
504 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

integer arithmetic modulo some large prime N+1, and the N th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14–21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples fj , j = 0 . . .N − 1. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform Fn, n = 0 . . .N − 1
satisfies FN−n* = Fn. Since this complex-valued array has real values for F0

and FN/2, and (N/2) − 1 other independent values F1 . . . FN/2−1, it has the same
2(N/2− 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.

12.3 FFT of Real Functions, Sine and Cosine Transforms 505

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform Fn to handle
two real functions at once: Since the input data fj are real, the components of the
discrete Fourier transform satisfy

FN−n = (Fn)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set of gj’s has the opposite symmetry.

GN−n = −(Gn)* (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of
length N simultaneously by packing the two data arrays as the real and imaginary
parts, respectively, of the complex input array of four1. Then the resulting transform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routine twofft works out these ideas.

SUBROUTINE twofft(data1,data2,fft1,fft2,n)
INTEGER n
REAL data1(n),data2(n)
COMPLEX fft1(n),fft2(n)

C USES four1
Given two real input arrays data1(1:n) and data2(1:n), this routine calls four1 and
returns two complex output arrays, fft1(1:n) and fft2(1:n), each of complex length n
(i.e., real length 2*n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.

INTEGER j,n2
COMPLEX h1,h2,c1,c2
c1=cmplx(0.5,0.0)
c2=cmplx(0.0,-0.5)
do 11 j=1,n

fft1(j)=cmplx(data1(j),data2(j)) Pack the two real arrays into one complex
array.enddo 11

call four1(fft1,n,1) Transform the complex array.
fft2(1)=cmplx(aimag(fft1(1)),0.0)
fft1(1)=cmplx(real(fft1(1)),0.0)
n2=n+2
do 12 j=2,n/2+1

h1=c1*(fft1(j)+conjg(fft1(n2-j))) Use symmetries to separate the two trans-
forms.h2=c2*(fft1(j)-conjg(fft1(n2-j)))

fft1(j)=h1 Ship them out in two complex arrays.
fft1(n2-j)=conjg(h1)
fft2(j)=h2
fft2(n2-j)=conjg(h2)

enddo 12

return
END

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using four1 with

506 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

isign = −1. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT of
a single real function without redundancy, we split the data set in half, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will
be a schizophrenic combination of two transforms, each of which has half of the
information we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numbered fj as
one data set, and the odd-numbered fj as the other. The beauty of this is that
we can take the original real array and treat it as a complex array hj of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking is required. In other words
hj = f2j + if2j+1, j = 0, . . . , N/2 − 1. We submit this to four1, and it will
return a complex array Hn = F en + iF on , n = 0, . . . , N/2− 1 with

F en =

N/2−1∑
k=0

f2k e
2πikn/(N/2)

F on =

N/2−1∑
k=0

f2k+1 e
2πikn/(N/2)

(12.3.3)

The discussion of program twofft tells you how to separate the two transforms
F en and F on out of Hn. How do you work them into the transform Fn of the original
data set fj? Simply glance back at equation (12.2.3):

Fn = F en + e2πin/NF on n = 0, . . . , N − 1 (12.3.4)

Expressed directly in terms of the transform Hn of our real (masquerading as
complex) data set, the result is

Fn =
1

2
(Hn + HN/2−n*)− i

2
(Hn −HN/2−n*)e2πin/N n = 0, . . . , N − 1

(12.3.5)

A few remarks:
• Since FN−n* = Fn there is no point in saving the entire spectrum. The

positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

• Even so, we need valuesHn, n = 0, . . . , N/2 whereas four1 returns only
the values n = 0, . . . , N/2− 1. Symmetry to the rescue, HN/2 = H0.

• The values F0 and FN/2 are real and independent. In order to actually get
the entire Fn in the original array space, it is convenient to return FN/2
as the imaginary part of F0.

12.3 FFT of Real Functions, Sine and Cosine Transforms 507

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Despite its complicated form, the process above is invertible. First peel
FN/2 out of F0. Then construct

F en =
1

2
(Fn + F *

N/2−n)

F on =
1

2
e−2πin/N (Fn − F *

N/2−n)

n = 0, . . . , N/2− 1 (12.3.6)

and use four1 to find the inverse transform of Hn = F
(1)
n + iF

(2)
n .

Surprisingly, the actual algebraic steps are virtually identical to those of
the forward transform.

Here is a representation of what we have said:

SUBROUTINE realft(data,n,isign)
INTEGER isign,n
REAL data(n)

C USES four1
Calculates the Fourier transform of a set of n real-valued data points. Replaces this data
(which is stored in array data(1:n)) by the positive frequency half of its complex Fourier
transform. The real-valued first and last components of the complex transform are returned
as elements data(1) and data(2), respectively. n must be a power of 2. This routine
also calculates the inverse transform of a complex data array if it is the transform of real
data. (Result in this case must be multiplied by 2/n.)

INTEGER i,i1,i2,i3,i4,n2p3
REAL c1,c2,h1i,h1r,h2i,h2r,wis,wrs
DOUBLE PRECISION theta,wi,wpi,wpr,

* wr,wtemp Double precision for the trigonometric recurrences.
theta=3.141592653589793d0/dble(n/2) Initialize the recurrence.
c1=0.5
if (isign.eq.1) then

c2=-0.5
call four1(data,n/2,+1) The forward transform is here.

else
c2=0.5 Otherwise set up for an inverse transform.
theta=-theta

endif
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.0d0+wpr
wi=wpi
n2p3=n+3
do 11 i=2,n/4 Case i=1 done separately below.

i1=2*i-1
i2=i1+1
i3=n2p3-i2
i4=i3+1
wrs=sngl(wr)
wis=sngl(wi)
h1r=c1*(data(i1)+data(i3)) The two separate transforms are separated out of

data.h1i=c1*(data(i2)-data(i4))
h2r=-c2*(data(i2)+data(i4))
h2i=c2*(data(i1)-data(i3))
data(i1)=h1r+wrs*h2r-wis*h2i Here they are recombined to form the true trans-

form of the original real data.data(i2)=h1i+wrs*h2i+wis*h2r
data(i3)=h1r-wrs*h2r+wis*h2i
data(i4)=-h1i+wrs*h2i+wis*h2r
wtemp=wr The recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 11

508 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if (isign.eq.1) then
h1r=data(1)
data(1)=h1r+data(2)
data(2)=h1r-data(2) Squeeze the first and last data together to get

them all within the original array.else
h1r=data(1)
data(1)=c1*(h1r+data(2))
data(2)=c1*(h1r-data(2))
call four1(data,n/2,-1) This is the inverse transform for the case isign=-1.

endif
return
END

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see §19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero at the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

Fk =

N−1∑
j=1

fj sin(πjk/N) sine transform (12.3.7)

where fj , j = 0, . . . , N − 1 is the data array, and f0 ≡ 0.
At first blush this appears to be simply the imaginary part of the discrete Fourier

transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform uses sines only as a complete set
of functions in the interval from 0 to 2π, and, as we shall see, the cosine transform
uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be “force-fit” into a form that allows its calculation
via the FFT. The idea is to extend the given function rightward past its last tabulated
value. We extend the data to twice their length in such a way as to make them an
odd function about j = N , with fN = 0,

f2N−j ≡ −fj j = 0, . . . , N − 1 (12.3.8)

Consider the FFT of this extended function:

Fk =

2N−1∑
j=0

fje
2πijk/(2N) (12.3.9)

The half of this sum from j = N to j = 2N − 1 can be rewritten with the
substitution j′ = 2N − j

2N−1∑
j=N

fje
2πijk/(2N) =

N∑
j′=1

f2N−j′e
2πi(2N−j′)k/(2N)

= −
N−1∑
j′=0

fj′e
−2πij′k/(2N)

(12.3.10)

12.3 FFT of Real Functions, Sine and Cosine Transforms 509

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(a)

+1

0

−1

+1

0

−1

+1

0

−1

(b)

(c)

0 2π

5

4 2

1

3

123

4

5

1

2
3

4

5

Figure 12.3.1. Basis functions used by the Fourier transform (a), sine transform (b), and cosine transform
(c), are plotted. The first five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functions labeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

so that

Fk =

N−1∑
j=0

fj

[
e2πijk/(2N) − e−2πijk/(2N)

]

= 2i

N−1∑
j=0

fj sin(πjk/N)

(12.3.11)

Thus, up to a factor 2i we get the sine transform from the FFT of the extended
function.

This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the real part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especially in view of the simplicity
of the method. When we work with partial differential equations in two or three
dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.

510 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

From the original real data array fj we will construct an auxiliary array yj and
apply to it the routine realft. The output will then be used to construct the desired
transform. For the sine transform of data fj, j = 1, . . . , N−1, the auxiliary array is

y0 = 0

yj = sin(jπ/N)(fj + fN−j) +
1

2
(fj − fN−j) j = 1, . . . , N − 1

(12.3.12)

This array is of the same dimension as the original. Notice that the first term is
symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft is applied to yj , the result has real parts Rk and imaginary parts Ik given by

Rk =

N−1∑
j=0

yj cos(2πjk/N)

=

N−1∑
j=1

(fj + fN−j) sin(jπ/N) cos(2πjk/N)

=

N−1∑
j=0

2fj sin(jπ/N) cos(2πjk/N)

=

N−1∑
j=0

fj

[
sin

(2k + 1)jπ

N
− sin

(2k − 1)jπ

N

]
= F2k+1 − F2k−1 (12.3.13)

Ik =

N−1∑
j=0

yj sin(2πjk/N)

=
N−1∑
j=1

(fj − fN−j)
1

2
sin(2πjk/N)

=

N−1∑
j=0

fj sin(2πjk/N)

= F2k (12.3.14)

Therefore Fk can be determined as follows:

F2k = Ik F2k+1 = F2k−1 +Rk k = 0, . . . , (N/2− 1) (12.3.15)

The even terms of Fk are thus determined very directly. The odd terms require
a recursion, the starting point of which follows from setting k = 0 in equation
(12.3.15) and using F1 = −F−1:

F1 =
1

2
R0 (12.3.16)

The implementing program is

12.3 FFT of Real Functions, Sine and Cosine Transforms 511

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE sinft(y,n)
INTEGER n
REAL y(n)

C USES realft
Calculates the sine transform of a set of n real-valued data points stored in array y(1:n).
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

INTEGER j
REAL sum,y1,y2
DOUBLE PRECISION theta,wi,wpi,wpr,

* wr,wtemp Double precision in the trigonometric recurrences.
theta=3.141592653589793d0/dble(n) Initialize the recurrence.
wr=1.0d0
wi=0.0d0
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
y(1)=0.0
do 11 j=1,n/2

wtemp=wr
wr=wr*wpr-wi*wpi+wr Calculate the sine for the auxiliary array.
wi=wi*wpr+wtemp*wpi+wi The cosine is needed to continue the recurrence.
y1=wi*(y(j+1)+y(n-j+1)) Construct the auxiliary array.
y2=0.5*(y(j+1)-y(n-j+1))
y(j+1)=y1+y2 Terms j and N − j are related.
y(n-j+1)=y1-y2

enddo 11

call realft(y,n,+1) Transform the auxiliary array.
sum=0.0
y(1)=0.5*y(1) Initialize the sum used for odd terms below.
y(2)=0.0
do 12 j=1,n-1,2

sum=sum+y(j)
y(j)=y(j+1) Even terms in the transform are determined directly.
y(j+1)=sum Odd terms are determined by this running sum.

enddo 12

return
END

The sine transform, curiously, is its own inverse. If you apply it twice, you get the
original data, but multiplied by a factor of N/2.

The other common boundary condition for differential equations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is the cosine transform. There are several possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of double the length, and/or from whether the extended array
contains 2N − 1, 2N , or some other number of points. In practice, only two of the
numerous possibilities are useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses N + 1 data points:

Fk =
1

2
[f0 + (−1)kfN] +

N−1∑
j=1

fj cos(πjk/N) (12.3.17)

It results from extending the given array to an even array about j = N , with

f2N−j = fj, j = 0, . . . , N − 1 (12.3.18)

512 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you substitute this extended array into equation (12.3.9),and follow steps analogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
just twice the cosine transform (12.3.17). Another way of thinking about the formula
(12.3.17) is to notice that it is the Chebyshev Gauss-Lobatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency.
In this case the auxiliary function is

yj =
1

2
(fj + fN−j) − sin(jπ/N)(fj − fN−j) j = 0, . . . , N − 1 (12.3.19)

Instead of equation (12.3.15), realft now gives

F2k = Rk F2k+1 = F2k−1 + Ik k = 0, . . . , (N/2− 1) (12.3.20)

The starting value for the recursion for odd k in this case is

F1 =
1

2
(f0 − fN) +

N−1∑
j=1

fj cos(jπ/N) (12.3.21)

This sum does not appear naturally among the Rk and Ik , and so we accumulate it
during the generation of the array yj .

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has N + 1 input and output values, it passes an array only
of length N to realft.

SUBROUTINE cosft1(y,n)
INTEGER n
REAL y(n+1)

C USES realft
Calculates the cosine transform of a set y(1:n+1) of real-valued data points. The trans-
formed data replace the original data in array y. n must be a power of 2. This program,
without changes, also calculates the inverse cosine transform, but in this case the output
array should be multiplied by 2/n.

INTEGER j
REAL sum,y1,y2
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp For trig. recurrences.
theta=3.141592653589793d0/n Initialize the recurrence.
wr=1.0d0
wi=0.0d0
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
sum=0.5*(y(1)-y(n+1))
y(1)=0.5*(y(1)+y(n+1))
do 11 j=1,n/2-1 j=n/2 unnecessary since y(n/2+1) unchanged.

wtemp=wr
wr=wr*wpr-wi*wpi+wr Carry out the recurrence.
wi=wi*wpr+wtemp*wpi+wi
y1=0.5*(y(j+1)+y(n-j+1)) Calculate the auxiliary function.
y2=(y(j+1)-y(n-j+1))
y(j+1)=y1-wi*y2 The values for j and N − j are related.
y(n-j+1)=y1+wi*y2
sum=sum+wr*y2 Carry along this sum for later use in unfolding the

transform.enddo 11

12.3 FFT of Real Functions, Sine and Cosine Transforms 513

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call realft(y,n,+1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=sum sum is the value of F1 in equation (12.3.21).
do 12 j=4,n,2

sum=sum+y(j) Equation (12.3.20).
y(j)=sum

enddo 12

return
END

The second important form of the cosine transform is defined by

Fk =

N−1∑
j=0

fj cos
πk(j + 1

2)

N
(12.3.22)

with inverse

fj =
2

N

N−1∑′

k=0

Fk cos
πk(j + 1

2
)

N
(12.3.23)

Here the prime on the summation symbol means that the term for k = 0 has a
coefficient of 1

2 in front. This form arises by extending the given data, defined for
j = 0, . . . , N −1, to j = N, . . . , 2N−1 in such a way that it is even about the point
N − 1

2
and periodic. (It is therefore also even about j = −1

2
.) The form (12.3.23)

is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It is also the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

yj =
1

2
(fj + fN−j−1)− sin

π(j + 1
2)

N
(fj − fN−j−1) j = 0, . . . , N − 1

(12.3.24)

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), we find

F2k = cos
πk

N
Rk − sin

πk

N
Ik (12.3.25)

F2k−1 = sin
πk

N
Rk + cos

πk

N
Ik + F2k+1 (12.3.26)

Note that equation (12.3.26) gives

FN−1 =
1

2
RN/2 (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from k = N/2− 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps
to find the inverse. Here is the routine:

514 Chapter 12. Fast Fourier Transform

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE cosft2(y,n,isign)
INTEGER isign,n
REAL y(n)

C USES realft
Calculates the “staggered” cosine transform of a set y(1:n) of real-valued data points.
The transformed data replace the original data in array y. n must be a power of 2. Set
isign to +1 for a transform, and to −1 for an inverse transform. For an inverse transform,
the output array should be multiplied by 2/n.

INTEGER i
REAL sum,sum1,y1,y2,ytemp
DOUBLE PRECISION theta,wi,wi1,wpi,wpr,wr,wr1,wtemp,PI

Double precision for the trigonometric recurrences.
PARAMETER (PI=3.141592653589793d0)
theta=0.5d0*PI/n Initialize the recurrences.
wr=1.0d0
wi=0.0d0
wr1=cos(theta)
wi1=sin(theta)
wpr=-2.0d0*wi1**2
wpi=sin(2.d0*theta)
if(isign.eq.1)then Forward transform.

do 11 i=1,n/2
y1=0.5*(y(i)+y(n-i+1)) Calculate the auxiliary function.
y2=wi1*(y(i)-y(n-i+1))
y(i)=y1+y2
y(n-i+1)=y1-y2
wtemp=wr1 Carry out the recurrence.
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 11

call realft(y,n,1) Calculate the transform of the auxiliary function.
do 12 i=3,n,2 Even terms.

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
y1=y(i)*wr-y(i+1)*wi
y2=y(i+1)*wr+y(i)*wi
y(i)=y1
y(i+1)=y2

enddo 12

sum=0.5*y(2) Initialize recurrence for odd terms with 1
2
RN/2.

do 13 i=n,2,-2 Carry out recurrence for odd terms.
sum1=sum
sum=sum+y(i)
y(i)=sum1

enddo 13

else if(isign.eq.-1)then Inverse transform.
ytemp=y(n)
do 14 i=n,4,-2 Form difference of odd terms.

y(i)=y(i-2)-y(i)
enddo 14

y(2)=2.0*ytemp
do 15 i=3,n,2 Calculate Rk and Ik .

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
y1=y(i)*wr+y(i+1)*wi
y2=y(i+1)*wr-y(i)*wi
y(i)=y1
y(i+1)=y2

enddo 15

call realft(y,n,-1)
do 16 i=1,n/2 Invert auxiliary array.

y1=y(i)+y(n-i+1)

12.4 FFT in Two or More Dimensions 515

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y2=(0.5/wi1)*(y(i)-y(n-i+1))
y(i)=0.5*(y1+y2)
y(n-i+1)=0.5*(y1-y2)
wtemp=wr1
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 16

endif
return
END

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements of fj into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10–10.

Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849–863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455–1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004–1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex function h(k1, k2) defined over the two-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can define its two-dimensional discrete
Fourier transform as a complex functionH(n1, n2), defined over the same grid,

H(n1, n2) ≡
N2−1∑
k2=0

N1−1∑
k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1) h(k1, k2)

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum over k2,

