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13.1 Convolution and Deconvolution Using
the FFT

We have defined the convolution of two functions for the continuous case in
equation (12.0.8), and have given the convolution theorem as equation (12.0.9). The
theorem says that the Fourier transform of the convolution of two functions is equal
to the product of their individual Fourier transforms. Now, we want to deal with
the discrete case. We will mention first the context in which convolution is a useful
procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functions r(t) and s(t), denoted r ∗ s, is mathematically
equal to their convolution in the opposite order, s ∗ r. Nevertheless, in most
applications the two functions have quite different meanings and characters. One of
the functions, say s, is typically a signal or data stream, which goes on indefinitely
in time (or in whatever the appropriate independent variable may be). The other
function r is a “response function,” typically a peaked function that falls to zero in
both directions from its maximum. The effect of convolution is to smear the signal
s(t) in time according to the recipe provided by the response function r(t), as shown
in Figure 13.1.1. In particular, a spike or delta-function of unit area in swhich occurs
at some time t0 is supposed to be smeared into the shape of the response function
itself, but translated from time 0 to time t0 as r(t − t0).

In the discrete case, the signal s(t) is represented by its sampled values at equal
time intervals sj . The response function is also a discrete set of numbers rk, with the
following interpretation: r0 tells what multiple of the input signal in one channel (one
particular value of j) is copied into the identical output channel (same value of j);
r1 tells what multiple of input signal in channel j is additionally copied into output
channel j + 1; r−1 tells the multiple that is copied into channel j − 1; and so on for
both positive and negative values of k in rk . Figure 13.1.2 illustrates the situation.

Example: a response function with r0 = 1 and all other rk’s equal to zero
is just the identity filter: convolution of a signal with this response function gives
identically the signal. Another example is the response function with r14 = 1.5 and
all other rk’s equal to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite duration M :

(r ∗ s)j ≡
M/2∑

k=−M/2+1

sj−k rk (13.1.1)

If a discrete response function is nonzero only in some range −M/2 < k ≤ M/2,
where M is a sufficiently large even integer, then the response function is called a
finite impulse response (FIR), and its duration isM . (Notice that we are definingM
as the number of nonzero values of rk; these values span a time interval of M − 1
sampling times.) In most practical circumstances the case of finiteM is the case of
interest, either because the response really has a finite duration, or because we choose
to truncate it at some point and approximate it by a finite-duration response function.

The discrete convolution theorem is this: If a signal sj is periodic with period
N , so that it is completely determined by the N values s0, . . . , sN−1, then its
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s(t)

r(t)

r*s(t)

t

t

t

Figure 13.1.1. Example of the convolution of two functions. A signal s(t) is convolved with a
response function r(t). Since the response function is broader than some features in the original signal,
these are “washed out” in the convolution. In the absence of any additional noise, the process can be
reversed by deconvolution.

sj
0

0

0

N − 1
rk

(r*s)j

N − 1

N − 1

Figure 13.1.2. Convolution of discretely sampled functions. Note how the response function for negative
times is wrapped around and stored at the extreme right end of the array rk .
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discrete convolution with a response function of finite duration N is a member of
the discrete Fourier transform pair,

N/2∑
k=−N/2+1

sj−k rk ⇐⇒ SnRn (13.1.2)

Here Sn, (n = 0, . . . , N − 1) is the discrete Fourier transform of the values
sj , (j = 0, . . . , N − 1), while Rn, (n = 0, . . . , N − 1) is the discrete Fourier
transform of the values rk, (k = 0, . . . , N − 1). These values of rk are the same
ones as for the range k = −N/2 + 1, . . . , N/2, but in wrap-around order, exactly
as was described at the end of §12.2.

Treatment of End Effects by Zero Padding

The discrete convolution theorem presumes a set of two circumstances that
are not universal. First, it assumes that the input signal is periodic, whereas real
data often either go forever without repetition or else consist of one nonperiodic
stretch of finite length. Second, the convolution theorem takes the duration of the
response to be the same as the period of the data; they are both N . We need to
work around these two constraints.

The second is very straightforward. Almost always, one is interested in a
response function whose duration M is much shorter than the length of the data
set N . In this case, you simply extend the response function to length N by
padding it with zeros, i.e., define rk = 0 for M/2 ≤ k ≤ N/2 and also for
−N/2 + 1 ≤ k ≤ −M/2 + 1. Dealing with the first constraint is more challenging.
Since the convolution theorem rashly assumes that the data are periodic, it will
falsely “pollute” the first output channel (r ∗ s)0 with some wrapped-around data
from the far end of the data stream sN−1 , sN−2, etc. (See Figure 13.1.3.) So,
we need to set up a buffer zone of zero-padded values at the end of the sj vector,
in order to make this pollution zero. How many zero values do we need in this
buffer? Exactly as many as the most negative index for which the response function
is nonzero. For example, if r−3 is nonzero, while r−4, r−5, . . . are all zero, then we
need three zero pads at the end of the data: sN−3 = sN−2 = sN−1 = 0. These
zeros will protect the first output channel (r ∗ s)0 from wrap-around pollution. It
should be obvious that the second output channel (r ∗ s)1 and subsequent ones will
also be protected by these same zeros. Let K denote the number of padding zeros,
so that the last actual input data point is sN−K−1.

What now about pollution of the very last output channel? Since the data
now end with sN−K−1, the last output channel of interest is (r ∗ s)N−K−1. This
channel can be polluted by wrap-around from input channel s0 unless the number
K is also large enough to take care of the most positive index k for which the
response function rk is nonzero. For example, if r0 through r6 are nonzero, while
r7, r8 . . . are all zero, then we need at least K = 6 padding zeros at the end of the
data: sN−6 = . . . = sN−1 = 0.

To summarize — we need to pad the data with a number of zeros on one
end equal to the maximum positive duration or maximum negative duration of
the response function, whichever is larger. (For a symmetric response function of
durationM , you will need onlyM/2 zero pads.) Combining this operation with the
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m+

spoiled spoiledunspoiled

m−

response function

sample of original function

convolution

m+

m−

Figure 13.1.3. The wrap-around problem in convolving finite segments of a function. Not only must
the response function wrap be viewed as cyclic, but so must the sampled original function. Therefore
a portion at each end of the original function is erroneously wrapped around by convolution with the
response function.

response function

m+ m−

m−

m+ m−

m+

zero paddingoriginal function

spoiled

but irrelevant

unspoiled

not spoiled because zero

Figure 13.1.4. Zero padding as solution to the wrap-around problem. The original function is extended
by zeros, serving a dual purpose: When the zeros wrap around, they do not disturb the true convolution;
and while the original function wraps around onto the zero region, that region can be discarded.
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padding of the response rk described above, we effectively insulate the data from
artifacts of undesired periodicity. Figure 13.1.4 illustrates matters.

Use of FFT for Convolution

The data, complete with zero padding, are now a set of real numbers sj , j =
0, . . . , N − 1, and the response function is zero padded out to duration N and
arranged in wrap-around order. (Generally this means that a large contiguous section
of the rk’s, in the middle of that array, is zero, with nonzero values clustered at
the two extreme ends of the array.) You now compute the discrete convolution as
follows: Use the FFT algorithm to compute the discrete Fourier transform of s and
of r. Multiply the two transforms together component by component, remembering
that the transforms consist of complex numbers. Then use the FFT algorithm to
take the inverse discrete Fourier transform of the products. The answer is the
convolution r ∗ s.

What about deconvolution? Deconvolution is the process of undoing the
smearing in a data set that has occurred under the influence of a known response
function, for example, because of the known effect of a less-than-perfect measuring
apparatus. The defining equation of deconvolution is the same as that for convolution,
namely (13.1.1), except now the left-hand side is taken to be known, and (13.1.1) is
to be considered as a set ofN linear equations for the unknown quantities sj . Solving
these simultaneous linear equations in the time domain of (13.1.1) is unrealistic in
most cases, but the FFT renders the problem almost trivial. Instead of multiplying
the transform of the signal and response to get the transform of the convolution, we
just divide the transform of the (known) convolution by the transform of the response
to get the transform of the deconvolved signal.

This procedure can go wrong mathematically if the transform of the response
function is exactly zero for some value Rn, so that we can’t divide by it. This
indicates that the original convolution has truly lost all information at that one
frequency, so that a reconstruction of that frequency component is not possible.
You should be aware, however, that apart from mathematical problems, the process
of deconvolution has other practical shortcomings. The process is generally quite
sensitive to noise in the input data, and to the accuracy to which the response function
rk is known. Perfectly reasonable attempts at deconvolution can sometimes produce
nonsense for these reasons. In such cases you may want to make use of the additional
process of optimal filtering, which is discussed in §13.3.

Here is our routine for convolution and deconvolution, using the FFT as
implemented in four1 of §12.2. Since the data and response functions are real,
not complex, both of their transforms can be taken simultaneously using twofft.
Note, however, that two calls to realft should be substituted if data and respns

have very different magnitudes, to minimize roundoff. The data are assumed to be
stored in a real array data of length n, which must be an integer power of two.
The response function is assumed to be stored in wrap-around order in a real array
respns of length m. The value of m can be any odd integer less than or equal to
n, since the first thing the program does is to recopy the response function into the
appropriate wrap-around order in an array of length n. The answer is returned in
ans, which is also used as working space.
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SUBROUTINE convlv(data,n,respns,m,isign,ans)
INTEGER isign,m,n,NMAX
REAL data(n),respns(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated size of FFT.

C USES realft,twofft
Convolves or deconvolves a real data set data(1:n) (including any user-supplied zero
padding) with a response function respns, stored in wrap-around order in a real array of
length m ≤ n. (m should be an odd integer.) Wrap-around order means that the first half
of the array respns contains the impulse response function at positive times, while the
second half of the array contains the impulse response function at negative times, counting
down from the highest element respns(m). On input isign is +1 for convolution, −1
for deconvolution. The answer is returned in the first n components of ans. However, ans
must be supplied in the calling program with length at least 2*n, for consistency with
twofft. n MUST be an integer power of two.

INTEGER i,no2
COMPLEX fft(NMAX)
do 11 i=1,(m-1)/2 Put respns in array of length n.

respns(n+1-i)=respns(m+1-i)
enddo 11

do 12 i=(m+3)/2,n-(m-1)/2 Pad with zeros.
respns(i)=0.0

enddo 12

call twofft(data,respns,fft,ans,n) FFT both at once.
no2=n/2
do 13 i=1,no2+1

if (isign.eq.1) then
ans(i)=fft(i)*ans(i)/no2 Multiply FFTs to convolve.

else if (isign.eq.-1) then
if (abs(ans(i)).eq.0.0) pause ’deconvolving at response zero in convlv’
ans(i)=fft(i)/ans(i)/no2 Divide FFTs to deconvolve.

else
pause ’no meaning for isign in convlv’

endif
enddo 13

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack last element with first for realft.
call realft(ans,n,-1) Inverse transform back to time domain.
return
END

Convolving or Deconvolving Very Large Data Sets

If your data set is so long that you do not want to fit it into memory all at
once, then you must break it up into sections and convolve each section separately.
Now, however, the treatment of end effects is a bit different. You have to worry
not only about spurious wrap-around effects, but also about the fact that the ends of
each section of data should have been influenced by data at the nearby ends of the
immediately preceding and following sections of data, but were not so influenced
since only one section of data is in the machine at a time.

There are two, related, standard solutions to this problem. Both are fairly
obvious, so with a few words of description here, you ought to be able to implement
them for yourself. The first solution is called the overlap-save method. In this
technique you pad only the very beginning of the data with enough zeros to avoid
wrap-around pollution. After this initial padding, you forget about zero padding
altogether. Bring in a section of data and convolve or deconvolve it. Then throw
out the points at each end that are polluted by wrap-around end effects. Output only
the remaining good points in the middle. Now bring in the next section of data, but
not all new data. The first points in each new section overlap the last points from
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convolution (out)A A + B B B + C C

C

c

cba

A
b

B

0 0a

00

0 0

data (in)

Figure 13.1.5. The overlap-add method for convolving a response with a very long signal. The
signal data is broken up into smaller pieces. Each is zero padded at both ends and convolved (denoted
by bold arrows in the figure). Finally the pieces are added back together, including the overlapping
regions formed by the zero pads.

the preceding section of data. The sections must be overlapped sufficiently so that
the polluted output points at the end of one section are recomputed as the first of the
unpolluted output points from the subsequent section. With a bit of thought you can
easily determine how many points to overlap and save.

The second solution, called the overlap-add method, is illustrated in Figure
13.1.5. Here you don’t overlap the input data. Each section of data is disjoint
from the others and is used exactly once. However, you carefully zero-pad it at
both ends so that there is no wrap-around ambiguity in the output convolution or
deconvolution. Now you overlap and add these sections of output. Thus, an output
point near the end of one section will have the response due to the input points at
the beginning of the next section of data properly added in to it, and likewise for an
output point near the beginning of a section, mutatis mutandis.

Even when computer memory is available, there is some slight gain in computing
speed in segmenting a long data set, since the FFTs’ N log2 N is slightly slower than
linear in N . However, the log term is so slowly varying that you will often be much
happier to avoid the bookkeeping complexities of the overlap-add or overlap-save
methods: If it is practical to do so, just cram the whole data set into memory and
FFT away. Then you will have more time for the finer things in life, some of which
are described in succeeding sections of this chapter.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), Chap-
ter 13.
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13.2 Correlation and Autocorrelation Using
the FFT

Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation are not
as conceptually distinct as were the data and response functions that entered into
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.10) the correlation between two
continuous functions g(t) and h(t), which is denoted Corr(g, h), and is a function
of lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Corr(g, h)(t). The correlation will be large at some value of
t if the first function (g) is a close copy of the second (h) but lags it in time by
t, i.e., if the first function is shifted to the right of the second. Likewise, the
correlation will be large for some negative value of t if the first function leads the
second, i.e., is shifted to the left of the second. The relation that holds when the
two functions are interchanged is

Corr(g, h)(t) = Corr(h, g)(−t) (13.2.1)

The discrete correlation of two sampled functions gk and hk, each periodic
with period N , is defined by

Corr(g, h)j ≡
N−1∑
k=0

gj+khk (13.2.2)

The discrete correlation theorem says that this discrete correlation of two real
functions g and h is one member of the discrete Fourier transform pair

Corr(g, h)j ⇐⇒ GkHk* (13.2.3)

where Gk and Hk are the discrete Fourier transforms of gj and hj , and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call it rk) will formally be a complex vector
of length N . However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components of rk are the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag is in r0, the first component;
the correlation at lag 1 is in r1, the second component; the correlation at lag −1
is in rN−1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as


