

Figure 12.3.1. Basisfunctionsused by the Fourier transform (a), sinetransform (b), and cosinetransform
(c), are plotted. Thefirst five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functionslabeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

0 that

F, = [ezm'jk/(zN) _ e—2mijk/(2N)

(12.3.11)
fisin(mjk/N)

N-1
S f
7=0
N-1
20y
=0
Thus, up to a factor 2i we get the sine transform from the FFT of the extended
function.

This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the red part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especially in view of the simplicity
of the method. When we work with partia differential equations in two or three
dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

510 Chapter 12. Fast Fourier Transform

From theoriginal real dataarray f; we will construct an auxiliary array y; and
apply toit theroutinerealft. The output will then be used to construct the desired
transform. For thesinetransformof data f;, j = 1,..., N —1, theauxiliary array is

Yo =10
y 1 .
y; = s(Gr/N)(fj + fv-j) + 5(fi = fv—j) =1 . N~1
This array is of the same dimension as the original. Notice that the first term is

symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft isappliedto y;, theresult hasreal parts R, and imaginary parts I;, given by

N—1
Ry = y; cos(2mjk/N)
3=0
N—1
=) _(fi + fn—j)sin(jm/N) cos(2mjk/N)
j=1
N—1
= 2f;sin(jm/N) cos(2mjk/N)
7=0
N—1 . .
. 2k+ Dy . (2k-1)jrm
= . fi [sm N — sin N
7=0
= Forp1 — Fors (12.3.13)
N—1
I = y; sin(2mjk/N)
7=0
N—1
=D (fi = fn—j)5 sin(2mjk/N)
j=1
N—1
= fjsin(2mjk/N)
3=0
— Fu (12.3.14)

Therefore F), can be determined as follows:
Fy, = Iy, Fopy1=Fop_1+ Ry k=0,...,(N/2-1) (12.3.15)
The even terms of F}, are thus determined very directly. The odd terms require

a recursion, the starting point of which follows from setting £ = 0 in equation
(12.3.15) and using Fy = —F_q:

1
Fy = R (12.3.16)

The implementing program is

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(X-790€¥-T2S-0 N9SI) ONILNINOD DIHILNIIDS 4O LYV IHL 122 NVHLHOd NI S3dI03H TvOI4INNN woyy abed sjdwes gap spim plIOM

12.3 FFT of Real Functions, Sine and Cosine Transforms 511

SUBROUTINE sinft(y,n)

INTEGER n

REAL y(n)

USES real ft
Calculates the sine transform of a set of n real-valued data points stored in array y(1:n).
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

INTEGER j

REAL sum,y1,y2

DOUBLE PRECISION theta,wi,wpi,wpr,

wr,wtemp Double precision in the trigonometric recurrences.
theta=3.141592653589793d0/dble(n) Initialize the recurrence.
wr=1.0d0
wi=0.0d0

wpr=-2.0d0*sin(0.5d0*theta)**2

wpi=sin(theta)

y(1)=0.0

dou j=1,n/2
wtemp=wr
WI=Wr*wpr-wi*xwpi+wr
wi=wi*wpr+wtemp*wpi+wi
yl=wix(y(j+1)+y(n-j+1))
y2=0.5%(y (j+1)-y (n-j+1))

Calculate the sine for the auxiliary array.
The cosine is needed to continue the recurrence.
Construct the auxiliary array.

y(j+1)=yl+y2 Terms j and N — j are related.
y(n-j+1)=y1-y2
enddo 11
call realft(y,n,+1) Transform the auxiliary array.
sum=0.0
y(1)=0.5%y(1) Initialize the sum used for odd terms below.
y(2)=0.0

do1 j=1,n-1,2
sum=sum+y (j)

y(P=y(G+1) Even terms in the transform are determined directly.
y(j+1)=sum Odd terms are determined by this running sum.
enddo 12
return
END

The sine transform, curioudly, isitsown inverse. If you apply it twice, you get the
origina data, but multiplied by a factor of N/2.

The other common boundary condition for differential eguations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is the cosine transform. There are severa possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of doublethe length, and/or from whether the extended array
contains2N — 1, 2N, or some other number of points. In practice, only two of the
numerous possibilitiesare useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses N + 1 data points:

N—-1
Fi = é[fo + (=D]+ D S cos(mik/N) (123.17)
Jj=1

It results from extending the given array to an even array about j = N, with

fon—j=1f;, j=0,....N—-1 (12.3.18)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

512 Chapter 12. Fast Fourier Transform

If you substitute thisextended array into equation (12.3.9), and follow stepsana ogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
just twice the cosinetransform (12.3.17). Another way of thinking about theformula
(12.3.17) isto notice that it isthe Chebyshev Gauss-L obatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Onceagain thetransform can be computed without thefactor of twoinefficiency.
In this case the auxiliary function is

1 . .
yi = 5(fi + fv—y) = sin(Gn/N)(f; = fv—j) 7=0,...,N -1 (12319)
Instead of equation (12.3.15), realft now gives
o, = Ry, Fopy1 = Fop1+ I k=0,...,(N/2-1) (12.3.20)

The starting value for the recursion for odd % in this case is

N—-1
b= %(fo —fn)+ Y ficos(jm/N) (12.3.21)

j=1

This sum does not appear naturally among the Ry, and I, and so we accumulate it
during the generation of the array y;.

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has N + 1 input and output values, it passes an array only
of length N to realft.

SUBROUTINE cosfti(y,n)

INTEGER n

REAL y(n+1)

USES real ft
Calculates the cosine transform of a set y(1:n+1) of real-valued data points. The trans-
formed data replace the original data in array y. n must be a power of 2. This program,
without changes, also calculates the inverse cosine transform, but in this case the output
array should be multiplied by 2/n.

INTEGER j

REAL sum,y1,y2

DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp For trig. recurrences.

theta=3.141592653589793d0/n Initialize the recurrence.

wr=1.0d0

wi=0.0d0

wpr=-2.0d0*sin(0.5d0*theta)**2

wpi=sin(theta)

sum=0.5*(y(1)-y(n+1))

y(1)=0.5%(y(1)+y(n+1))

dou j=1,n/2-1 j=n/2 unnecessary since y(n/2+1) unchanged.
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
y1=0.5%(y (j+1)+y (n-j+1))
y2=(y (j+1) -y (n-j+1))
y(G+1)=yl-wixy2
y(n-j+1)=yl+uikxy2
sum=sum+wr*y2 Carry along this sum for later use in unfolding the

enddo 11 transform.

Carry out the recurrence.
Calculate the auxiliary function.

The values for j and N — j are related.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

12.3 FFT of Real Functions, Sine and Cosine Transforms 513

call realft(y,n,+1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=sum sum is the value of F in equation (12.3.21).
do12 j=4,n,2
sum=sum+y (j) Equation (12.3.20).
y(j)=sum
enddo 12
return
END

The second important form of the cosine transform is defined by

N-1 . 1
wk(j+ 5)
Fp = Z i cost (12.3.22)
7=0
with inverse
N—-1
2 k(i + 3)
=% ;O F cos — =2 (12.3.23)

Here the prime on the summation symbol means that the term for £ = 0 has a
coefficient of % in front. Thisform arises by extending the given data, defined for
j=0,...,N—1,toj = N,...,2N —1insuchaway that it iseven about the point
N — 1 and periodic. (Itistherefore also even about j = —1.) The form (12.3.23)
is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (55.9).
Thisform of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It isaso the standard form in thefield of data compression and image processing.
The auxiliary function used in this case is similar to equation (12.3.19):

7(j + 3)

N (fj — fv—j—1) j=0,....,.N—1

(12.3.24)

1 .
Y = §(fj + fn—j—1) —sin

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), wefind

7k . mk
F5, = cos WRk — sin ij (12.3.25)

. mk 7k
F2k_1 = sin WRk —+ cos ij + F2k+1 (12326)
Note that equation (12.3.26) gives
1
Fy_1= 5RN/2 (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from k = N/2 — 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps
to find the inverse. Here is the routine:

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(X-790€¥-T2S-0 N9SI) ONILNINOD DIHILNIIDS 4O LYV IHL 122 NVHLHOd NI S3dI03H TvOI4INNN woyy abed sjdwes gap spim plIOM

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

514 Chapter 12. Fast Fourier Transform

SUBROUTINE cosft2(y,n,isign)
INTEGER isign,n
REAL y(n)
USES real ft
Calculates the “staggered” cosine transform of a set y(1:n) of real-valued data points.
The transformed data replace the original data in array y. n must be a power of 2. Set
isignto +1 for a transform, and to —1 for an inverse transform. For an inverse transform,
the output array should be multiplied by 2/n.
INTEGER i
REAL sum,suml,yl,y2,ytemp
DOUBLE PRECISION theta,wi,wil,wpi,wpr,wr,wrl,wtemp,PI
Double precision for the trigonometric recurrences.
PARAMETER (PI=3.141592653589793d0)
theta=0.5d0*PI/n Initialize the recurrences.
wr=1.0d0
wi=0.0d0
wri=cos(theta)
wil=sin(theta)
wpr=-2.0d0*wil**2
wpi=sin(2.d0*theta)
if (isign.eq.1)then Forward transform.
don i=1,n/2
y1=0.5%(y (i) +y(n-i+1)) Calculate the auxiliary function.
y2=wil*(y(i)-y(n-i+1))
y(1)=y1+y2
y(n-i+1)=y1-y2
wtemp=wril Carry out the recurrence.
wril=wril*wpr-wil*wpi+wrl
wil=wil*wpr+wtemp*wpi+wil

enddo 11
call realft(y,n,1) Calculate the transform of the auxiliary function.
do 12 i=3,n,2 Even terms.

wtemp=wr

WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
yl=y (i) *wr-y (i+1)*wi
y2=y (i+1)*wr+y (i) *wi
y(i)=y1
y(i+1)=y2
enddo 12
sum=0. 5%y (2) Initialize recurrence for odd terms with %RN/Q.
do 13 i=n,2,-2 Carry out recurrence for odd terms.
suml=sum
sum=sum+y (i)
y(i)=suml
enddo 13
else if(isign.eq.-1)then Inverse transform.
ytemp=y (n)
dou i=n,4,-2 Form difference of odd terms.
y()=y(i-2)-y(i)
enddo 14
y(2)=2.0*ytemp
do 15 i=3,n,2 Calculate Ry and Ij.
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
yi=y (1) *ur+y (i+1) *wi
y2=y (i+1)*wr-y(i)*wi
y(i)=y1
y(i+1)=y2
enddo 15
call realft(y,n,-1)
do 16 i=1,n/2 Invert auxiliary array.
yl=y (L) +y(n-i+1)

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

12.4 FFT in Two or More Dimensions 515

y2=(0.5/wil) *(y(i)-y(n-i+1))
y(i)=0.5%(y1+y2)
y(n-i+1)=0.5%(y1-y2)
wtemp=wril
wrl=wril*wpr-wil*wpi+wrl
wil=wil*wpr+wtemp*wpi+wil
enddo 16

endif

return

END

An aternative way of implementing this agorithm is to form an auxiliary
function by copying the even elements of f; into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the aternative algorithm without a temporary storage array and we
prefer the above in-place agorithm.

Finally, we mention that there exist fast cosine transforms for small NV that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10-10.

Sorensen, H.V,, Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849-863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455-1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).
Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314-329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004-1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex function h(kq, k2) defined over the two-dimensiona grid
0<k <N;—1, 0<ky <Ny —1,wecan define its two-dimensiona discrete
Fourier transform as a complex function H (ny, n2), defined over the same grid,

Na—1N;—1

H(ni,ng) = Z Z exp(2mikang/Na) exp(2mwiking /N1) h(kq, k2)
ko=0 k1=0
(12.4.1)

By pulling the“ subscripts 2" exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1" outside of the sum over k&,

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM

