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13.1 Convolution and Deconvolution Using
the FFT

We have defined the convolution of two functions for the continuous case in
equation (12.0.8), and have given the convolution theorem as equation (12.0.9). The
theorem says that the Fourier transform of the convolution of two functionsis equal
to the product of their individual Fourier transforms. Now, we want to dea with
the discrete case. We will mention first the context in which convolutionis auseful
procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functionsr(¢) and s(¢), denoted r s, is mathematically
equal to their convolution in the opposite order, s « r. Nevertheess, in most
applicationsthe two functions have quite different meanings and characters. One of
the functions, say s, istypicaly asignal or data stream, which goes on indefinitely
in time (or in whatever the appropriate independent variable may be). The other
function r is a “response function,” typically a pesked function that fallsto zero in
both directions from its maximum. The effect of convolutionis to smear the signa
s(t) intime according to the recipe provided by the response function r(t), as shown
inFigure13.1.1. In particular, aspikeor delta-function of unit areain s which occurs
at some time ¢ is supposed to be smeared into the shape of the response function
itself, but trandlated from time O to time ¢y as r(t — to).

Inthe discrete case, thesignd s(t) is represented by its sampled values at equal
timeintervalss;. Theresponse functionisalso adiscrete set of numbersry, withthe
followinginterpretation: o tellswhat multipleof theinput signal in one channel (one
particular value of j) is copied into the identical output channel (same vaue of j);
r1 tellswhat multiple of input signal in channel ; is additionally copied into output
channel j + 1; r_; tellsthe multiplethat is copied into channel j — 1; and so on for
both positive and negative values of k inry. Figure 13.1.2 illustratesthe situation.

Example: a response function with g = 1 and all other r;’s equal to zero
isjust the identity filter: convolution of a signal with this response function gives
identically the signal. Another example is the response function with 14, = 1.5 and
all other r;’s equa to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite duration M:

M/2

(res)i= > sj—krh (13.1.1)
k=—M/2+1

If a discrete response function is nonzero only in somerange —M/2 < k < M/2,
where M is a sufficiently large even integer, then the response function is called a
finiteimpulseresponse (FIR), and itsdurationis M. (Noticethat we are defining M
as the number of nonzero values of r; these values span atimeinterval of M — 1
sampling times.) In most practical circumstances the case of finite M isthe case of
interest, either because the responsereally has afinite duration, or because we choose
to truncateit at some point and approximateit by afinite-duration response function.

The discrete convolution theoremis this: If asigna s; is periodic with period
N, so that it is completely determined by the N values sg,...,sy_1, then its
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Figure 13.1.2. Convolution of discretely sampled functions. Note how the responsefunction for negative

times is wrapped around and stored at the extreme right end of the array ry,.
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discrete convolution with a response function of finite duration N is a member of
the discrete Fourier transform pair,

N/2
> sikrk = SuRn (13.1.2)

k=—N/2+1
Here S,, (n = 0,...,N — 1) is the discrete Fourier transform of the values
sj, (j =0,...,N—1), whileR,, (n =0,...,N — 1) is the discrete Fourier
transform of the vaues r, (k =0,..., N — 1). These values of r;, are the same

ones as for therange k = —N/2 + 1,..., N/2, but in wrap-around order, exactly
as was described at the end of §12.2.

Treatment of End Effects by Zero Padding

The discrete convolution theorem presumes a set of two circumstances that
are not universal. Firgt, it assumes that the input signal is periodic, whereas real
data often either go forever without repetition or else consist of one nonperiodic
stretch of finite length. Second, the convolution theorem takes the duration of the
response to be the same as the period of the data; they are both N. We need to
work around these two constraints.

The second is very straightforward. Almost aways, one is interested in a
response function whose duration M is much shorter than the length of the data
set N. |In this case, you simply extend the response function to length N by
padding it with zeros, i.e, define r, = 0 for M/2 < k < N/2 and dso for
—N/2+1<k<—-M/2+ 1. Dedling with the first constraint is more challenging.
Since the convolution theorem rashly assumes that the data are periodic, it will
falsely “pollute’ the first output channel (r * s)o with some wrapped-around data
from the far end of the data stream sy_1,sny_2, €tc. (See Figure 13.1.3.) So,
we need to set up a buffer zone of zero-padded values at the end of the s; vector,
in order to make this pollution zero. How many zero values do we need in this
buffer? Exactly as many as the most negative index for which the response function
isnonzero. For example, if r_3 isnonzero, whiler_4,r_5, . .. areal zero, then we
need three zero pads at the end of thedata: sy_3 = sy—2 = sy—1 = 0. These
zeros will protect the first output channel (r x s)o from wrap-around pollution. It
should be obvious that the second output channel (r * s); and subsequent ones will
also be protected by these same zeros. Let K denote the number of padding zeros,
so that the last actua input data point is sy_x_1.

What now about pollution of the very last output channel? Since the data
now end with sy_ k1, the last output channel of interest is (r x s)y_x—1. This
channel can be polluted by wrap-around from input channel sy unless the number
K is dso large enough to take care of the most positive index & for which the
response function ry, is nonzero. For example, if ro through r¢ are nonzero, while
rz,rs ... aredl zero, then we need at least K = 6 padding zeros at the end of the
data: SN_g = ... = Sy_1 = 0.

To summarize — we need to pad the data with a number of zeros on one
end equa to the maximum positive duration or maximum negative duration of
the response function, whichever islarger. (For a symmetric response function of
duration M, you will need only M /2 zero pads.) Combining thisoperation with the
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N/ response function _y

| convolution |

spoiled «———— unspoiled —M— spoiled ‘

Figure 13.1.3. The wrap-around problem in convolving finite segments of a function. Not only must
the response function wrap be viewed as cyclic, but so must the sampled original function. Therefore
a portion at each end of the original function is erroneously wrapped around by convolution with the
response function.
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Figure 13.1.4. Zero padding as solution to the wrap-around problem. The original function is extended
by zeros, serving a dual purpose: When the zeros wrap around, they do not disturb the true convolution;
and while the original function wraps around onto the zero region, that region can be discarded.
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13.1 Convolution and Deconvolution Using the FFT 535

padding of the response r;, described above, we effectively insulate the data from
artifacts of undesired periodicity. Figure 13.1.4 illustrates matters.

Use of FFT for Convolution

The data, complete with zero padding, are now a set of rea numberss;, j =
0,...,N — 1, and the response function is zero padded out to duration N and
arranged in wrap-around order. (Generally thismeans that alarge contiguous section
of the r’s, in the middle of that array, is zero, with nonzero values clustered at
the two extreme ends of the array.) You now compute the discrete convolution as
follows: Use the FFT agorithm to compute the discrete Fourier transform of s and
of r. Multiply the two transforms together component by component, remembering
that the transforms consist of complex numbers. Then use the FFT agorithm to
take the inverse discrete Fourier transform of the products. The answer is the
convolution r * s.

What about deconvolution? Deconvolution is the process of undoing the
smearing in a data set that has occurred under the influence of a known response
function, for example, because of the known effect of aless-than-perfect measuring
apparatus. The defining equation of deconvolutionisthe same asthat for convolution,
namely (13.1.1), except now the left-hand side is taken to be known, and (13.1.1) is
to be considered asaset of V linear equationsfor the unknown quantitiess;. Solving
these simultaneous linear equations in the time domain of (13.1.1) is unredistic in
most cases, but the FFT renders the problem amost trivial. Instead of multiplying
the transform of the signal and response to get the transform of the convolution, we
just dividethetransform of the (known) convolution by thetransform of the response
to get the transform of the deconvolved signal.

This procedure can go wrong mathematically if the transform of the response
function is exactly zero for some value R,,, so that we can’t divide by it. This
indicates that the original convolution has truly lost al information at that one
frequency, so that a reconstruction of that frequency component is not possible.
You should be aware, however, that apart from mathematical problems, the process
of deconvolution has other practical shortcomings. The process is generally quite
sensitiveto noisein theinput data, and to the accuracy to which the response function
ri isknown. Perfectly reasonable attempts at deconvolution can sometimes produce
nonsense for these reasons. In such cases you may want to make use of the additional
process of optimal filtering, which is discussed in §13.3.

Here is our routine for convolution and deconvolution, using the FFT as
implemented in fourl of §12.2. Since the data and response functions are redl,
not complex, both of their transforms can be taken simultaneously using twofft.
Note, however, that two callsto realft should be substituted if data and respns
have very different magnitudes, to minimize roundoff. The data are assumed to be
stored in a real array data of length n, which must be an integer power of two.
The response function is assumed to be stored in wrap-around order in areal array
respns Of lengthm. The value of m can be any odd integer less than or equal to
n, since the first thing the program does is to recopy the response function into the
appropriate wrap-around order in an array of length n. The answer is returned in
ans, which is also used as working space.
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536 Chapter 13.  Fourier and Spectral Applications

SUBROUTINE convlv(data,n,respns,m,isign,ans)

INTEGER isign,m,n,NMAX

REAL data(n) ,respns(n)

COMPLEX ans(n)

PARAMETER (NMAX=4096)

USES real ft, twofft
Convolves or deconvolves a real data set data(1l:n) (including any user-supplied zero
padding) with a response function respns, stored in wrap-around order in a real array of
length m < n. (m should be an odd integer.) Wrap-around order means that the first half
of the array respns contains the impulse response function at positive times, while the
second half of the array contains the impulse response function at negative times, counting
down from the highest element respns(m). On input isign is +1 for convolution, —1
for deconvolution. The answer is returned in the first n components of ans. However, ans
must be supplied in the calling program with length at least 2*n, for consistency with
twofft. n MUST be an integer power of two.

INTEGER i,no2

COMPLEX fft (NMAX)

don i=1,(m-1)/2
respns(n+1-i)=respns(m+1-i)

Maximum anticipated size of FFT.

Put respns in array of length n.

enddo 11

do 12 i=(m+3)/2,n-(m-1)/2 Pad with zeros.
respns(i)=0.0

enddo 12

call twofft(data,respns,fft,ans,n) FFT both at once.

no2=n/2

do 13 i=1,no02+1
if (isign.eq.1) then
ans(i)=fft(i)*ans(i)/no2
else if (isign.eq.-1) then
if (abs(ans(i)).eq.0.0) pause ’deconvolving at response zero in convlv’
ans(i)=fft(i)/ans(i)/no2 Divide FFTs to deconvolve.
else
pause ’no meaning for isign in convlv’
endif
enddo 13
ans(1)=cmplx(real (ans(1)),real(ans(no2+1))) Pack last element with first for realft.
call realft(ans,n,-1) Inverse transform back to time domain.
return
END

Multiply FFTs to convolve.

Convolving or Deconvolving Very Large Data Sets

If your data set is so long that you do not want to fit it into memory al at
once, then you must break it up into sections and convolve each section separately.
Now, however, the treatment of end effects is a bit different. You have to worry
not only about spurious wrap-around effects, but also about the fact that the ends of
each section of data should have been influenced by data at the nearby ends of the
immediately preceding and following sections of data, but were not so influenced
since only one section of data is in the machine at a time.

There are two, related, standard solutions to this problem. Both are fairly
obvious, so with afew words of description here, you ought to be able to implement
them for yourself. The first solution is called the overlap-save method. In this
technique you pad only the very beginning of the data with enough zeros to avoid
wrap-around pollution. After this initia padding, you forget about zero padding
altogether. Bring in a section of data and convolve or deconvolve it. Then throw
out the points at each end that are polluted by wrap-around end effects. Output only
the remaining good pointsin the middle. Now bring in the next section of data, but
not all new data. The first pointsin each new section overlap the last points from
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Figure 13.1.5.  The overlap-add method for convolving a response with a very long signal. The
signal datais broken up into smaller pieces. Each is zero padded at both ends and convolved (denoted
by bold arrows in the figure). Finally the pieces are added back together, including the overlapping
regions formed by the zero pads.

the preceding section of data. The sections must be overlapped sufficiently so that
the polluted output points at the end of one section are recomputed as the first of the
unpolluted output points from the subsequent section. With a bit of thought you can
easily determine how many points to overlap and save.

The second solution, called the overlap-add method, is illustrated in Figure
13.1.5. Here you don't overlap the input data. Each section of data is digoint
from the others and is used exactly once. However, you carefully zero-pad it at
both ends so that there is no wrap-around ambiguity in the output convolution or
deconvolution. Now you overlap and add these sections of output. Thus, an output
point near the end of one section will have the response due to the input points at
the beginning of the next section of data properly added into it, and likewise for an
output point near the beginning of a section, mutatis mutandis.

Even when computer memory isavailable, thereissomedight gainin computing
speed in segmenting along data set, sincethe FFTS N log, N isdightly slower than
linear in N. However, thelog term is so dowly varying that you will often be much
happier to avoid the bookkeeping complexities of the overlap-add or overlap-save
methods: If it is practical to do so, just cram the whole data set into memory and
FFT away. Then you will have more time for the finer thingsin life, some of which
are described in succeeding sections of this chapter.
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538 Chapter 13.  Fourier and Spectral Applications

13.2 Correlation and Autocorrelation Using
the FFT

Corrdation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functionsthat go into a correlation are not
as conceptually distinct as were the data and response functions that entered into
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have aready defined in eguation (12.0.10) the correlation between two
continuous functions ¢g(¢) and h(t), which is denoted Corr(g, ), and is a function
of lag t. Wewill occasionally show thistime dependence explicitly, with the rather
awkward notation Corr(g, h)(t). The correlation will be large a some vaue of
t if the first function (g) is a close copy of the second (h) but lags it in time by
t, i.e, if the first function is shifted to the right of the second. Likewise, the
correlation will be large for some negative value of ¢ if the first function leads the
second, i.e., is shifted to the left of the second. The relation that holds when the
two functions are interchanged is

Corr(g, h)(t) = Corr(h, g)(—t) (13.2.1)

The discrete correlation of two sampled functions g, and hy, each periodic
with period NV, is defined by

N-1

Corr(g,h); = Z Gtk (13.2.2)
k=0

The discrete correlation theorem says that this discrete correlation of two real
functions g and h is one member of the discrete Fourier transform pair

Corr(g, h); <= GrHy* (13.2.3)

where G, and H, are the discrete Fourier transforms of ¢; and h;, and the asterisk
denotes complex conjugation. Thistheorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call it ;) will formally be a complex vector
of length N. However, it will turn out to have dl its imaginary parts zero since
the original data sets were both real. The components of r, are the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag isin rg, the first component;
the correlation at lag 1 isin r1, the second component; the correlation at lag —1
isin ry_1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as
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