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data(k1)=data(k1)+tempr
data(k1+1)=data(k1+1)+tempi

enddo 15

enddo 16

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 17

ifp1=ifp2
goto 2
endif
nprev=n*nprev

enddo 18

return
END

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. An image is usually represented as a two-dimensional array of pixel intensities,
real (and usually positive) numbers. One commonly desires to filter high, or low,
frequency spatial components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data “in place.” We
want a routine with functionality similar to the multidimensional FFT routinefourn
(§12.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of §12.3 leading to
the one-dimensional routine realft. (You might wish to review that material at
this point, particularly equation 12.3.5.)

It is convenient to think of the independent variables n1, . . . , nL in equation
(12.4.3) as representing an L-dimensional vector ~n in wave-number space, with
values on the lattice of integers. The transformH(n1, . . . , nL) is then denotedH(~n).

It is easy to see that the transformH(~n) is periodic in each of its L dimensions.
Specifically, if ~P1, ~P2, ~P3, . . . denote the vectors (N1, 0, 0, . . .), (0, N2, 0, . . .),
(0, 0, N3, . . .), and so forth, then

H(~n± ~Pj) = H(~n) j = 1, . . . , L (12.5.1)
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Equation (12.5.1) holds for any input data, real or complex. When the data is real,
we have the additional symmetry

H(−~n) = H(~n)* (12.5.2)

Equations (12.5.1) and (12.5.2) imply that the full transform can be trivially obtained
from the subset of lattice values ~n that have

0 ≤ n1 ≤
N1

2
0 ≤ n2 ≤ N2 − 1

· · ·

0 ≤ nL ≤ NL − 1

(12.5.3)

In fact, this set of values is overcomplete, because there are additional symmetry
relations among the transform values that have n1 = 0 and n1 = N1/2. However
these symmetries are complicated and their use becomes extremely confusing.
Therefore, we will compute our FFT on the lattice subset of equation (12.5.3),
even though this requires a small amount of extra storage for the answer, i.e., the
transform is not quite “in place.” (Although an in-place transform is in fact possible,
we have found it virtually impossible to explain to any user how to unscramble its
output, i.e., where to find the real and imaginary components of the transform at
some particular frequency!)

Figure 12.5.1 shows the storage scheme that we will use for the input data
and the output transform. The figure is specialized to the case of two dimensions,
L = 2, but the generalization to higher dimensions is obvious. The input data is
a two-dimensional real array of dimensions N1 (called nn1) by N2 (called nn2).
Notice that the FORTRAN subscripts number from 1 to nn1, and not from 0 toN1− 1.
The output spectrum is in two complex arrays, one two-dimensional and the other
one-dimensional. The two-dimensional one, spec, has dimensions nn1/2 by nn2.
This is exactly half the size of the input data array; but since it is complex, it is
the same amount of storage. In fact, spec will share storage with (and overwrite)
the input data array. As the figure shows, spec contains those spectral components
whose first component of frequency, f1, ranges from zero to just short of the
Nyquist frequency fc . The full range of positive and negative second-component of
frequencies, f2, is stored, in wrap-around order (see §12.2), with negative frequencies
shifted by exactly one period to put them “above” the positive frequencies, as the
figure indicates. The figure also indicates how the additional L − 1 (here, one-)
dimensional array speq stores only that single value of n1 that corresponds to the
Nyquist frequency, but all values of n2, etc.

With this much introduction, the implementing procedure, called rlft3, is
something of an anticlimax. The routine is written for the case ofL = 3 dimensions,
but (we will explain below) it can be used without modification for L = 2 also; and
it is quite trivial to generalize it to larger L. Look at the innermost (“do 13”) loop in
the procedure, and you will see equation (12.3.5) implemented on the first transform
index. The case of i1=1 is coded separately, to account for the fact that speq is
to be filled instead of spec (which is here called data since it shares storage with



12.5 Fourier Transforms of Real Data in Two and Three Dimensions 521

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Input data array

Output spectrum
arrays

nn1, 1 nn1, nn2

REAL data(nn1,nn2)

1,1

1,1

1, nn2

nn1/2,1 nn1/2,nn2

1,nn2

COMPLEX speq(nn2)

COMPLEX spec(nn1/2,nn2)

f1  = fc

f1  = 0

f 2
  =

 f c

f 2
  =

 0

1 nn2

f 2
  =

 –
f c

f1  = – fc

Figure 12.5.1. Input and output data arrangement for rlft3 in the case of two-dimensional data. The
input data array is a real, two-dimensionalarray. The outputdata arrayspec is a complex, two-dimensional
array whose (1,1) element contains the f1 = f2 = 0 spectral component; a complete set of f2 values
are stored in wrap-around order, while only positive f1 values are stored (others being obtainable by
symmetry). The output array speq contains components with f1 equal to the Nyquist frequency.
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the input array). The three enclosing do loops (indices i2, i1, and i3, from inside
to outside) could in fact be done in any order — their actions all commute. We
chose the order shown because of the following considerations: (i) i1 should not be
the inner loop, because if it is, then the recurrence relations on wr and wi become
burdensome. (ii) On virtual-memory machines, i3 should be the outer loop, because
(with FORTRAN order of array storage) this results in the array data, which might be
very large, being accessed in block sequential order.

Keep in mind that all the computing in rlft3 is negligible, by a logarithmic
factor, compared with the actual work of computing the associated complex FFT,
done in the routine fourn. For this reason, we allow ourselves the clarity of using
FORTRAN complex arithmetic even when (as in the multiplications by c1 and c2)
there are a few unnecessary operations. The routine rlft3 is based on an earlier
routine by G.B. Rybicki.

SUBROUTINE rlft3(data,speq,nn1,nn2,nn3,isign)
INTEGER isign,nn1,nn2,nn3
COMPLEX data(nn1/2,nn2,nn3),speq(nn2,nn3)

C USES fourn
Given a two- or three-dimensional real array data whose dimensions are nn1, nn2, nn3
(where nn3 is 1 for the case of a two-dimensional array), this routine returns (for isign=1)
the complex fast Fourier transform as two complex arrays: On output, data contains the
zero and positive frequency values of the first frequency component, while speq contains
the Nyquist critical frequency values of the first frequency component. Second (and third)
frequency components are stored for zero, positive, and negative frequencies, in standard
wrap-around order. For isign=-1, the inverse transform (times nn1*nn2*nn3/2 as a
constant multiplicative factor) is performed, with output data (viewed as a real array)
deriving from input data (viewed as complex) and speq. The dimensions nn1, nn2, nn3
must always be integer powers of 2.

INTEGER i1,i2,i3,j1,j2,j3,nn(3)
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp
COMPLEX c1,c2,h1,h2,w Note that data is dimensioned as complex, its output

format.c1=cmplx(0.5,0.0)
c2=cmplx(0.0,-0.5*isign)
theta=6.28318530717959d0/dble(isign*nn1)
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
nn(1)=nn1/2
nn(2)=nn2
nn(3)=nn3
if(isign.eq.1)then Case of forward transform.

call fourn(data,nn,3,isign) Here is where most all of the compute time is spent.
do 12 i3=1,nn3 Extend data periodically into speq.

do 11 i2=1,nn2
speq(i2,i3)=data(1,i2,i3)

enddo 11

enddo 12

endif
do 15 i3=1,nn3

j3=1 Zero frequency is its own reflection, otherwise locate cor-
responding negative frequency in wrap-around order.if (i3.ne.1) j3=nn3-i3+2

wr=1.0d0 Initialize trigonometric recurrence.
wi=0.0d0
do 14 i1=1,nn1/4+1

j1=nn1/2-i1+2
do 13 i2=1,nn2

j2=1
if (i2.ne.1) j2=nn2-i2+2
if(i1.eq.1)then Equation (12.3.5).

h1=c1*(data(1,i2,i3)+conjg(speq(j2,j3)))
h2=c2*(data(1,i2,i3)-conjg(speq(j2,j3)))
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Figure 12.5.2. (a) A two-dimensional image with intensities either purely black or purely white. (b) The
same image, after it has been low-pass filtered usingrlft3. Regionswith fine-scale features become gray.

data(1,i2,i3)=h1+h2
speq(j2,j3)=conjg(h1-h2)

else
h1=c1*(data(i1,i2,i3)+conjg(data(j1,j2,j3)))
h2=c2*(data(i1,i2,i3)-conjg(data(j1,j2,j3)))
data(i1,i2,i3)=h1+w*h2
data(j1,j2,j3)=conjg(h1-w*h2)

endif
enddo 13

wtemp=wr Do the recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
w=cmplx(sngl(wr),sngl(wi))

enddo 14

enddo 15

if(isign.eq.-1)then Case of reverse transform.
call fourn(data,nn,3,isign)

endif
return
END

We now give some fragments from notional calling programs, to clarify the
use of rlft3 for two- and three-dimensional data. Note that the routine does not
actually distinguish between two and three dimensions; two is treated like three, but
with the third dimension having length 1. Since the third dimension is the outer
loop, almost no inefficiency is introduced.

The first program fragment FFTs a two-dimensional data array, allows for some
processing on it, e.g., filtering, and then takes the inverse transform. Figure 12.5.2
shows an example of the use of this kind of code: A sharp image becomes blurry
when its high-frequency spatial components are suppressed by the factor (here)
max (1− 6f2/f2

c , 0). The second program example illustrates a three-dimensional
transform, where the three dimensions have different lengths. The third program
example is an example of convolution, as it might occur in a program to compute
the potential generated by a three-dimensional distribution of sources.
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PROGRAM exmpl1
This fragment shows how one might filter a 256 by 256 digital image.

INTEGER N1,N2,N3
PARAMETER (N1=256,N2=256,N3=1) Note that the third component must be set to 1.

C USES rlft3
REAL data(N1,N2)
COMPLEX spec(N1/2,N2),speq(N2)
EQUIVALENCE (data,spec)

C ... Here the image would be loaded into data.
call rlft3(data,speq,N1,N2,N3,1)

C ... Here the arrays spec and speq would be multiplied by a suit-
able filter function (of frequency).call rlft3(data,speq,N1,N2,N3,-1)

C ... Here the filtered image would be unloaded from data.
END

PROGRAM exmpl2
This fragment shows how one might FFT a real three-dimensional array of size 32 by 64
by 16.

INTEGER N1,N2,N3
PARAMETER (N1=32,N2=64,N3=16)

C USES rlft3
REAL data(N1,N2,N3)
COMPLEX spec(N1/2,N2,N3),speq(N2,N3)
EQUIVALENCE (data,spec)

C ... Here load data.
call rlft3(data,speq,N1,N2,N3,1)

C ... Here unload spec and speq.
END

PROGRAM exmpl3
This fragment shows how one might convolve two real, three-dimensional arrays of size 32
by 32 by 32, replacing the first array by the result.

INTEGER N
PARAMETER (N=32)

C USES rlft3
INTEGER j
REAL fac,data1(N,N,N),data2(N,N,N)
COMPLEX spec1(N/2,N,N),speq1(N,N),spec2(N/2,N,N),speq2(N,N),

* zpec1(N*N*N/2),zpeq1(N*N),zpec2(N*N*N/2),zpeq2(N*N)
EQUIVALENCE (data1,spec1,zpec1), (data2,spec2,zpec2),

* (speq1,zpeq1), (speq2,zpeq2)
C ...

call rlft3(data1,speq1,N,N,N,1) FFT both input arrays.
call rlft3(data2,speq2,N,N,N,1)
fac=2./(N*N*N) Factor needed to get normalized inverse.
do 11 j=1,N*N*N/2 The sole purpose of the zpecs and zpeqs is to make

this a single do-loop instead of three-nested ones.zpec1(j)=fac*zpec1(j)*zpec2(j)
enddo 11

do 12 j=1,N*N
zpeq1(j)=fac*zpeq1(j)*zpeq2(j)

enddo 12

call rlft3(data1,speq1,N,N,N,-1) Inverse FFT the product of the two FFTs.
C ...

END

To extend rlft3 to four dimensions, you simply add an additional (outer) nested
do loop in i4, analogous to the present i3. (Modifying the routine to do an arbitrary
number of dimensions, as in fourn, is a good programming exercise for the reader.)

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Swartztrauber, P. N. 1986, Mathematics of Computation, vol. 47, pp. 323–346.
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12.6 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of a really
large data set, larger than the size of your computer’s physical memory. In such a case,
the data will be stored on some external medium, such as magnetic or optical tape or disk.
Needed is an algorithm that makes some manageable number of sequential passes through
the external data, processing it on the fly and outputting intermediate results to other external
media, which can be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton [1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit-reverse 2M

values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copy two values from the first device, then two values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at a time. After completion of pass M − 1,
the data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half
the input data on one device, half on another. In the first pass, one complex value is read
from each input device. Two combinations are formed, and one is written to each of two
output devices. After this “computing” pass, the devices are rewound, and a “permutation”
pass is performed, where groups of values are read from the first input device and alternately
written to the first and second output devices; when the first input device is exhausted, the
second is similarly processed. This sequenceof computing and permutation passes is repeated
M − K − 1 times, where 2K is the size of internal buffer available to the program. The
second phase of the computation consists of a finalK computation passes. What distinguishes
the second phase from the first is that, now, the permutations are local enough to do in place
during the computation. There are thus no separate permutation passes in the second phase.
In all, there are 2M − K − 2 passes through the data.

Here is an implementation of Singleton’s algorithm, based on [1]:

SUBROUTINE fourfs(iunit,nn,ndim,isign)
INTEGER ndim,nn(ndim),isign,iunit(4),KBF
PARAMETER (KBF=128)

C USES fourew
One- or multi-dimensional Fourier transform of a large data set stored on external media.
On input, ndim is the number of dimensions, and nn(1:ndim) contains the lengths of
each dimension (number of complex values), which must be powers of two. iunit(1:4)
contains the unit numbers of 4 sequential files, each large enough to hold half of the data.
The four units must be opened for FORTRAN unformatted access. The input data must be
in FORTRAN normal order, with its first half stored on unit iunit(1), its second half on
iunit(2), in unformatted form, with KBF real numbers per record. isign should be set
to 1 for the Fourier transform, to −1 for its inverse. On output, values in the array iunit
may have been permuted; the first half of the result is stored on iunit(3), the second
half on iunit(4). N.B.: For ndim > 1, the output is stored by rows, i.e., not in FORTRAN
normal order; in other words, the output is the transpose of that which would have been
produced by routine fourn.

INTEGER j,j12,jk,k,kk,n,mm,kc,kd,ks,kr,nr,ns,nv,jx,
* mate(4),na,nb,nc,nd

REAL tempr,tempi,afa(KBF),afb(KBF),afc(KBF)
DOUBLE PRECISION wr,wi,wpr,wpi,wtemp,theta
SAVE mate
DATA mate /2,1,4,3/


